Andrew Rybchenko 56349dc9f3 net/sfc: handle received packet type info from HW
Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
Reviewed-by: Andrew Lee <alee@solarflare.com>
Reviewed-by: Robert Stonehouse <rstonehouse@solarflare.com>
2017-01-17 19:40:50 +01:00

855 lines
20 KiB
C

/*-
* Copyright (c) 2016 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_mempool.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_ev.h"
#include "sfc_rx.h"
#include "sfc_tweak.h"
/*
* Maximum number of Rx queue flush attempt in the case of failure or
* flush timeout
*/
#define SFC_RX_QFLUSH_ATTEMPTS (3)
/*
* Time to wait between event queue polling attempts when waiting for Rx
* queue flush done or failed events.
*/
#define SFC_RX_QFLUSH_POLL_WAIT_MS (1)
/*
* Maximum number of event queue polling attempts when waiting for Rx queue
* flush done or failed events. It defines Rx queue flush attempt timeout
* together with SFC_RX_QFLUSH_POLL_WAIT_MS.
*/
#define SFC_RX_QFLUSH_POLL_ATTEMPTS (2000)
void
sfc_rx_qflush_done(struct sfc_rxq *rxq)
{
rxq->state |= SFC_RXQ_FLUSHED;
rxq->state &= ~SFC_RXQ_FLUSHING;
}
void
sfc_rx_qflush_failed(struct sfc_rxq *rxq)
{
rxq->state |= SFC_RXQ_FLUSH_FAILED;
rxq->state &= ~SFC_RXQ_FLUSHING;
}
static void
sfc_rx_qrefill(struct sfc_rxq *rxq)
{
unsigned int free_space;
unsigned int bulks;
void *objs[SFC_RX_REFILL_BULK];
efsys_dma_addr_t addr[RTE_DIM(objs)];
unsigned int added = rxq->added;
unsigned int id;
unsigned int i;
struct sfc_rx_sw_desc *rxd;
struct rte_mbuf *m;
uint8_t port_id = rxq->port_id;
free_space = EFX_RXQ_LIMIT(rxq->ptr_mask + 1) -
(added - rxq->completed);
bulks = free_space / RTE_DIM(objs);
id = added & rxq->ptr_mask;
while (bulks-- > 0) {
if (rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
RTE_DIM(objs)) < 0) {
/*
* It is hardly a safe way to increment counter
* from different contexts, but all PMDs do it.
*/
rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
RTE_DIM(objs);
break;
}
for (i = 0; i < RTE_DIM(objs);
++i, id = (id + 1) & rxq->ptr_mask) {
m = objs[i];
rxd = &rxq->sw_desc[id];
rxd->mbuf = m;
rte_mbuf_refcnt_set(m, 1);
m->data_off = RTE_PKTMBUF_HEADROOM;
m->next = NULL;
m->nb_segs = 1;
m->port = port_id;
addr[i] = rte_pktmbuf_mtophys(m);
}
efx_rx_qpost(rxq->common, addr, rxq->buf_size,
RTE_DIM(objs), rxq->completed, added);
added += RTE_DIM(objs);
}
/* Push doorbell if something is posted */
if (rxq->added != added) {
rxq->added = added;
efx_rx_qpush(rxq->common, added, &rxq->pushed);
}
}
static uint64_t
sfc_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
{
uint64_t mbuf_flags = 0;
switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
break;
case EFX_PKT_IPV4:
mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
break;
default:
RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
PKT_RX_IP_CKSUM_UNKNOWN);
break;
}
switch ((desc_flags &
(EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
break;
case EFX_PKT_TCP:
case EFX_PKT_UDP:
mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
break;
default:
RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
PKT_RX_L4_CKSUM_UNKNOWN);
break;
}
return mbuf_flags;
}
static uint32_t
sfc_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
{
return RTE_PTYPE_L2_ETHER |
((desc_flags & EFX_PKT_IPV4) ?
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
((desc_flags & EFX_PKT_IPV6) ?
