numam-dpdk/drivers/net/e1000/base/e1000_80003es2lan.c
Guinan Sun bc05f34e95 net/e1000/base: modify copyright
Modify the copyright of the file header.

Signed-off-by: Guinan Sun <guinanx.sun@intel.com>
Reviewed-by: Wei Zhao <wei.zhao1@intel.com>
2020-07-07 23:38:27 +02:00

1496 lines
41 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2001-2020 Intel Corporation
*/
/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
* 80003ES2LAN Gigabit Ethernet Controller (Serdes)
*/
#include "e1000_api.h"
STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw);
STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw);
STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
u32 offset,
u16 *data);
STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
u32 offset,
u16 data);
STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data);
STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
u16 *duplex);
STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 *data);
STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 data);
STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw);
STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
/* A table for the GG82563 cable length where the range is defined
* with a lower bound at "index" and the upper bound at
* "index + 5".
*/
STATIC const u16 e1000_gg82563_cable_length_table[] = {
0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
#define GG82563_CABLE_LENGTH_TABLE_SIZE \
(sizeof(e1000_gg82563_cable_length_table) / \
sizeof(e1000_gg82563_cable_length_table[0]))
/**
* e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
* @hw: pointer to the HW structure
**/
STATIC s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
DEBUGFUNC("e1000_init_phy_params_80003es2lan");
if (hw->phy.media_type != e1000_media_type_copper) {
phy->type = e1000_phy_none;
return E1000_SUCCESS;
} else {
phy->ops.power_up = e1000_power_up_phy_copper;
phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
}
phy->addr = 1;
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
phy->reset_delay_us = 100;
phy->type = e1000_phy_gg82563;
phy->ops.acquire = e1000_acquire_phy_80003es2lan;
phy->ops.check_polarity = e1000_check_polarity_m88;
phy->ops.check_reset_block = e1000_check_reset_block_generic;
phy->ops.commit = e1000_phy_sw_reset_generic;
phy->ops.get_cfg_done = e1000_get_cfg_done_80003es2lan;
phy->ops.get_info = e1000_get_phy_info_m88;
phy->ops.release = e1000_release_phy_80003es2lan;
phy->ops.reset = e1000_phy_hw_reset_generic;
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_generic;
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan;
phy->ops.get_cable_length = e1000_get_cable_length_80003es2lan;
phy->ops.read_reg = e1000_read_phy_reg_gg82563_80003es2lan;
phy->ops.write_reg = e1000_write_phy_reg_gg82563_80003es2lan;
phy->ops.cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan;
/* This can only be done after all function pointers are setup. */
ret_val = e1000_get_phy_id(hw);
/* Verify phy id */
if (phy->id != GG82563_E_PHY_ID)
return -E1000_ERR_PHY;
return ret_val;
}
/**
* e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
* @hw: pointer to the HW structure
**/
STATIC s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
{
struct e1000_nvm_info *nvm = &hw->nvm;
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
u16 size;
DEBUGFUNC("e1000_init_nvm_params_80003es2lan");
nvm->opcode_bits = 8;
nvm->delay_usec = 1;
switch (nvm->override) {
case e1000_nvm_override_spi_large:
nvm->page_size = 32;
nvm->address_bits = 16;
break;
case e1000_nvm_override_spi_small:
nvm->page_size = 8;
nvm->address_bits = 8;
break;
default:
nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
break;
}
nvm->type = e1000_nvm_eeprom_spi;
size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
E1000_EECD_SIZE_EX_SHIFT);
/* Added to a constant, "size" becomes the left-shift value
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
/* EEPROM access above 16k is unsupported */
if (size > 14)
size = 14;
nvm->word_size = 1 << size;
/* Function Pointers */
nvm->ops.acquire = e1000_acquire_nvm_80003es2lan;
nvm->ops.read = e1000_read_nvm_eerd;
