numam-dpdk/drivers/net/sfc/sfc_rx.c
Andrew Rybchenko 827ad8232c net/sfc: fix align to power of 2 when align has smaller type
Substitute driver-defined P2ALIGN() with EFX_P2ALIGN() defined in
libefx.

Cast value and alignment to one specified type to guarantee result
correctness.

Fixes: e1b9445985 ("net/sfc: build libefx")
Cc: stable@dpdk.org

Signed-off-by: Andrew Rybchenko <arybchenko@solarflare.com>
2019-07-24 21:01:11 +02:00

1718 lines
43 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2016-2018 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*/
#include <rte_mempool.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_ev.h"
#include "sfc_rx.h"
#include "sfc_kvargs.h"
#include "sfc_tweak.h"
/*
* Maximum number of Rx queue flush attempt in the case of failure or
* flush timeout
*/
#define SFC_RX_QFLUSH_ATTEMPTS (3)
/*
* Time to wait between event queue polling attempts when waiting for Rx
* queue flush done or failed events.
*/
#define SFC_RX_QFLUSH_POLL_WAIT_MS (1)
/*
* Maximum number of event queue polling attempts when waiting for Rx queue
* flush done or failed events. It defines Rx queue flush attempt timeout
* together with SFC_RX_QFLUSH_POLL_WAIT_MS.
*/
#define SFC_RX_QFLUSH_POLL_ATTEMPTS (2000)
void
sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
{
rxq_info->state |= SFC_RXQ_FLUSHED;
rxq_info->state &= ~SFC_RXQ_FLUSHING;
}
void
sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
{
rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
rxq_info->state &= ~SFC_RXQ_FLUSHING;
}
static int
sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
{
int rc = 0;
if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
if (rc == 0)
rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
}
return rc;
}
static void
sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
{
unsigned int free_space;
unsigned int bulks;
void *objs[SFC_RX_REFILL_BULK];
efsys_dma_addr_t addr[RTE_DIM(objs)];
unsigned int added = rxq->added;
unsigned int id;
unsigned int i;
struct sfc_efx_rx_sw_desc *rxd;
struct rte_mbuf *m;
uint16_t port_id = rxq->dp.dpq.port_id;
free_space = rxq->max_fill_level - (added - rxq->completed);
if (free_space < rxq->refill_threshold)
return;
bulks = free_space / RTE_DIM(objs);
/* refill_threshold guarantees that bulks is positive */
SFC_ASSERT(bulks > 0);
id = added & rxq->ptr_mask;
do {
if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
RTE_DIM(objs)) < 0)) {
/*
* It is hardly a safe way to increment counter
* from different contexts, but all PMDs do it.
*/
rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
RTE_DIM(objs);
/* Return if we have posted nothing yet */
if (added == rxq->added)
return;
/* Push posted */
break;
}
for (i = 0; i < RTE_DIM(objs);
++i, id = (id + 1) & rxq->ptr_mask) {
m = objs[i];
MBUF_RAW_ALLOC_CHECK(m);
rxd = &rxq->sw_desc[id];
rxd->mbuf = m;
m->data_off = RTE_PKTMBUF_HEADROOM;
m->port = port_id;
addr[i] = rte_pktmbuf_iova(m);
}
efx_rx_qpost(rxq->common, addr, rxq->buf_size,
RTE_DIM(objs), rxq->completed, added);
added += RTE_DIM(objs);
} while (--bulks > 0);
SFC_ASSERT(added != rxq->added);
rxq->added = added;
efx_rx_qpush(rxq->common, added, &rxq->pushed);
}
static uint64_t
sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
{
uint64_t mbuf_flags = 0;
switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
break;
case EFX_PKT_IPV4:
mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
break;
default:
RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
PKT_RX_IP_CKSUM_UNKNOWN);
break;
}
switch ((desc_flags &
(EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
break;
case EFX_PKT_TCP:
case EFX_PKT_UDP:
mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
break;
default:
RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
PKT_RX_L4_CKSUM_UNKNOWN);
break;
}
return mbuf_flags;
}
static uint32_t
sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
{
return RTE_PTYPE_L2_ETHER |
((desc_flags & EFX_PKT_IPV4) ?
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
((desc_flags & EFX_PKT_IPV6) ?