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
}
uint16_t
sfc_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct sfc_rxq *rxq = rx_queue;
unsigned int completed;
unsigned int prefix_size = rxq->prefix_size;
unsigned int done_pkts = 0;
boolean_t discard_next = B_FALSE;
if (unlikely((rxq->state & SFC_RXQ_RUNNING) == 0))
return 0;
sfc_ev_qpoll(rxq->evq);
completed = rxq->completed;
while (completed != rxq->pending && done_pkts < nb_pkts) {
unsigned int id;
struct sfc_rx_sw_desc *rxd;
struct rte_mbuf *m;
unsigned int seg_len;
unsigned int desc_flags;
id = completed++ & rxq->ptr_mask;
rxd = &rxq->sw_desc[id];
m = rxd->mbuf;
desc_flags = rxd->flags;
if (discard_next)
goto discard;
if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
goto discard;
if (desc_flags & EFX_PKT_CONT)
goto discard;
if (desc_flags & EFX_PKT_PREFIX_LEN) {
uint16_t tmp_size;
int rc __rte_unused;
rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
SFC_ASSERT(rc == 0);
seg_len = tmp_size;
} else {
seg_len = rxd->size - prefix_size;
}
m->data_off += prefix_size;
rte_pktmbuf_data_len(m) = seg_len;
rte_pktmbuf_pkt_len(m) = seg_len;
m->ol_flags = sfc_rx_desc_flags_to_offload_flags(desc_flags);
m->packet_type = sfc_rx_desc_flags_to_packet_type(desc_flags);
*rx_pkts++ = m;
done_pkts++;
continue;
discard:
discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
rte_mempool_put(rxq->refill_mb_pool, m);
rxd->mbuf = NULL;
}
rxq->completed = completed;
sfc_rx_qrefill(rxq);
return done_pkts;
}
static void
sfc_rx_qpurge(struct sfc_rxq *rxq)
{
unsigned int i;
struct sfc_rx_sw_desc *rxd;
for (i = rxq->completed; i != rxq->added; ++i) {
rxd = &rxq->sw_desc[i & rxq->ptr_mask];
rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
rxd->mbuf = NULL;
}
}
static void
sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq *rxq;
unsigned int retry_count;
unsigned int wait_count;
rxq = sa->rxq_info[sw_index].rxq;
SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
/*
* Retry Rx queue flushing in the case of flush failed or
* timeout. In the worst case it can delay for 6 seconds.
*/
for (retry_count = 0;
((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
(retry_count < SFC_RX_QFLUSH_ATTEMPTS);
++retry_count) {
if (efx_rx_qflush(rxq->common) != 0) {
rxq->state |= SFC_RXQ_FLUSH_FAILED;
break;
}
rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
rxq->state |= SFC_RXQ_FLUSHING;
/*
* Wait for Rx queue flush done or failed event at least
* SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
* than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
* by SFC_RX_QFLUSH_POLL_ATTEMPTS).