nvm->ops.release = e1000_release_nvm_80003es2lan;
nvm->ops.update = e1000_update_nvm_checksum_generic;
nvm->ops.valid_led_default = e1000_valid_led_default_generic;
nvm->ops.validate = e1000_validate_nvm_checksum_generic;
nvm->ops.write = e1000_write_nvm_80003es2lan;
return E1000_SUCCESS;
}
/**
* e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
* @hw: pointer to the HW structure
**/
STATIC s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
DEBUGFUNC("e1000_init_mac_params_80003es2lan");
/* Set media type and media-dependent function pointers */
switch (hw->device_id) {
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
hw->phy.media_type = e1000_media_type_internal_serdes;
mac->ops.check_for_link = e1000_check_for_serdes_link_generic;
mac->ops.setup_physical_interface =
e1000_setup_fiber_serdes_link_generic;
break;
default:
hw->phy.media_type = e1000_media_type_copper;
mac->ops.check_for_link = e1000_check_for_copper_link_generic;
mac->ops.setup_physical_interface =
e1000_setup_copper_link_80003es2lan;
break;
}
/* Set mta register count */
mac->mta_reg_count = 128;
/* Set rar entry count */
mac->rar_entry_count = E1000_RAR_ENTRIES;
/* Set if part includes ASF firmware */
mac->asf_firmware_present = true;
/* FWSM register */
mac->has_fwsm = true;
/* ARC supported; valid only if manageability features are enabled. */
mac->arc_subsystem_valid = !!(E1000_READ_REG(hw, E1000_FWSM) &
E1000_FWSM_MODE_MASK);
/* Adaptive IFS not supported */
mac->adaptive_ifs = false;
/* Function pointers */
/* bus type/speed/width */
mac->ops.get_bus_info = e1000_get_bus_info_pcie_generic;
/* reset */
mac->ops.reset_hw = e1000_reset_hw_80003es2lan;
/* hw initialization */
mac->ops.init_hw = e1000_init_hw_80003es2lan;
/* link setup */
mac->ops.setup_link = e1000_setup_link_generic;
/* check management mode */
mac->ops.check_mng_mode = e1000_check_mng_mode_generic;
/* multicast address update */
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
/* writing VFTA */
mac->ops.write_vfta = e1000_write_vfta_generic;
/* clearing VFTA */
mac->ops.clear_vfta = e1000_clear_vfta_generic;
/* read mac address */
mac->ops.read_mac_addr = e1000_read_mac_addr_80003es2lan;
/* ID LED init */
mac->ops.id_led_init = e1000_id_led_init_generic;
/* blink LED */
mac->ops.blink_led = e1000_blink_led_generic;
/* setup LED */
mac->ops.setup_led = e1000_setup_led_generic;
/* cleanup LED */
mac->ops.cleanup_led = e1000_cleanup_led_generic;
/* turn on/off LED */
mac->ops.led_on = e1000_led_on_generic;
mac->ops.led_off = e1000_led_off_generic;
/* clear hardware counters */
mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan;
/* link info */
mac->ops.get_link_up_info = e1000_get_link_up_info_80003es2lan;
/* set lan id for port to determine which phy lock to use */
hw->mac.ops.set_lan_id(hw);
return E1000_SUCCESS;
}
/**
* e1000_init_function_pointers_80003es2lan - Init ESB2 func ptrs.
* @hw: pointer to the HW structure
*
* Called to initialize all function pointers and parameters.
**/
void e1000_init_function_pointers_80003es2lan(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_init_function_pointers_80003es2lan");
hw->mac.ops.init_params = e1000_init_mac_params_80003es2lan;
hw->nvm.ops.init_params = e1000_init_nvm_params_80003es2lan;
hw->phy.ops.init_params = e1000_init_phy_params_80003es2lan;
}
/**
* e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
* @hw: pointer to the HW structure
*
* A wrapper to acquire access rights to the correct PHY.
**/
STATIC s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
DEBUGFUNC("e1000_acquire_phy_80003es2lan");
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_release_phy_80003es2lan - Release rights to access PHY
* @hw: pointer to the HW structure
*
* A wrapper to release access rights to the correct PHY.
**/
STATIC void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
DEBUGFUNC("e1000_release_phy_80003es2lan");
mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
e1000_release_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
* @hw: pointer to the HW structure
*
* Acquire the semaphore to access the Kumeran interface.