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
}
static const uint32_t *
sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_UNKNOWN
};
return ptypes;
}
static void
sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
struct rte_mbuf *m)
{
uint8_t *mbuf_data;
if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
return;
mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
EFX_RX_HASHALG_TOEPLITZ,
mbuf_data);
m->ol_flags |= PKT_RX_RSS_HASH;
}
}
static uint16_t
sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct sfc_dp_rxq *dp_rxq = rx_queue;
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
unsigned int completed;
unsigned int prefix_size = rxq->prefix_size;
unsigned int done_pkts = 0;
boolean_t discard_next = B_FALSE;
struct rte_mbuf *scatter_pkt = NULL;
if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
return 0;
sfc_ev_qpoll(rxq->evq);
completed = rxq->completed;
while (completed != rxq->pending && done_pkts < nb_pkts) {
unsigned int id;
struct sfc_efx_rx_sw_desc *rxd;
struct rte_mbuf *m;
unsigned int seg_len;
unsigned int desc_flags;
id = completed++ & rxq->ptr_mask;
rxd = &rxq->sw_desc[id];
m = rxd->mbuf;
desc_flags = rxd->flags;
if (discard_next)
goto discard;
if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
goto discard;
if (desc_flags & EFX_PKT_PREFIX_LEN) {
uint16_t tmp_size;
int rc __rte_unused;
rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
SFC_ASSERT(rc == 0);
seg_len = tmp_size;
} else {
seg_len = rxd->size - prefix_size;
}
rte_pktmbuf_data_len(m) = seg_len;
rte_pktmbuf_pkt_len(m) = seg_len;
if (scatter_pkt != NULL) {
if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
rte_pktmbuf_free(scatter_pkt);
goto discard;
}
/* The packet to deliver */
m = scatter_pkt;
}
if (desc_flags & EFX_PKT_CONT) {
/* The packet is scattered, more fragments to come */
scatter_pkt = m;
/* Further fragments have no prefix */
prefix_size = 0;
continue;
}
/* Scattered packet is done */
scatter_pkt = NULL;
/* The first fragment of the packet has prefix */
prefix_size = rxq->prefix_size;
m->ol_flags =
sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
m->packet_type =
sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
/*
* Extract RSS hash from the packet prefix and
* set the corresponding field (if needed and possible)
*/
sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
m->data_off += prefix_size;
*rx_pkts++ = m;
done_pkts++;
continue;
discard:
discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
rte_mbuf_raw_free(m);
rxd->mbuf = NULL;
}
/* pending is only moved when entire packet is received */
SFC_ASSERT(scatter_pkt == NULL);
rxq->completed = completed;
sfc_efx_rx_qrefill(rxq);
if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
sfc_efx_rx_qprime(rxq);
return done_pkts;
}
static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
static unsigned int
sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
return 0;
sfc_ev_qpoll(rxq->evq);
return rxq->pending - rxq->completed;
}
static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
static int
sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
if (unlikely(offset > rxq->ptr_mask))
return -EINVAL;
/*
* Poll EvQ to derive up-to-date 'rxq->pending' figure;
* it is required for the queue to be running, but the
* check is omitted because API design assumes that it
* is the duty of the caller to satisfy all conditions
*/
SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
SFC_EFX_RXQ_FLAG_RUNNING);
sfc_ev_qpoll(rxq->evq);
/*
* There is a handful of reserved entries in the ring,
* but an explicit check whether the offset points to
* a reserved entry is neglected since the two checks
* below rely on the figures which take the HW limits
* into account and thus if an entry is reserved, the
* checks will fail and UNAVAIL code will be returned
*/
if (offset < (rxq->pending - rxq->completed))
return RTE_ETH_RX_DESC_DONE;
if (offset < (rxq->added - rxq->completed))
return RTE_ETH_RX_DESC_AVAIL;
return RTE_ETH_RX_DESC_UNAVAIL;
}
boolean_t
sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
boolean_t rx_scatter_enabled, const char **error)
{
if ((rx_buf_size < pdu + rx_prefix_size) && !rx_scatter_enabled) {
*error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
return B_FALSE;
}
return B_TRUE;
}
/** Get Rx datapath ops by the datapath RxQ handle */
const struct sfc_dp_rx *
sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
{
const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
struct rte_eth_dev *eth_dev;
struct sfc_adapter_priv *sap;
SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
eth_dev = &rte_eth_devices[dpq->port_id];
sap = sfc_adapter_priv_by_eth_dev(eth_dev);
return sap->dp_rx;
}
struct sfc_rxq_info *
sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
{
const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
struct rte_eth_dev *eth_dev;
struct sfc_adapter_shared *sas;
SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
eth_dev = &rte_eth_devices[dpq->port_id];
sas = sfc_adapter_shared_by_eth_dev(eth_dev);
SFC_ASSERT(dpq->queue_id < sas->rxq_count);
return &sas->rxq_info[dpq->queue_id];
}
struct sfc_rxq *
sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
{