*/
wait_count = 0;
do {
rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
sfc_ev_qpoll(rxq->evq);
} while ((rxq->state & SFC_RXQ_FLUSHING) &&
(wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
if (rxq->state & SFC_RXQ_FLUSHING)
sfc_err(sa, "RxQ %u flush timed out", sw_index);
if (rxq->state & SFC_RXQ_FLUSH_FAILED)
sfc_err(sa, "RxQ %u flush failed", sw_index);
if (rxq->state & SFC_RXQ_FLUSHED)
sfc_info(sa, "RxQ %u flushed", sw_index);
}
sfc_rx_qpurge(rxq);
}
int
sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
struct sfc_evq *evq;
int rc;
sfc_log_init(sa, "sw_index=%u", sw_index);
SFC_ASSERT(sw_index < sa->rxq_count);
rxq_info = &sa->rxq_info[sw_index];
rxq = rxq_info->rxq;
SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
evq = rxq->evq;
rc = sfc_ev_qstart(sa, evq->evq_index);
if (rc != 0)
goto fail_ev_qstart;
rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
&rxq->mem, rxq_info->entries,
0 /* not used on EF10 */, evq->common,
&rxq->common);
if (rc != 0)
goto fail_rx_qcreate;
efx_rx_qenable(rxq->common);
rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
rxq->state |= (SFC_RXQ_STARTED | SFC_RXQ_RUNNING);
sfc_rx_qrefill(rxq);
if (sw_index == 0) {
rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common,
B_FALSE);
if (rc != 0)
goto fail_mac_filter_default_rxq_set;
}
/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
sa->eth_dev->data->rx_queue_state[sw_index] =
RTE_ETH_QUEUE_STATE_STARTED;
return 0;
fail_mac_filter_default_rxq_set:
sfc_rx_qflush(sa, sw_index);
fail_rx_qcreate:
sfc_ev_qstop(sa, evq->evq_index);
fail_ev_qstart:
return rc;
}
void
sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
sfc_log_init(sa, "sw_index=%u", sw_index);
SFC_ASSERT(sw_index < sa->rxq_count);
rxq_info = &sa->rxq_info[sw_index];
rxq = rxq_info->rxq;
SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
sa->eth_dev->data->rx_queue_state[sw_index] =
RTE_ETH_QUEUE_STATE_STOPPED;
rxq->state &= ~SFC_RXQ_RUNNING;
if (sw_index == 0)
efx_mac_filter_default_rxq_clear(sa->nic);
sfc_rx_qflush(sa, sw_index);
rxq->state = SFC_RXQ_INITIALIZED;
efx_rx_qdestroy(rxq->common);
sfc_ev_qstop(sa, rxq->evq->evq_index);
}
static int
sfc_rx_qcheck_conf(struct sfc_adapter *sa,
const struct rte_eth_rxconf *rx_conf)
{
int rc = 0;
if (rx_conf->rx_thresh.pthresh != 0 ||
rx_conf->rx_thresh.hthresh != 0 ||
rx_conf->rx_thresh.wthresh != 0) {
sfc_err(sa,
"RxQ prefetch/host/writeback thresholds are not supported");
rc = EINVAL;
}
if (rx_conf->rx_free_thresh != 0) {
sfc_err(sa, "RxQ free threshold is not supported");
rc = EINVAL;
}
if (rx_conf->rx_drop_en == 0) {
sfc_err(sa, "RxQ drop disable is not supported");
rc = EINVAL;
}
if (rx_conf->rx_deferred_start != 0) {
sfc_err(sa, "RxQ deferred start is not supported");
rc = EINVAL;
}
return rc;
}
static unsigned int
sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
{
uint32_t data_off;
uint32_t order;
/* The mbuf object itself is always cache line aligned */
order = rte_bsf32(RTE_CACHE_LINE_SIZE);
/* Data offset from mbuf object start */
data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
RTE_PKTMBUF_HEADROOM;
order = MIN(order, rte_bsf32(data_off));
return 1u << (order - 1);
}
static uint16_t
sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
uint16_t buf_size;
unsigned int buf_aligned;
unsigned int start_alignment;
unsigned int end_padding_alignment;
/* Below it is assumed that both alignments are power of 2 */
SFC_ASSERT(rte_is_power_of_2(nic_align_start));
SFC_ASSERT(rte_is_power_of_2(nic_align_end));
/*
* mbuf is always cache line aligned, double-check
* that it meets rx buffer start alignment requirements.
*/
/* Start from mbuf pool data room size */
buf_size = rte_pktmbuf_data_room_size(mb_pool);
/* Remove headroom */
if (buf_size <= RTE_PKTMBUF_HEADROOM) {
sfc_err(sa,
"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
return 0;
}
buf_size -= RTE_PKTMBUF_HEADROOM;
/* Calculate guaranteed data start alignment */
buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
/* Reserve space for start alignment */
if (buf_aligned < nic_align_start) {
start_alignment = nic_align_start - buf_aligned;
if (buf_size <= start_alignment) {
sfc_err(sa,
"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
mb_pool->name,
rte_pktmbuf_data_room_size(mb_pool),
RTE_PKTMBUF_HEADROOM, start_alignment);
return 0;
}
buf_aligned = nic_align_start;
buf_size -= start_alignment;
} else {
start_alignment = 0;
}
/* Make sure that end padding does not write beyond the buffer */
if (buf_aligned < nic_align_end) {
/*
* Estimate space which can be lost. If guarnteed buffer
* size is odd, lost space is (nic_align_end - 1). More
* accurate formula is below.