*
**/
STATIC s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
DEBUGFUNC("e1000_acquire_mac_csr_80003es2lan");
mask = E1000_SWFW_CSR_SM;
return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
* @hw: pointer to the HW structure
*
* Release the semaphore used to access the Kumeran interface
**/
STATIC void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
{
u16 mask;
DEBUGFUNC("e1000_release_mac_csr_80003es2lan");
mask = E1000_SWFW_CSR_SM;
e1000_release_swfw_sync_80003es2lan(hw, mask);
}
/**
* e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
* @hw: pointer to the HW structure
*
* Acquire the semaphore to access the EEPROM.
**/
STATIC s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
DEBUGFUNC("e1000_acquire_nvm_80003es2lan");
ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
if (ret_val)
return ret_val;
ret_val = e1000_acquire_nvm_generic(hw);
if (ret_val)
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
return ret_val;
}
/**
* e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
* @hw: pointer to the HW structure
*
* Release the semaphore used to access the EEPROM.
**/
STATIC void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_release_nvm_80003es2lan");
e1000_release_nvm_generic(hw);
e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
}
/**
* e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
* will also specify which port we're acquiring the lock for.
**/
STATIC s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
u32 swmask = mask;
u32 fwmask = mask << 16;
s32 i = 0;
s32 timeout = 50;
DEBUGFUNC("e1000_acquire_swfw_sync_80003es2lan");
while (i < timeout) {
if (e1000_get_hw_semaphore_generic(hw))
return -E1000_ERR_SWFW_SYNC;
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
/* Firmware currently using resource (fwmask)
* or other software thread using resource (swmask)
*/
e1000_put_hw_semaphore_generic(hw);
msec_delay_irq(5);
i++;
}
if (i == timeout) {
DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
return -E1000_ERR_SWFW_SYNC;
}
swfw_sync |= swmask;
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
e1000_put_hw_semaphore_generic(hw);
return E1000_SUCCESS;
}
/**
* e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
* will also specify which port we're releasing the lock for.
**/
STATIC void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
{
u32 swfw_sync;
DEBUGFUNC("e1000_release_swfw_sync_80003es2lan");
while (e1000_get_hw_semaphore_generic(hw) != E1000_SUCCESS)
; /* Empty */
swfw_sync = E1000_READ_REG(hw, E1000_SW_FW_SYNC);
swfw_sync &= ~mask;
E1000_WRITE_REG(hw, E1000_SW_FW_SYNC, swfw_sync);
e1000_put_hw_semaphore_generic(hw);
}
/**
* e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
* @hw: pointer to the HW structure
* @offset: offset of the register to read
* @data: pointer to the data returned from the operation
*
* Read the GG82563 PHY register.
**/
STATIC s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
u32 offset, u16 *data)
{
s32 ret_val;
u32 page_select;
u16 temp;
DEBUGFUNC("e1000_read_phy_reg_gg82563_80003es2lan");
ret_val = e1000_acquire_phy_80003es2lan(hw);
if (ret_val)
return ret_val;
/* Select Configuration Page */
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
page_select = GG82563_PHY_PAGE_SELECT;
} else {
/* Use Alternative Page Select register to access
* registers 30 and 31
*/
page_select = GG82563_PHY_PAGE_SELECT_ALT;
}
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
if (ret_val) {
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
/* The "ready" bit in the MDIC register may be incorrectly set
* before the device has completed the "Page Select" MDI
* transaction. So we wait 200us after each MDI command...
*/
usec_delay(200);
/* ...and verify the command was successful. */
ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
e1000_release_phy_80003es2lan(hw);
return -E1000_ERR_PHY;
}
usec_delay(200);
ret_val = e1000_read_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
usec_delay(200);
} else {
ret_val = e1000_read_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
}
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
/**
* e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
* @hw: pointer to the HW structure
* @offset: offset of the register to read
* @data: value to write to the register
*
* Write to the GG82563 PHY register.