const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
struct rte_eth_dev *eth_dev;
struct sfc_adapter *sa;
SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
eth_dev = &rte_eth_devices[dpq->port_id];
sa = sfc_adapter_by_eth_dev(eth_dev);
SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
return &sa->rxq_ctrl[dpq->queue_id];
}
static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
static int
sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
__rte_unused struct sfc_dp_rx_hw_limits *limits,
__rte_unused struct rte_mempool *mb_pool,
unsigned int *rxq_entries,
unsigned int *evq_entries,
unsigned int *rxq_max_fill_level)
{
*rxq_entries = nb_rx_desc;
*evq_entries = nb_rx_desc;
*rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
return 0;
}
static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
static int
sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr, int socket_id,
const struct sfc_dp_rx_qcreate_info *info,
struct sfc_dp_rxq **dp_rxqp)
{
struct sfc_efx_rxq *rxq;
int rc;
rc = ENOMEM;
rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
goto fail_rxq_alloc;
sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
info->rxq_entries,
sizeof(*rxq->sw_desc),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_desc == NULL)
goto fail_desc_alloc;
/* efx datapath is bound to efx control path */
rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
rxq->ptr_mask = info->rxq_entries - 1;
rxq->batch_max = info->batch_max;
rxq->prefix_size = info->prefix_size;
rxq->max_fill_level = info->max_fill_level;
rxq->refill_threshold = info->refill_threshold;
rxq->buf_size = info->buf_size;
rxq->refill_mb_pool = info->refill_mb_pool;
*dp_rxqp = &rxq->dp;
return 0;
fail_desc_alloc:
rte_free(rxq);
fail_rxq_alloc:
return rc;
}
static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
static void
sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
rte_free(rxq->sw_desc);
rte_free(rxq);
}
/* Use qstop and qstart functions in the case of qstart failure */
static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
static int
sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
__rte_unused unsigned int evq_read_ptr)
{
/* libefx-based datapath is specific to libefx-based PMD */
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
int rc;
rxq->common = crxq->common;
rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
sfc_efx_rx_qrefill(rxq);
rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
rc = sfc_efx_rx_qprime(rxq);
if (rc != 0)
goto fail_rx_qprime;
}
return 0;
fail_rx_qprime:
sfc_efx_rx_qstop(dp_rxq, NULL);
sfc_efx_rx_qpurge(dp_rxq);
return rc;
}
static void
sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
__rte_unused unsigned int *evq_read_ptr)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
/* libefx-based datapath is bound to libefx-based PMD and uses
* event queue structure directly. So, there is no necessity to
* return EvQ read pointer.
*/
}
static void
sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
unsigned int i;
struct sfc_efx_rx_sw_desc *rxd;
for (i = rxq->completed; i != rxq->added; ++i) {
rxd = &rxq->sw_desc[i & rxq->ptr_mask];
rte_mbuf_raw_free(rxd->mbuf);
rxd->mbuf = NULL;
/* Packed stream relies on 0 in inactive SW desc.
* Rx queue stop is not performance critical, so
* there is no harm to do it always.
*/
rxd->flags = 0;
rxd->size = 0;
}
rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
}
static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
static int
sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
int rc = 0;
rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
rc = sfc_efx_rx_qprime(rxq);
if (rc != 0)
rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
}
return rc;
}
static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
static int
sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
/* Cannot disarm, just disable rearm */
rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
return 0;
}
struct sfc_dp_rx sfc_efx_rx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EFX,
.type = SFC_DP_RX,
.hw_fw_caps = 0,
},
.features = SFC_DP_RX_FEAT_INTR,
.dev_offload_capa = DEV_RX_OFFLOAD_CHECKSUM,
.queue_offload_capa = DEV_RX_OFFLOAD_SCATTER,
.qsize_up_rings = sfc_efx_rx_qsize_up_rings,
.qcreate = sfc_efx_rx_qcreate,
.qdestroy = sfc_efx_rx_qdestroy,
.qstart = sfc_efx_rx_qstart,
.qstop = sfc_efx_rx_qstop,
.qpurge = sfc_efx_rx_qpurge,
.supported_ptypes_get = sfc_efx_supported_ptypes_get,
.qdesc_npending = sfc_efx_rx_qdesc_npending,
.qdesc_status = sfc_efx_rx_qdesc_status,
.intr_enable = sfc_efx_rx_intr_enable,
.intr_disable = sfc_efx_rx_intr_disable,
.pkt_burst = sfc_efx_recv_pkts,
};
static void
sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
unsigned int retry_count;
unsigned int wait_count;
int rc;
rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
rxq = &sa->rxq_ctrl[sw_index];
/*
* Retry Rx queue flushing in the case of flush failed or
* timeout. In the worst case it can delay for 6 seconds.
*/
for (retry_count = 0;
((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
(retry_count < SFC_RX_QFLUSH_ATTEMPTS);
++retry_count) {
rc = efx_rx_qflush(rxq->common);
if (rc != 0) {
rxq_info->state |= (rc == EALREADY) ?
SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
break;
}
rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
rxq_info->state |= SFC_RXQ_FLUSHING;
/*
* Wait for Rx queue flush done or failed event at least
* SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
* than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
* by SFC_RX_QFLUSH_POLL_ATTEMPTS).
*/
wait_count = 0;
do {
rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
sfc_ev_qpoll(rxq->evq);
} while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
(wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
if (rxq_info->state & SFC_RXQ_FLUSHING)
sfc_err(sa, "RxQ %u flush timed out", sw_index);
if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
sfc_err(sa, "RxQ %u flush failed", sw_index);
if (rxq_info->state & SFC_RXQ_FLUSHED)
sfc_notice(sa, "RxQ %u flushed", sw_index);
}
sa->priv.dp_rx->qpurge(rxq_info->dp);
}
static int
sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
{
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
struct sfc_port *port = &sa->port;
int rc;
/*
* If promiscuous or all-multicast mode has been requested, setting
* filter for the default Rx queue might fail, in particular, while
* running over PCI function which is not a member of corresponding
* privilege groups; if this occurs, few iterations will be made to
* repeat this step without promiscuous and all-multicast flags set
*/
retry:
rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
if (rc == 0)
return 0;
else if (rc != EOPNOTSUPP)
return rc;
if (port->promisc) {
sfc_warn(sa, "promiscuous mode has been requested, "
"but the HW rejects it");
sfc_warn(sa, "promiscuous mode will be disabled");
port->promisc = B_FALSE;
rc = sfc_set_rx_mode(sa);
if (rc != 0)
return rc;
goto retry;
}
if (port->allmulti) {
sfc_warn(sa, "all-multicast mode has been requested, "
"but the HW rejects it");
sfc_warn(sa, "all-multicast mode will be disabled");
port->allmulti = B_FALSE;
rc = sfc_set_rx_mode(sa);
if (rc != 0)
return rc;
goto retry;
}
return rc;
}
int
sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
struct sfc_evq *evq;
int rc;
sfc_log_init(sa, "sw_index=%u", sw_index);
SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
rxq = &sa->rxq_ctrl[sw_index];
evq = rxq->evq;
rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
if (rc != 0)
goto fail_ev_qstart;
switch (rxq_info->type) {
case EFX_RXQ_TYPE_DEFAULT:
rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
rxq->buf_size,
&rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
rxq_info->type_flags, evq->common, &rxq->common);
break;
case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
struct rte_mempool *mp = rxq_info->refill_mb_pool;
struct rte_mempool_info mp_info;
rc = rte_mempool_ops_get_info(mp, &mp_info);
if (rc != 0) {
/* Positive errno is used in the driver */
rc = -rc;
goto fail_mp_get_info;
}
if (mp_info.contig_block_size <= 0) {
rc = EINVAL;
goto fail_bad_contig_block_size;
}
rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
mp_info.contig_block_size, rxq->buf_size,
mp->header_size + mp->elt_size + mp->trailer_size,
sa->rxd_wait_timeout_ns,
&rxq->mem, rxq_info->entries, rxq_info->type_flags,
evq->common, &rxq->common);
break;
}
default:
rc = ENOTSUP;
}
if (rc != 0)
goto fail_rx_qcreate;
efx_rx_qenable(rxq->common);
rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr);
if (rc != 0)
goto fail_dp_qstart;
rxq_info->state |= SFC_RXQ_STARTED;
if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
rc = sfc_rx_default_rxq_set_filter(sa, rxq);
if (rc != 0)
goto fail_mac_filter_default_rxq_set;
}
/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
sa->eth_dev->data->rx_queue_state[sw_index] =
RTE_ETH_QUEUE_STATE_STARTED;
return 0;
fail_mac_filter_default_rxq_set:
sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
fail_dp_qstart:
sfc_rx_qflush(sa, sw_index);
fail_rx_qcreate:
fail_bad_contig_block_size:
fail_mp_get_info:
sfc_ev_qstop(evq);
fail_ev_qstart:
return rc;
}
void
sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
sfc_log_init(sa, "sw_index=%u", sw_index);
SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
if (rxq_info->state == SFC_RXQ_INITIALIZED)
return;
SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
sa->eth_dev->data->rx_queue_state[sw_index] =
RTE_ETH_QUEUE_STATE_STOPPED;
rxq = &sa->rxq_ctrl[sw_index];
sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
if (sw_index == 0)
efx_mac_filter_default_rxq_clear(sa->nic);
sfc_rx_qflush(sa, sw_index);
rxq_info->state = SFC_RXQ_INITIALIZED;
efx_rx_qdestroy(rxq->common);
sfc_ev_qstop(rxq->evq);
}
static uint64_t
sfc_rx_get_offload_mask(struct sfc_adapter *sa)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
uint64_t no_caps = 0;
if (encp->enc_tunnel_encapsulations_supported == 0)
no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
return ~no_caps;
}
uint64_t
sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
{
uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
return caps & sfc_rx_get_offload_mask(sa);