*/
end_padding_alignment = nic_align_end -
MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
if (buf_size <= end_padding_alignment) {
sfc_err(sa,
"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
mb_pool->name,
rte_pktmbuf_data_room_size(mb_pool),
RTE_PKTMBUF_HEADROOM, start_alignment,
end_padding_alignment);
return 0;
}
buf_size -= end_padding_alignment;
} else {
/*
* Start is aligned the same or better than end,
* just align length.
*/
buf_size = P2ALIGN(buf_size, nic_align_end);
}
return buf_size;
}
int
sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
uint16_t nb_rx_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
int rc;
uint16_t buf_size;
struct sfc_rxq_info *rxq_info;
unsigned int evq_index;
struct sfc_evq *evq;
struct sfc_rxq *rxq;
rc = sfc_rx_qcheck_conf(sa, rx_conf);
if (rc != 0)
goto fail_bad_conf;
buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
if (buf_size == 0) {
sfc_err(sa, "RxQ %u mbuf pool object size is too small",
sw_index);
rc = EINVAL;
goto fail_bad_conf;
}
if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
!sa->eth_dev->data->dev_conf.rxmode.enable_scatter) {
sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
"object size is too small", sw_index);
sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
"PDU size %u plus Rx prefix %u bytes",
sw_index, buf_size, (unsigned int)sa->port.pdu,
encp->enc_rx_prefix_size);
rc = EINVAL;
goto fail_bad_conf;
}
SFC_ASSERT(sw_index < sa->rxq_count);
rxq_info = &sa->rxq_info[sw_index];
SFC_ASSERT(nb_rx_desc <= rxq_info->max_entries);
rxq_info->entries = nb_rx_desc;
rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
evq_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
rc = sfc_ev_qinit(sa, evq_index, rxq_info->entries, socket_id);
if (rc != 0)
goto fail_ev_qinit;
evq = sa->evq_info[evq_index].evq;
rc = ENOMEM;
rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
socket_id);
if (rxq == NULL)
goto fail_rxq_alloc;
rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
socket_id, &rxq->mem);
if (rc != 0)
goto fail_dma_alloc;
rc = ENOMEM;
rxq->sw_desc = rte_calloc_socket("sfc-rxq-sw_desc", rxq_info->entries,
sizeof(*rxq->sw_desc),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_desc == NULL)
goto fail_desc_alloc;
evq->rxq = rxq;
rxq->evq = evq;
rxq->ptr_mask = rxq_info->entries - 1;
rxq->refill_mb_pool = mb_pool;
rxq->buf_size = buf_size;
rxq->hw_index = sw_index;
rxq->port_id = sa->eth_dev->data->port_id;
/* Cache limits required on datapath in RxQ structure */
rxq->batch_max = encp->enc_rx_batch_max;
rxq->prefix_size = encp->enc_rx_prefix_size;
rxq->state = SFC_RXQ_INITIALIZED;
rxq_info->rxq = rxq;
return 0;
fail_desc_alloc:
sfc_dma_free(sa, &rxq->mem);
fail_dma_alloc:
rte_free(rxq);
fail_rxq_alloc:
sfc_ev_qfini(sa, evq_index);
fail_ev_qinit:
rxq_info->entries = 0;
fail_bad_conf:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
SFC_ASSERT(sw_index < sa->rxq_count);
rxq_info = &sa->rxq_info[sw_index];
rxq = rxq_info->rxq;
SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
rxq_info->rxq = NULL;
rxq_info->entries = 0;
rte_free(rxq->sw_desc);
sfc_dma_free(sa, &rxq->mem);
rte_free(rxq);
}
int
sfc_rx_start(struct sfc_adapter *sa)
{
unsigned int sw_index;