**/
STATIC s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
u32 offset, u16 data)
{
s32 ret_val;
u32 page_select;
u16 temp;
DEBUGFUNC("e1000_write_phy_reg_gg82563_80003es2lan");
ret_val = e1000_acquire_phy_80003es2lan(hw);
if (ret_val)
return ret_val;
/* Select Configuration Page */
if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
page_select = GG82563_PHY_PAGE_SELECT;
} else {
/* Use Alternative Page Select register to access
* registers 30 and 31
*/
page_select = GG82563_PHY_PAGE_SELECT_ALT;
}
temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
ret_val = e1000_write_phy_reg_mdic(hw, page_select, temp);
if (ret_val) {
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
if (hw->dev_spec._80003es2lan.mdic_wa_enable) {
/* The "ready" bit in the MDIC register may be incorrectly set
* before the device has completed the "Page Select" MDI
* transaction. So we wait 200us after each MDI command...
*/
usec_delay(200);
/* ...and verify the command was successful. */
ret_val = e1000_read_phy_reg_mdic(hw, page_select, &temp);
if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
e1000_release_phy_80003es2lan(hw);
return -E1000_ERR_PHY;
}
usec_delay(200);
ret_val = e1000_write_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
usec_delay(200);
} else {
ret_val = e1000_write_phy_reg_mdic(hw,
MAX_PHY_REG_ADDRESS & offset,
data);
}
e1000_release_phy_80003es2lan(hw);
return ret_val;
}
/**
* e1000_write_nvm_80003es2lan - Write to ESB2 NVM
* @hw: pointer to the HW structure
* @offset: offset of the register to read
* @words: number of words to write
* @data: buffer of data to write to the NVM
*
* Write "words" of data to the ESB2 NVM.
**/
STATIC s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data)
{
DEBUGFUNC("e1000_write_nvm_80003es2lan");
return e1000_write_nvm_spi(hw, offset, words, data);
}
/**
* e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
* @hw: pointer to the HW structure
*
* Wait a specific amount of time for manageability processes to complete.
* This is a function pointer entry point called by the phy module.
**/
STATIC s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
{
s32 timeout = PHY_CFG_TIMEOUT;
u32 mask = E1000_NVM_CFG_DONE_PORT_0;
DEBUGFUNC("e1000_get_cfg_done_80003es2lan");
if (hw->bus.func == 1)
mask = E1000_NVM_CFG_DONE_PORT_1;
while (timeout) {
if (E1000_READ_REG(hw, E1000_EEMNGCTL) & mask)
break;
msec_delay(1);
timeout--;
}
if (!timeout) {
DEBUGOUT("MNG configuration cycle has not completed.\n");
return -E1000_ERR_RESET;
}
return E1000_SUCCESS;
}
/**
* e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
* @hw: pointer to the HW structure
*
* Force the speed and duplex settings onto the PHY. This is a
* function pointer entry point called by the phy module.
**/
STATIC s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
bool link;
DEBUGFUNC("e1000_phy_force_speed_duplex_80003es2lan");
if (!(hw->phy.ops.read_reg))
return E1000_SUCCESS;
/* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
DEBUGOUT1("GG82563 PSCR: %X\n", phy_data);
ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
return ret_val;
e1000_phy_force_speed_duplex_setup(hw, &phy_data);
/* Reset the phy to commit changes. */
phy_data |= MII_CR_RESET;
ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
return ret_val;
usec_delay(1);
if (hw->phy.autoneg_wait_to_complete) {
DEBUGOUT("Waiting for forced speed/duplex link on GG82563 phy.\n");
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
if (!link) {
/* We didn't get link.
* Reset the DSP and cross our fingers.
*/
ret_val = e1000_phy_reset_dsp_generic(hw);
if (ret_val)
return ret_val;
}
/* Try once more */
ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
return ret_val;
}
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
&phy_data);
if (ret_val)
return ret_val;
/* Resetting the phy means we need to verify the TX_CLK corresponds
* to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
*/
phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
else
phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
/* In addition, we must re-enable CRS on Tx for both half and full
* duplex.
*/
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
phy_data);
return ret_val;
}
/**
* e1000_get_cable_length_80003es2lan - Set approximate cable length
* @hw: pointer to the HW structure
*
* Find the approximate cable length as measured by the GG82563 PHY.