}
uint64_t
sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
{
return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
}
static int
sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
const struct rte_eth_rxconf *rx_conf,
__rte_unused uint64_t offloads)
{
int rc = 0;
if (rx_conf->rx_thresh.pthresh != 0 ||
rx_conf->rx_thresh.hthresh != 0 ||
rx_conf->rx_thresh.wthresh != 0) {
sfc_warn(sa,
"RxQ prefetch/host/writeback thresholds are not supported");
}
if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
sfc_err(sa,
"RxQ free threshold too large: %u vs maximum %u",
rx_conf->rx_free_thresh, rxq_max_fill_level);
rc = EINVAL;
}
if (rx_conf->rx_drop_en == 0) {
sfc_err(sa, "RxQ drop disable is not supported");
rc = EINVAL;
}
return rc;
}
static unsigned int
sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
{
uint32_t data_off;
uint32_t order;
/* The mbuf object itself is always cache line aligned */
order = rte_bsf32(RTE_CACHE_LINE_SIZE);
/* Data offset from mbuf object start */
data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
RTE_PKTMBUF_HEADROOM;
order = MIN(order, rte_bsf32(data_off));
return 1u << order;
}
static uint16_t
sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
uint16_t buf_size;
unsigned int buf_aligned;
unsigned int start_alignment;
unsigned int end_padding_alignment;
/* Below it is assumed that both alignments are power of 2 */
SFC_ASSERT(rte_is_power_of_2(nic_align_start));
SFC_ASSERT(rte_is_power_of_2(nic_align_end));
/*
* mbuf is always cache line aligned, double-check
* that it meets rx buffer start alignment requirements.
*/
/* Start from mbuf pool data room size */
buf_size = rte_pktmbuf_data_room_size(mb_pool);
/* Remove headroom */
if (buf_size <= RTE_PKTMBUF_HEADROOM) {
sfc_err(sa,
"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
return 0;
}
buf_size -= RTE_PKTMBUF_HEADROOM;
/* Calculate guaranteed data start alignment */
buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
/* Reserve space for start alignment */
if (buf_aligned < nic_align_start) {
start_alignment = nic_align_start - buf_aligned;
if (buf_size <= start_alignment) {
sfc_err(sa,
"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
mb_pool->name,
rte_pktmbuf_data_room_size(mb_pool),
RTE_PKTMBUF_HEADROOM, start_alignment);
return 0;
}
buf_aligned = nic_align_start;
buf_size -= start_alignment;
} else {
start_alignment = 0;
}
/* Make sure that end padding does not write beyond the buffer */
if (buf_aligned < nic_align_end) {
/*
* Estimate space which can be lost. If guarnteed buffer
* size is odd, lost space is (nic_align_end - 1). More
* accurate formula is below.
*/
end_padding_alignment = nic_align_end -
MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
if (buf_size <= end_padding_alignment) {
sfc_err(sa,
"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
mb_pool->name,
rte_pktmbuf_data_room_size(mb_pool),
RTE_PKTMBUF_HEADROOM, start_alignment,
end_padding_alignment);
return 0;
}
buf_size -= end_padding_alignment;
} else {
/*
* Start is aligned the same or better than end,
* just align length.
*/
buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
}
return buf_size;
}
int
sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
uint16_t nb_rx_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
int rc;
unsigned int rxq_entries;
unsigned int evq_entries;
unsigned int rxq_max_fill_level;
uint64_t offloads;
uint16_t buf_size;
struct sfc_rxq_info *rxq_info;
struct sfc_evq *evq;
struct sfc_rxq *rxq;
struct sfc_dp_rx_qcreate_info info;
struct sfc_dp_rx_hw_limits hw_limits;
uint16_t rx_free_thresh;
const char *error;
memset(&hw_limits, 0, sizeof(hw_limits));
hw_limits.rxq_max_entries = sa->rxq_max_entries;
hw_limits.rxq_min_entries = sa->rxq_min_entries;
hw_limits.evq_max_entries = sa->evq_max_entries;
hw_limits.evq_min_entries = sa->evq_min_entries;
rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
&rxq_entries, &evq_entries,
&rxq_max_fill_level);
if (rc != 0)
goto fail_size_up_rings;
SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
offloads = rx_conf->offloads |
sa->eth_dev->data->dev_conf.rxmode.offloads;
rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
if (rc != 0)
goto fail_bad_conf;
buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
if (buf_size == 0) {
sfc_err(sa, "RxQ %u mbuf pool object size is too small",
sw_index);
rc = EINVAL;
goto fail_bad_conf;
}
if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
encp->enc_rx_prefix_size,
(offloads & DEV_RX_OFFLOAD_SCATTER),
&error)) {
sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
"PDU size %u plus Rx prefix %u bytes",
sw_index, buf_size, (unsigned int)sa->port.pdu,
encp->enc_rx_prefix_size);
rc = EINVAL;
goto fail_bad_conf;
}
SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
rxq_info->entries = rxq_entries;
if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
else
rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
rxq_info->type_flags =
(offloads & DEV_RX_OFFLOAD_SCATTER) ?
EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
if ((encp->enc_tunnel_encapsulations_supported != 0) &&
(sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
evq_entries, socket_id, &evq);
if (rc != 0)
goto fail_ev_qinit;
rxq = &sa->rxq_ctrl[sw_index];
rxq->evq = evq;
rxq->hw_index = sw_index;
/*
* If Rx refill threshold is specified (its value is non zero) in
* Rx configuration, use specified value. Otherwise use 1/8 of
* the Rx descriptors number as the default. It allows to keep
* Rx ring full-enough and does not refill too aggressive if
* packet rate is high.
*
* Since PMD refills in bulks waiting for full bulk may be
* refilled (basically round down), it is better to round up
* here to mitigate it a bit.
*/
rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
/* Rx refill threshold cannot be smaller than refill bulk */
rxq_info->refill_threshold =
RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
rxq_info->refill_mb_pool = mb_pool;
rxq->buf_size = buf_size;
rc = sfc_dma_alloc(sa, "rxq", sw_index,
efx_rxq_size(sa->nic, rxq_info->entries),
socket_id, &rxq->mem);
if (rc != 0)
goto fail_dma_alloc;
memset(&info, 0, sizeof(info));
info.refill_mb_pool = rxq_info->refill_mb_pool;
info.max_fill_level = rxq_max_fill_level;
info.refill_threshold = rxq_info->refill_threshold;
info.buf_size = buf_size;
info.batch_max = encp->enc_rx_batch_max;
info.prefix_size = encp->enc_rx_prefix_size;
if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0)
info.flags |= SFC_RXQ_FLAG_RSS_HASH;
info.rxq_entries = rxq_info->entries;
info.rxq_hw_ring = rxq->mem.esm_base;
info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
info.evq_entries = evq_entries;
info.evq_hw_ring = evq->mem.esm_base;
info.hw_index = rxq->hw_index;
info.mem_bar = sa->mem_bar.esb_base;
info.vi_window_shift = encp->enc_vi_window_shift;
rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
&RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
socket_id, &info, &rxq_info->dp);
if (rc != 0)
goto fail_dp_rx_qcreate;
evq->dp_rxq = rxq_info->dp;
rxq_info->state = SFC_RXQ_INITIALIZED;
rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
return 0;
fail_dp_rx_qcreate:
sfc_dma_free(sa, &rxq->mem);
fail_dma_alloc:
sfc_ev_qfini(evq);
fail_ev_qinit:
rxq_info->entries = 0;
fail_bad_conf:
fail_size_up_rings:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
sa->eth_dev->data->rx_queues[sw_index] = NULL;
rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
sa->priv.dp_rx->qdestroy(rxq_info->dp);
rxq_info->dp = NULL;
rxq_info->state &= ~SFC_RXQ_INITIALIZED;
rxq_info->entries = 0;
rxq = &sa->rxq_ctrl[sw_index];
sfc_dma_free(sa, &rxq->mem);
sfc_ev_qfini(rxq->evq);
rxq->evq = NULL;
}
/*
* Mapping between RTE RSS hash functions and their EFX counterparts.