int rc;
sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
rc = efx_rx_init(sa->nic);
if (rc != 0)
goto fail_rx_init;
for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
rc = sfc_rx_qstart(sa, sw_index);
if (rc != 0)
goto fail_rx_qstart;
}
return 0;
fail_rx_qstart:
while (sw_index-- > 0)
sfc_rx_qstop(sa, sw_index);
efx_rx_fini(sa->nic);
fail_rx_init:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_rx_stop(struct sfc_adapter *sa)
{
unsigned int sw_index;
sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
sw_index = sa->rxq_count;
while (sw_index-- > 0) {
if (sa->rxq_info[sw_index].rxq != NULL)
sfc_rx_qstop(sa, sw_index);
}
efx_rx_fini(sa->nic);
}
static int
sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
unsigned int max_entries;
max_entries = EFX_RXQ_MAXNDESCS;
SFC_ASSERT(rte_is_power_of_2(max_entries));
rxq_info->max_entries = max_entries;
return 0;
}
static int
sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
{
int rc = 0;
switch (rxmode->mq_mode) {
case ETH_MQ_RX_NONE:
/* No special checks are required */
break;
default:
sfc_err(sa, "Rx multi-queue mode %u not supported",
rxmode->mq_mode);
rc = EINVAL;
}
if (rxmode->header_split) {
sfc_err(sa, "Header split on Rx not supported");
rc = EINVAL;
}
if (rxmode->hw_vlan_filter) {
sfc_err(sa, "HW VLAN filtering not supported");
rc = EINVAL;
}
if (rxmode->hw_vlan_strip) {
sfc_err(sa, "HW VLAN stripping not supported");
rc = EINVAL;
}
if (rxmode->hw_vlan_extend) {
sfc_err(sa,
"Q-in-Q HW VLAN stripping not supported");
rc = EINVAL;
}
if (!rxmode->hw_strip_crc) {
sfc_warn(sa,
"FCS stripping control not supported - always stripped");
rxmode->hw_strip_crc = 1;
}
if (rxmode->enable_scatter) {
sfc_err(sa, "Scatter on Rx not supported");
rc = EINVAL;
}
if (rxmode->enable_lro) {
sfc_err(sa, "LRO not supported");
rc = EINVAL;
}
return rc;
}
/**
* Initialize Rx subsystem.
*
* Called at device configuration stage when number of receive queues is
* specified together with other device level receive configuration.
*
* It should be used to allocate NUMA-unaware resources.
*/
int
sfc_rx_init(struct sfc_adapter *sa)
{
struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
unsigned int sw_index;
int rc;
rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
if (rc != 0)
goto fail_check_mode;
sa->rxq_count = sa->eth_dev->data->nb_rx_queues;
rc = ENOMEM;
sa->rxq_info = rte_calloc_socket("sfc-rxqs", sa->rxq_count,
sizeof(struct sfc_rxq_info), 0,
sa->socket_id);
if (sa->rxq_info == NULL)
goto fail_rxqs_alloc;
for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
rc = sfc_rx_qinit_info(sa, sw_index);
if (rc != 0)
goto fail_rx_qinit_info;
}
return 0;
fail_rx_qinit_info:
rte_free(sa->rxq_info);
sa->rxq_info = NULL;
fail_rxqs_alloc:
sa->rxq_count = 0;
fail_check_mode:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
/**
* Shutdown Rx subsystem.
*
* Called at device close stage, for example, before device
* reconfiguration or shutdown.
*/
void
sfc_rx_fini(struct sfc_adapter *sa)
{
unsigned int sw_index;
sw_index = sa->rxq_count;
while (sw_index-- > 0) {
if (sa->rxq_info[sw_index].rxq != NULL)
sfc_rx_qfini(sa, sw_index);
}
rte_free(sa->rxq_info);
sa->rxq_info = NULL;
sa->rxq_count = 0;
}