* This is a function pointer entry point called by the phy module.
**/
STATIC s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, index;
DEBUGFUNC("e1000_get_cable_length_80003es2lan");
if (!(hw->phy.ops.read_reg))
return E1000_SUCCESS;
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
if (ret_val)
return ret_val;
index = phy_data & GG82563_DSPD_CABLE_LENGTH;
if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
return -E1000_ERR_PHY;
phy->min_cable_length = e1000_gg82563_cable_length_table[index];
phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
return E1000_SUCCESS;
}
/**
* e1000_get_link_up_info_80003es2lan - Report speed and duplex
* @hw: pointer to the HW structure
* @speed: pointer to speed buffer
* @duplex: pointer to duplex buffer
*
* Retrieve the current speed and duplex configuration.
**/
STATIC s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
u16 *duplex)
{
s32 ret_val;
DEBUGFUNC("e1000_get_link_up_info_80003es2lan");
if (hw->phy.media_type == e1000_media_type_copper) {
ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed,
duplex);
hw->phy.ops.cfg_on_link_up(hw);
} else {
ret_val = e1000_get_speed_and_duplex_fiber_serdes_generic(hw,
speed,
duplex);
}
return ret_val;
}
/**
* e1000_reset_hw_80003es2lan - Reset the ESB2 controller
* @hw: pointer to the HW structure
*
* Perform a global reset to the ESB2 controller.
**/
STATIC s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 kum_reg_data;
DEBUGFUNC("e1000_reset_hw_80003es2lan");
/* Prevent the PCI-E bus from sticking if there is no TLP connection
* on the last TLP read/write transaction when MAC is reset.
*/
ret_val = e1000_disable_pcie_master_generic(hw);
if (ret_val)
DEBUGOUT("PCI-E Master disable polling has failed.\n");
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
E1000_WRITE_REG(hw, E1000_RCTL, 0);
E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
E1000_WRITE_FLUSH(hw);
msec_delay(10);
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ret_val = e1000_acquire_phy_80003es2lan(hw);
if (ret_val)
return ret_val;
DEBUGOUT("Issuing a global reset to MAC\n");
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
e1000_release_phy_80003es2lan(hw);
/* Disable IBIST slave mode (far-end loopback) */
ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_INBAND_PARAM, &kum_reg_data);
if (!ret_val) {
kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_INBAND_PARAM,
kum_reg_data);
if (ret_val)
DEBUGOUT("Error disabling far-end loopback\n");
} else
DEBUGOUT("Error disabling far-end loopback\n");
ret_val = e1000_get_auto_rd_done_generic(hw);
if (ret_val)
/* We don't want to continue accessing MAC registers. */
return ret_val;
/* Clear any pending interrupt events. */
E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
E1000_READ_REG(hw, E1000_ICR);
return e1000_check_alt_mac_addr_generic(hw);
}
/**
* e1000_init_hw_80003es2lan - Initialize the ESB2 controller
* @hw: pointer to the HW structure
*
* Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
**/
STATIC s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
{
struct e1000_mac_info *mac = &hw->mac;
u32 reg_data;
s32 ret_val;
u16 kum_reg_data;
u16 i;
DEBUGFUNC("e1000_init_hw_80003es2lan");
e1000_initialize_hw_bits_80003es2lan(hw);
/* Initialize identification LED */
ret_val = mac->ops.id_led_init(hw);
/* An error is not fatal and we should not stop init due to this */
if (ret_val)
DEBUGOUT("Error initializing identification LED\n");
/* Disabling VLAN filtering */
DEBUGOUT("Initializing the IEEE VLAN\n");
mac->ops.clear_vfta(hw);
/* Setup the receive address. */
e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
/* Setup link and flow control */
ret_val = mac->ops.setup_link(hw);
if (ret_val)
return ret_val;
/* Disable IBIST slave mode (far-end loopback) */
ret_val =
e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
&kum_reg_data);
if (!ret_val) {
kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_INBAND_PARAM,
kum_reg_data);
if (ret_val)
DEBUGOUT("Error disabling far-end loopback\n");
} else
DEBUGOUT("Error disabling far-end loopback\n");
/* Set the transmit descriptor write-back policy */
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(0));
reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg_data);
/* ...for both queues. */
