numam-dpdk/lib/flow_classify/rte_flow_classify_parse.c
Bruce Richardson 99a2dd955f lib: remove librte_ prefix from directory names
There is no reason for the DPDK libraries to all have 'librte_' prefix on
the directory names. This prefix makes the directory names longer and also
makes it awkward to add features referring to individual libraries in the
build - should the lib names be specified with or without the prefix.
Therefore, we can just remove the library prefix and use the library's
unique name as the directory name, i.e. 'eal' rather than 'librte_eal'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2021-04-21 14:04:09 +02:00

534 lines
14 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#include <rte_flow_classify.h>
#include "rte_flow_classify_parse.h"
#include <rte_flow_driver.h>
struct classify_valid_pattern {
enum rte_flow_item_type *items;
parse_filter_t parse_filter;
};
static struct classify_action action;
/* Pattern for IPv4 5-tuple UDP filter */
static enum rte_flow_item_type pattern_ntuple_1[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_UDP,
RTE_FLOW_ITEM_TYPE_END,
};
/* Pattern for IPv4 5-tuple TCP filter */
static enum rte_flow_item_type pattern_ntuple_2[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_TCP,
RTE_FLOW_ITEM_TYPE_END,
};
/* Pattern for IPv4 5-tuple SCTP filter */
static enum rte_flow_item_type pattern_ntuple_3[] = {
RTE_FLOW_ITEM_TYPE_ETH,
RTE_FLOW_ITEM_TYPE_IPV4,
RTE_FLOW_ITEM_TYPE_SCTP,
RTE_FLOW_ITEM_TYPE_END,
};
static int
classify_parse_ntuple_filter(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_ntuple_filter *filter,
struct rte_flow_error *error);
static struct classify_valid_pattern classify_supported_patterns[] = {
/* ntuple */
{ pattern_ntuple_1, classify_parse_ntuple_filter },
{ pattern_ntuple_2, classify_parse_ntuple_filter },
{ pattern_ntuple_3, classify_parse_ntuple_filter },
};
struct classify_action *
classify_get_flow_action(void)
{
return &action;
}
/* Find the first VOID or non-VOID item pointer */
const struct rte_flow_item *
classify_find_first_item(const struct rte_flow_item *item, bool is_void)
{
bool is_find;
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
if (is_void)
is_find = item->type == RTE_FLOW_ITEM_TYPE_VOID;
else
is_find = item->type != RTE_FLOW_ITEM_TYPE_VOID;
if (is_find)
break;
item++;
}
return item;
}
/* Skip all VOID items of the pattern */
void
classify_pattern_skip_void_item(struct rte_flow_item *items,
const struct rte_flow_item *pattern)
{
uint32_t cpy_count = 0;
const struct rte_flow_item *pb = pattern, *pe = pattern;
for (;;) {
/* Find a non-void item first */
pb = classify_find_first_item(pb, false);
if (pb->type == RTE_FLOW_ITEM_TYPE_END) {
pe = pb;
break;
}
/* Find a void item */
pe = classify_find_first_item(pb + 1, true);
cpy_count = pe - pb;
rte_memcpy(items, pb, sizeof(struct rte_flow_item) * cpy_count);
items += cpy_count;
if (pe->type == RTE_FLOW_ITEM_TYPE_END) {
pb = pe;
break;
}
}
/* Copy the END item. */
rte_memcpy(items, pe, sizeof(struct rte_flow_item));
}
/* Check if the pattern matches a supported item type array */
static bool
classify_match_pattern(enum rte_flow_item_type *item_array,
struct rte_flow_item *pattern)
{
struct rte_flow_item *item = pattern;
while ((*item_array == item->type) &&
(*item_array != RTE_FLOW_ITEM_TYPE_END)) {
item_array++;
item++;
}
return (*item_array == RTE_FLOW_ITEM_TYPE_END &&
item->type == RTE_FLOW_ITEM_TYPE_END);
}
/* Find if there's parse filter function matched */
parse_filter_t
classify_find_parse_filter_func(struct rte_flow_item *pattern)
{
parse_filter_t parse_filter = NULL;
uint8_t i = 0;
for (; i < RTE_DIM(classify_supported_patterns); i++) {
if (classify_match_pattern(classify_supported_patterns[i].items,
pattern)) {
parse_filter =
classify_supported_patterns[i].parse_filter;
break;
}
}
return parse_filter;
}
#define FLOW_RULE_MIN_PRIORITY 8
#define FLOW_RULE_MAX_PRIORITY 0
#define NEXT_ITEM_OF_PATTERN(item, pattern, index)\
do {\
item = pattern + index;\
while (item->type == RTE_FLOW_ITEM_TYPE_VOID) {\
index++;\
item = pattern + index;\
} \
} while (0)
#define NEXT_ITEM_OF_ACTION(act, actions, index)\
do {\
act = actions + index;\
while (act->type == RTE_FLOW_ACTION_TYPE_VOID) {\
index++;\
act = actions + index;\
} \
} while (0)
/**
* Please aware there's an assumption for all the parsers.