*/
static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
{ ETH_RSS_NONFRAG_IPV4_TCP,
EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
{ ETH_RSS_NONFRAG_IPV4_UDP,
EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
{ ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
{ ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
{ ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
EFX_RX_HASH(IPV4, 2TUPLE) },
{ ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
ETH_RSS_IPV6_EX,
EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
EFX_RX_HASH(IPV6, 2TUPLE) }
};
static efx_rx_hash_type_t
sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
unsigned int *hash_type_flags_supported,
unsigned int nb_hash_type_flags_supported)
{
efx_rx_hash_type_t hash_type_masked = 0;
unsigned int i, j;
for (i = 0; i < nb_hash_type_flags_supported; ++i) {
unsigned int class_tuple_lbn[] = {
EFX_RX_CLASS_IPV4_TCP_LBN,
EFX_RX_CLASS_IPV4_UDP_LBN,
EFX_RX_CLASS_IPV4_LBN,
EFX_RX_CLASS_IPV6_TCP_LBN,
EFX_RX_CLASS_IPV6_UDP_LBN,
EFX_RX_CLASS_IPV6_LBN
};
for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
unsigned int flag;
tuple_mask <<= class_tuple_lbn[j];
flag = hash_type & tuple_mask;
if (flag == hash_type_flags_supported[i])
hash_type_masked |= flag;
}
}
return hash_type_masked;
}
int
sfc_rx_hash_init(struct sfc_adapter *sa)
{
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
efx_rx_hash_alg_t alg;
unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
unsigned int nb_flags_supp;
struct sfc_rss_hf_rte_to_efx *hf_map;
struct sfc_rss_hf_rte_to_efx *entry;
efx_rx_hash_type_t efx_hash_types;
unsigned int i;
int rc;
if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
alg = EFX_RX_HASHALG_TOEPLITZ;
else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
alg = EFX_RX_HASHALG_PACKED_STREAM;
else
return EINVAL;
rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
RTE_DIM(flags_supp), &nb_flags_supp);
if (rc != 0)
return rc;
hf_map = rte_calloc_socket("sfc-rss-hf-map",
RTE_DIM(sfc_rss_hf_map),
sizeof(*hf_map), 0, sa->socket_id);
if (hf_map == NULL)
return ENOMEM;
entry = hf_map;
efx_hash_types = 0;
for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
efx_rx_hash_type_t ht;
ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
flags_supp, nb_flags_supp);
if (ht != 0) {
entry->rte = sfc_rss_hf_map[i].rte;
entry->efx = ht;
efx_hash_types |= ht;
++entry;
}
}
rss->hash_alg = alg;
rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
rss->hf_map = hf_map;
rss->hash_types = efx_hash_types;
return 0;
}
void
sfc_rx_hash_fini(struct sfc_adapter *sa)
{
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
rte_free(rss->hf_map);
}
int
sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
efx_rx_hash_type_t *efx)
{
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
efx_rx_hash_type_t hash_types = 0;
unsigned int i;
for (i = 0; i < rss->hf_map_nb_entries; ++i) {
uint64_t rte_mask = rss->hf_map[i].rte;
if ((rte & rte_mask) != 0) {
rte &= ~rte_mask;
hash_types |= rss->hf_map[i].efx;
}
}
if (rte != 0) {
sfc_err(sa, "unsupported hash functions requested");
return EINVAL;
}
*efx = hash_types;
return 0;
}
uint64_t
sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
{
uint64_t rte = 0;
unsigned int i;
for (i = 0; i < rss->hf_map_nb_entries; ++i) {
efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
if ((efx & hash_type) == hash_type)
rte |= rss->hf_map[i].rte;
}
return rte;
}
static int
sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
struct rte_eth_rss_conf *conf)
{
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
efx_rx_hash_type_t efx_hash_types = rss->hash_types;
uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
int rc;
if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
conf->rss_key != NULL)
return EINVAL;
}
if (conf->rss_hf != 0) {
rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
if (rc != 0)
return rc;
}
if (conf->rss_key != NULL) {
if (conf->rss_key_len != sizeof(rss->key)) {
sfc_err(sa, "RSS key size is wrong (should be %lu)",
sizeof(rss->key));
return EINVAL;
}
rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
}
rss->hash_types = efx_hash_types;
return 0;
}
static int
sfc_rx_rss_config(struct sfc_adapter *sa)
{
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
int rc = 0;
if (rss->channels > 0) {
rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
rss->hash_alg, rss->hash_types,
B_TRUE);
if (rc != 0)
goto finish;
rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
rss->key, sizeof(rss->key));
if (rc != 0)
goto finish;
rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
rss->tbl, RTE_DIM(rss->tbl));
}
finish:
return rc;
}
int
sfc_rx_start(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
unsigned int sw_index;
int rc;
sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
rc = efx_rx_init(sa->nic);
if (rc != 0)
goto fail_rx_init;
rc = sfc_rx_rss_config(sa);
if (rc != 0)
goto fail_rss_config;
for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
(!sas->rxq_info[sw_index].deferred_start ||
sas->rxq_info[sw_index].deferred_started)) {
rc = sfc_rx_qstart(sa, sw_index);
if (rc != 0)
goto fail_rx_qstart;
}
}
return 0;
fail_rx_qstart:
while (sw_index-- > 0)
sfc_rx_qstop(sa, sw_index);
fail_rss_config:
efx_rx_fini(sa->nic);
fail_rx_init:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_rx_stop(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
unsigned int sw_index;
sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
sw_index = sas->rxq_count;
while (sw_index-- > 0) {
if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
sfc_rx_qstop(sa, sw_index);
}
efx_rx_fini(sa->nic);
}
static int
sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
unsigned int max_entries;
max_entries = encp->enc_rxq_max_ndescs;
SFC_ASSERT(rte_is_power_of_2(max_entries));
rxq_info->max_entries = max_entries;
return 0;
}
static int
sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
sfc_rx_get_queue_offload_caps(sa);
struct sfc_rss *rss = &sas->rss;
int rc = 0;
switch (rxmode->mq_mode) {
case ETH_MQ_RX_NONE:
/* No special checks are required */
break;
case ETH_MQ_RX_RSS:
if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
sfc_err(sa, "RSS is not available");
rc = EINVAL;
}
break;
default:
sfc_err(sa, "Rx multi-queue mode %u not supported",
rxmode->mq_mode);
rc = EINVAL;
}
/*
* Requested offloads are validated against supported by ethdev,
* so unsupported offloads cannot be added as the result of
* below check.