reg_data = E1000_READ_REG(hw, E1000_TXDCTL(1));
reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg_data);
/* Enable retransmit on late collisions */
reg_data = E1000_READ_REG(hw, E1000_TCTL);
reg_data |= E1000_TCTL_RTLC;
E1000_WRITE_REG(hw, E1000_TCTL, reg_data);
/* Configure Gigabit Carry Extend Padding */
reg_data = E1000_READ_REG(hw, E1000_TCTL_EXT);
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
E1000_WRITE_REG(hw, E1000_TCTL_EXT, reg_data);
/* Configure Transmit Inter-Packet Gap */
reg_data = E1000_READ_REG(hw, E1000_TIPG);
reg_data &= ~E1000_TIPG_IPGT_MASK;
reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
E1000_WRITE_REG(hw, E1000_TIPG, reg_data);
reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
reg_data &= ~0x00100000;
E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
/* default to true to enable the MDIC W/A */
hw->dev_spec._80003es2lan.mdic_wa_enable = true;
ret_val =
e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
if (!ret_val) {
if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
hw->dev_spec._80003es2lan.mdic_wa_enable = false;
}
/* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs_80003es2lan(hw);
return ret_val;
}
/**
* e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
* @hw: pointer to the HW structure
*
* Initializes required hardware-dependent bits needed for normal operation.
**/
STATIC void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
{
u32 reg;
DEBUGFUNC("e1000_initialize_hw_bits_80003es2lan");
/* Transmit Descriptor Control 0 */
reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
reg |= (1 << 22);
E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
/* Transmit Descriptor Control 1 */
reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
reg |= (1 << 22);
E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
/* Transmit Arbitration Control 0 */
reg = E1000_READ_REG(hw, E1000_TARC(0));
reg &= ~(0xF << 27); /* 30:27 */
if (hw->phy.media_type != e1000_media_type_copper)
reg &= ~(1 << 20);
E1000_WRITE_REG(hw, E1000_TARC(0), reg);
/* Transmit Arbitration Control 1 */
reg = E1000_READ_REG(hw, E1000_TARC(1));
if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
reg &= ~(1 << 28);
else
reg |= (1 << 28);
E1000_WRITE_REG(hw, E1000_TARC(1), reg);
/* Disable IPv6 extension header parsing because some malformed
* IPv6 headers can hang the Rx.
*/
reg = E1000_READ_REG(hw, E1000_RFCTL);
reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
E1000_WRITE_REG(hw, E1000_RFCTL, reg);
return;
}
/**
* e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
* @hw: pointer to the HW structure
*
* Setup some GG82563 PHY registers for obtaining link
**/
STATIC s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u32 reg;
u16 data;
DEBUGFUNC("e1000_copper_link_setup_gg82563_80003es2lan");
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
if (ret_val)
return ret_val;
data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
if (ret_val)
return ret_val;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL, &data);
if (ret_val)
return ret_val;
data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
switch (phy->mdix) {
case 1:
data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
break;
case 2:
data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
break;
case 0:
default:
data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
if (phy->disable_polarity_correction)
data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL, data);
if (ret_val)
return ret_val;
/* SW Reset the PHY so all changes take effect */
ret_val = hw->phy.ops.commit(hw);
if (ret_val) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
/* Bypass Rx and Tx FIFO's */
reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
if (ret_val)
return ret_val;
reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
if (ret_val)
return ret_val;
data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_SPEC_CTRL_2, &data);
if (ret_val)
return ret_val;
data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_SPEC_CTRL_2, data);
if (ret_val)
return ret_val;
reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
if (ret_val)
return ret_val;
/* Do not init these registers when the HW is in IAMT mode, since the
* firmware will have already initialized them. We only initialize
* them if the HW is not in IAMT mode.