* rte_flow_item is using big endian, rte_flow_attr and
* rte_flow_action are using CPU order.
* Because the pattern is used to describe the packets,
* normally the packets should use network order.
*/
/**
* Parse the rule to see if it is a n-tuple rule.
* And get the n-tuple filter info BTW.
* pattern:
* The first not void item can be ETH or IPV4.
* The second not void item must be IPV4 if the first one is ETH.
* The third not void item must be UDP or TCP.
* The next not void item must be END.
* action:
* The first not void action should be QUEUE.
* The next not void action should be END.
* pattern example:
* ITEM Spec Mask
* ETH NULL NULL
* IPV4 src_addr 192.168.1.20 0xFFFFFFFF
* dst_addr 192.167.3.50 0xFFFFFFFF
* next_proto_id 17 0xFF
* UDP/TCP/ src_port 80 0xFFFF
* SCTP dst_port 80 0xFFFF
* END
* other members in mask and spec should set to 0x00.
* item->last should be NULL.
*/
static int
classify_parse_ntuple_filter(const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_eth_ntuple_filter *filter,
struct rte_flow_error *error)
{
const struct rte_flow_item *item;
const struct rte_flow_action *act;
const struct rte_flow_item_ipv4 *ipv4_spec;
const struct rte_flow_item_ipv4 *ipv4_mask;
const struct rte_flow_item_tcp *tcp_spec;
const struct rte_flow_item_tcp *tcp_mask;
const struct rte_flow_item_udp *udp_spec;
const struct rte_flow_item_udp *udp_mask;
const struct rte_flow_item_sctp *sctp_spec;
const struct rte_flow_item_sctp *sctp_mask;
const struct rte_flow_action_count *count;
const struct rte_flow_action_mark *mark_spec;
uint32_t index;
/* parse pattern */
index = 0;
/* the first not void item can be MAC or IPv4 */
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_ETH &&
item->type != RTE_FLOW_ITEM_TYPE_IPV4) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -EINVAL;
}
/* Skip Ethernet */
if (item->type == RTE_FLOW_ITEM_TYPE_ETH) {
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item,
"Not supported last point for range");
return -EINVAL;
}
/* if the first item is MAC, the content should be NULL */
if (item->spec || item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not supported by ntuple filter");
return -EINVAL;
}
/* check if the next not void item is IPv4 */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_IPV4) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not supported by ntuple filter");
return -EINVAL;
}
}
/* get the IPv4 info */
if (!item->spec || !item->mask) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid ntuple mask");
return -EINVAL;
}
/*Not supported last point for range*/
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -EINVAL;
}
ipv4_mask = item->mask;
/**
* Only support src & dst addresses, protocol,
* others should be masked.
*/
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.type_of_service ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.fragment_offset ||
ipv4_mask->hdr.time_to_live ||
ipv4_mask->hdr.hdr_checksum) {
rte_flow_error_set(error,
EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -EINVAL;
}
filter->dst_ip_mask = ipv4_mask->hdr.dst_addr;
filter->src_ip_mask = ipv4_mask->hdr.src_addr;
filter->proto_mask = ipv4_mask->hdr.next_proto_id;
ipv4_spec = item->spec;
filter->dst_ip = ipv4_spec->hdr.dst_addr;
filter->src_ip = ipv4_spec->hdr.src_addr;
filter->proto = ipv4_spec->hdr.next_proto_id;
/* check if the next not void item is TCP or UDP or SCTP */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_TCP &&
item->type != RTE_FLOW_ITEM_TYPE_UDP &&
item->type != RTE_FLOW_ITEM_TYPE_SCTP) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -EINVAL;
}
/* get the TCP/UDP info */
if (!item->spec || !item->mask) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid ntuple mask");
return -EINVAL;
}
/*Not supported last point for range*/
if (item->last) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
item, "Not supported last point for range");
return -EINVAL;
}
if (item->type == RTE_FLOW_ITEM_TYPE_TCP) {
tcp_mask = item->mask;
/**
* Only support src & dst ports, tcp flags,
* others should be masked.