*/
if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
(offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
}
if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
(~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
}
return rc;
}
/**
* Destroy excess queues that are no longer needed after reconfiguration
* or complete close.
*/
static void
sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
int sw_index;
SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
sw_index = sas->rxq_count;
while (--sw_index >= (int)nb_rx_queues) {
if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
sfc_rx_qfini(sa, sw_index);
}
sas->rxq_count = nb_rx_queues;
}
/**
* Initialize Rx subsystem.
*
* Called at device (re)configuration stage when number of receive queues is
* specified together with other device level receive configuration.
*
* It should be used to allocate NUMA-unaware resources.
*/
int
sfc_rx_configure(struct sfc_adapter *sa)
{
struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
struct sfc_rss *rss = &sas->rss;
struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
int rc;
sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
nb_rx_queues, sas->rxq_count);
rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
if (rc != 0)
goto fail_check_mode;
if (nb_rx_queues == sas->rxq_count)
goto configure_rss;
if (sas->rxq_info == NULL) {
rc = ENOMEM;
sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
sizeof(sas->rxq_info[0]), 0,
sa->socket_id);
if (sas->rxq_info == NULL)
goto fail_rxqs_alloc;
/*
* Allocate primary process only RxQ control from heap
* since it should not be shared.
*/
rc = ENOMEM;
sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
if (sa->rxq_ctrl == NULL)
goto fail_rxqs_ctrl_alloc;
} else {
struct sfc_rxq_info *new_rxq_info;
struct sfc_rxq *new_rxq_ctrl;
if (nb_rx_queues < sas->rxq_count)
sfc_rx_fini_queues(sa, nb_rx_queues);
rc = ENOMEM;
new_rxq_info =
rte_realloc(sas->rxq_info,
nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
if (new_rxq_info == NULL && nb_rx_queues > 0)
goto fail_rxqs_realloc;
rc = ENOMEM;
new_rxq_ctrl = realloc(sa->rxq_ctrl,
nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
goto fail_rxqs_ctrl_realloc;
sas->rxq_info = new_rxq_info;
sa->rxq_ctrl = new_rxq_ctrl;
if (nb_rx_queues > sas->rxq_count) {
memset(&sas->rxq_info[sas->rxq_count], 0,
(nb_rx_queues - sas->rxq_count) *
sizeof(sas->rxq_info[0]));
memset(&sa->rxq_ctrl[sas->rxq_count], 0,
(nb_rx_queues - sas->rxq_count) *
sizeof(sa->rxq_ctrl[0]));
}
}
while (sas->rxq_count < nb_rx_queues) {
rc = sfc_rx_qinit_info(sa, sas->rxq_count);
if (rc != 0)
goto fail_rx_qinit_info;
sas->rxq_count++;
}
configure_rss:
rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
MIN(sas->rxq_count, EFX_MAXRSS) : 0;
if (rss->channels > 0) {
struct rte_eth_rss_conf *adv_conf_rss;
unsigned int sw_index;
for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
rss->tbl[sw_index] = sw_index % rss->channels;
adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
if (rc != 0)
goto fail_rx_process_adv_conf_rss;
}
return 0;
fail_rx_process_adv_conf_rss:
fail_rx_qinit_info:
fail_rxqs_ctrl_realloc:
fail_rxqs_realloc:
fail_rxqs_ctrl_alloc:
fail_rxqs_alloc:
sfc_rx_close(sa);
fail_check_mode:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
/**
* Shutdown Rx subsystem.
*
* Called at device close stage, for example, before device shutdown.
*/
void
sfc_rx_close(struct sfc_adapter *sa)
{
struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
sfc_rx_fini_queues(sa, 0);
rss->channels = 0;
free(sa->rxq_ctrl);
sa->rxq_ctrl = NULL;
rte_free(sfc_sa2shared(sa)->rxq_info);
sfc_sa2shared(sa)->rxq_info = NULL;
}