*/
if (!hw->mac.ops.check_mng_mode(hw)) {
/* Enable Electrical Idle on the PHY */
data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
data);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
&data);
if (ret_val)
return ret_val;
data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
data);
if (ret_val)
return ret_val;
}
/* Workaround: Disable padding in Kumeran interface in the MAC
* and in the PHY to avoid CRC errors.
*/
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_INBAND_CTRL, &data);
if (ret_val)
return ret_val;
data |= GG82563_ICR_DIS_PADDING;
ret_val = hw->phy.ops.write_reg(hw, GG82563_PHY_INBAND_CTRL, data);
if (ret_val)
return ret_val;
return E1000_SUCCESS;
}
/**
* e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
* @hw: pointer to the HW structure
*
* Essentially a wrapper for setting up all things "copper" related.
* This is a function pointer entry point called by the mac module.
**/
STATIC s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
{
u32 ctrl;
s32 ret_val;
u16 reg_data;
DEBUGFUNC("e1000_setup_copper_link_80003es2lan");
ctrl = E1000_READ_REG(hw, E1000_CTRL);
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
/* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps.
*/
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
0xFFFF);
if (ret_val)
return ret_val;
ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
&reg_data);
if (ret_val)
return ret_val;
reg_data |= 0x3F;
ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
reg_data);
if (ret_val)
return ret_val;
ret_val =
e1000_read_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
&reg_data);
if (ret_val)
return ret_val;
reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
ret_val =
e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
reg_data);
if (ret_val)
return ret_val;
ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
if (ret_val)
return ret_val;
return e1000_setup_copper_link_generic(hw);
}
/**
* e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
* @hw: pointer to the HW structure
*
* Configure the KMRN interface by applying last minute quirks for
* 10/100 operation.
**/
STATIC s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val = E1000_SUCCESS;
u16 speed;
u16 duplex;
DEBUGFUNC("e1000_configure_on_link_up");
if (hw->phy.media_type == e1000_media_type_copper) {
ret_val = e1000_get_speed_and_duplex_copper_generic(hw, &speed,
&duplex);
if (ret_val)
return ret_val;
if (speed == SPEED_1000)
ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
else
ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
}
return ret_val;
}
/**
* e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
* @hw: pointer to the HW structure
* @duplex: current duplex setting
*
* Configure the KMRN interface by applying last minute quirks for
* 10/100 operation.
**/
STATIC s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
{
s32 ret_val;
u32 tipg;
u32 i = 0;
u16 reg_data, reg_data2;
DEBUGFUNC("e1000_configure_kmrn_for_10_100");
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
ret_val =
e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = E1000_READ_REG(hw, E1000_TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
E1000_WRITE_REG(hw, E1000_TIPG, tipg);
do {
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
&reg_data);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
&reg_data2);
if (ret_val)
return ret_val;
i++;
} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
if (duplex == HALF_DUPLEX)
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
else
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
}
/**
* e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
* @hw: pointer to the HW structure
*
* Configure the KMRN interface by applying last minute quirks for
* gigabit operation.
**/
STATIC s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
u16 reg_data, reg_data2;
u32 tipg;
u32 i = 0;
DEBUGFUNC("e1000_configure_kmrn_for_1000");
reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
ret_val =
e1000_write_kmrn_reg_80003es2lan(hw,
E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
reg_data);
if (ret_val)
return ret_val;
/* Configure Transmit Inter-Packet Gap */
tipg = E1000_READ_REG(hw, E1000_TIPG);
tipg &= ~E1000_TIPG_IPGT_MASK;
tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
E1000_WRITE_REG(hw, E1000_TIPG, tipg);
do {
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
&reg_data);
if (ret_val)
return ret_val;
ret_val = hw->phy.ops.read_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
&reg_data2);
if (ret_val)
return ret_val;
i++;
} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
return hw->phy.ops.write_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
}
/**
* e1000_read_kmrn_reg_80003es2lan - Read kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquire semaphore, then read the PHY register at offset
* using the kumeran interface. The information retrieved is stored in data.
* Release the semaphore before exiting.