*/
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -EINVAL;
}
filter->dst_port_mask = tcp_mask->hdr.dst_port;
filter->src_port_mask = tcp_mask->hdr.src_port;
if (tcp_mask->hdr.tcp_flags == 0xFF) {
filter->flags |= RTE_NTUPLE_FLAGS_TCP_FLAG;
} else if (!tcp_mask->hdr.tcp_flags) {
filter->flags &= ~RTE_NTUPLE_FLAGS_TCP_FLAG;
} else {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -EINVAL;
}
tcp_spec = item->spec;
filter->dst_port = tcp_spec->hdr.dst_port;
filter->src_port = tcp_spec->hdr.src_port;
filter->tcp_flags = tcp_spec->hdr.tcp_flags;
} else if (item->type == RTE_FLOW_ITEM_TYPE_UDP) {
udp_mask = item->mask;
/**
* Only support src & dst ports,
* others should be masked.
*/
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -EINVAL;
}
filter->dst_port_mask = udp_mask->hdr.dst_port;
filter->src_port_mask = udp_mask->hdr.src_port;
udp_spec = item->spec;
filter->dst_port = udp_spec->hdr.dst_port;
filter->src_port = udp_spec->hdr.src_port;
} else {
sctp_mask = item->mask;
/**
* Only support src & dst ports,
* others should be masked.
*/
if (sctp_mask->hdr.tag ||
sctp_mask->hdr.cksum) {
memset(filter, 0,
sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -EINVAL;
}
filter->dst_port_mask = sctp_mask->hdr.dst_port;
filter->src_port_mask = sctp_mask->hdr.src_port;
sctp_spec = item->spec;
filter->dst_port = sctp_spec->hdr.dst_port;
filter->src_port = sctp_spec->hdr.src_port;
}
/* check if the next not void item is END */
index++;
NEXT_ITEM_OF_PATTERN(item, pattern, index);
if (item->type != RTE_FLOW_ITEM_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Not supported by ntuple filter");
return -EINVAL;
}
table_type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE;
/* parse attr */
/* must be input direction */
if (!attr->ingress) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -EINVAL;
}
/* not supported */
if (attr->egress) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -EINVAL;
}
if (attr->priority > 0xFFFF) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Error priority.");
return -EINVAL;
}
filter->priority = (uint16_t)attr->priority;
if (attr->priority > FLOW_RULE_MIN_PRIORITY)
filter->priority = FLOW_RULE_MAX_PRIORITY;
/* parse action */
index = 0;
/**
* n-tuple only supports count and Mark,
* check if the first not void action is COUNT or MARK.
*/
memset(&action, 0, sizeof(action));
NEXT_ITEM_OF_ACTION(act, actions, index);
switch (act->type) {
case RTE_FLOW_ACTION_TYPE_COUNT:
action.action_mask |= 1LLU << RTE_FLOW_ACTION_TYPE_COUNT;
count = act->conf;
memcpy(&action.act.counter, count, sizeof(action.act.counter));
break;
case RTE_FLOW_ACTION_TYPE_MARK:
action.action_mask |= 1LLU << RTE_FLOW_ACTION_TYPE_MARK;
mark_spec = act->conf;
memcpy(&action.act.mark, mark_spec, sizeof(action.act.mark));
break;
default:
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"Invalid action.");
return -EINVAL;
}
/* check if the next not void item is MARK or COUNT or END */
index++;
NEXT_ITEM_OF_ACTION(act, actions, index);
switch (act->type) {
case RTE_FLOW_ACTION_TYPE_COUNT:
action.action_mask |= 1LLU << RTE_FLOW_ACTION_TYPE_COUNT;
count = act->conf;
memcpy(&action.act.counter, count, sizeof(action.act.counter));
break;
case RTE_FLOW_ACTION_TYPE_MARK:
action.action_mask |= 1LLU << RTE_FLOW_ACTION_TYPE_MARK;
mark_spec = act->conf;
memcpy(&action.act.mark, mark_spec, sizeof(action.act.mark));
break;
case RTE_FLOW_ACTION_TYPE_END:
return 0;
default:
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"Invalid action.");
return -EINVAL;
}
/* check if the next not void item is END */
index++;
NEXT_ITEM_OF_ACTION(act, actions, index);
if (act->type != RTE_FLOW_ACTION_TYPE_END) {
memset(filter, 0, sizeof(struct rte_eth_ntuple_filter));
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, act,
"Invalid action.");
return -EINVAL;
}
return 0;
}