**/
STATIC s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 *data)
{
u32 kmrnctrlsta;
s32 ret_val;
DEBUGFUNC("e1000_read_kmrn_reg_80003es2lan");
ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
if (ret_val)
return ret_val;
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
E1000_WRITE_FLUSH(hw);
usec_delay(2);
kmrnctrlsta = E1000_READ_REG(hw, E1000_KMRNCTRLSTA);
*data = (u16)kmrnctrlsta;
e1000_release_mac_csr_80003es2lan(hw);
return ret_val;
}
/**
* e1000_write_kmrn_reg_80003es2lan - Write kumeran register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquire semaphore, then write the data to PHY register
* at the offset using the kumeran interface. Release semaphore
* before exiting.
**/
STATIC s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
u16 data)
{
u32 kmrnctrlsta;
s32 ret_val;
DEBUGFUNC("e1000_write_kmrn_reg_80003es2lan");
ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
if (ret_val)
return ret_val;
kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
E1000_KMRNCTRLSTA_OFFSET) | data;
E1000_WRITE_REG(hw, E1000_KMRNCTRLSTA, kmrnctrlsta);
E1000_WRITE_FLUSH(hw);
usec_delay(2);
e1000_release_mac_csr_80003es2lan(hw);
return ret_val;
}
/**
* e1000_read_mac_addr_80003es2lan - Read device MAC address
* @hw: pointer to the HW structure
**/
STATIC s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
{
s32 ret_val;
DEBUGFUNC("e1000_read_mac_addr_80003es2lan");
/* If there's an alternate MAC address place it in RAR0
* so that it will override the Si installed default perm
* address.
*/
ret_val = e1000_check_alt_mac_addr_generic(hw);
if (ret_val)
return ret_val;
return e1000_read_mac_addr_generic(hw);
}
/**
* e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, or wake on lan is not enabled, remove the link.
**/
STATIC void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
{
/* If the management interface is not enabled, then power down */
if (!(hw->mac.ops.check_mng_mode(hw) ||
hw->phy.ops.check_reset_block(hw)))
e1000_power_down_phy_copper(hw);
return;
}
/**
* e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
* @hw: pointer to the HW structure
*
* Clears the hardware counters by reading the counter registers.
**/
STATIC void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_clear_hw_cntrs_80003es2lan");
e1000_clear_hw_cntrs_base_generic(hw);
E1000_READ_REG(hw, E1000_PRC64);
E1000_READ_REG(hw, E1000_PRC127);
E1000_READ_REG(hw, E1000_PRC255);
E1000_READ_REG(hw, E1000_PRC511);
E1000_READ_REG(hw, E1000_PRC1023);
E1000_READ_REG(hw, E1000_PRC1522);
E1000_READ_REG(hw, E1000_PTC64);
E1000_READ_REG(hw, E1000_PTC127);
E1000_READ_REG(hw, E1000_PTC255);
E1000_READ_REG(hw, E1000_PTC511);
E1000_READ_REG(hw, E1000_PTC1023);
E1000_READ_REG(hw, E1000_PTC1522);
E1000_READ_REG(hw, E1000_ALGNERRC);
E1000_READ_REG(hw, E1000_RXERRC);
E1000_READ_REG(hw, E1000_TNCRS);
E1000_READ_REG(hw, E1000_CEXTERR);
E1000_READ_REG(hw, E1000_TSCTC);
E1000_READ_REG(hw, E1000_TSCTFC);
E1000_READ_REG(hw, E1000_MGTPRC);
E1000_READ_REG(hw, E1000_MGTPDC);
E1000_READ_REG(hw, E1000_MGTPTC);
E1000_READ_REG(hw, E1000_IAC);
E1000_READ_REG(hw, E1000_ICRXOC);
E1000_READ_REG(hw, E1000_ICRXPTC);
E1000_READ_REG(hw, E1000_ICRXATC);
E1000_READ_REG(hw, E1000_ICTXPTC);
E1000_READ_REG(hw, E1000_ICTXATC);
E1000_READ_REG(hw, E1000_ICTXQEC);
E1000_READ_REG(hw, E1000_ICTXQMTC);
E1000_READ_REG(hw, E1000_ICRXDMTC);
}