1b7b24389c
Async enqueue offloads large copies to DMA devices, and small copies are still performed by the CPU. However, it requires users to get enqueue completed packets by rte_vhost_poll_enqueue_completed(), even if they are completed by the CPU when rte_vhost_submit_enqueue_burst() returns. This design incurs extra overheads of tracking completed pktmbufs and function calls, thus degrading performance on small packets. This patch enhances async enqueue for small packets by enabling rte_vhost_submit_enqueue_burst() to return completed packets. Signed-off-by: Jiayu Hu <jiayu.hu@intel.com> Tested-by: Yinan Wang <yinan.wang@intel.com> Reviewed-by: Maxime Coquelin <maxime.coquelin@redhat.com>
2588 lines
64 KiB
C
2588 lines
64 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2016 Intel Corporation
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <linux/virtio_net.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_vhost.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_sctp.h>
|
|
#include <rte_arp.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_vhost_async.h>
|
|
|
|
#include "iotlb.h"
|
|
#include "vhost.h"
|
|
|
|
#define MAX_BATCH_LEN 256
|
|
|
|
#define VHOST_ASYNC_BATCH_THRESHOLD 32
|
|
|
|
static __rte_always_inline bool
|
|
rxvq_is_mergeable(struct virtio_net *dev)
|
|
{
|
|
return dev->features & (1ULL << VIRTIO_NET_F_MRG_RXBUF);
|
|
}
|
|
|
|
static __rte_always_inline bool
|
|
virtio_net_is_inorder(struct virtio_net *dev)
|
|
{
|
|
return dev->features & (1ULL << VIRTIO_F_IN_ORDER);
|
|
}
|
|
|
|
static bool
|
|
is_valid_virt_queue_idx(uint32_t idx, int is_tx, uint32_t nr_vring)
|
|
{
|
|
return (is_tx ^ (idx & 1)) == 0 && idx < nr_vring;
|
|
}
|
|
|
|
static inline void
|
|
do_data_copy_enqueue(struct virtio_net *dev, struct vhost_virtqueue *vq)
|
|
{
|
|
struct batch_copy_elem *elem = vq->batch_copy_elems;
|
|
uint16_t count = vq->batch_copy_nb_elems;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
|
|
vhost_log_cache_write_iova(dev, vq, elem[i].log_addr,
|
|
elem[i].len);
|
|
PRINT_PACKET(dev, (uintptr_t)elem[i].dst, elem[i].len, 0);
|
|
}
|
|
|
|
vq->batch_copy_nb_elems = 0;
|
|
}
|
|
|
|
static inline void
|
|
do_data_copy_dequeue(struct vhost_virtqueue *vq)
|
|
{
|
|
struct batch_copy_elem *elem = vq->batch_copy_elems;
|
|
uint16_t count = vq->batch_copy_nb_elems;
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
rte_memcpy(elem[i].dst, elem[i].src, elem[i].len);
|
|
|
|
vq->batch_copy_nb_elems = 0;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
do_flush_shadow_used_ring_split(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
uint16_t to, uint16_t from, uint16_t size)
|
|
{
|
|
rte_memcpy(&vq->used->ring[to],
|
|
&vq->shadow_used_split[from],
|
|
size * sizeof(struct vring_used_elem));
|
|
vhost_log_cache_used_vring(dev, vq,
|
|
offsetof(struct vring_used, ring[to]),
|
|
size * sizeof(struct vring_used_elem));
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
flush_shadow_used_ring_split(struct virtio_net *dev, struct vhost_virtqueue *vq)
|
|
{
|
|
uint16_t used_idx = vq->last_used_idx & (vq->size - 1);
|
|
|
|
if (used_idx + vq->shadow_used_idx <= vq->size) {
|
|
do_flush_shadow_used_ring_split(dev, vq, used_idx, 0,
|
|
vq->shadow_used_idx);
|
|
} else {
|
|
uint16_t size;
|
|
|
|
/* update used ring interval [used_idx, vq->size] */
|
|
size = vq->size - used_idx;
|
|
do_flush_shadow_used_ring_split(dev, vq, used_idx, 0, size);
|
|
|
|
/* update the left half used ring interval [0, left_size] */
|
|
do_flush_shadow_used_ring_split(dev, vq, 0, size,
|
|
vq->shadow_used_idx - size);
|
|
}
|
|
vq->last_used_idx += vq->shadow_used_idx;
|
|
|
|
vhost_log_cache_sync(dev, vq);
|
|
|
|
__atomic_add_fetch(&vq->used->idx, vq->shadow_used_idx,
|
|
__ATOMIC_RELEASE);
|
|
vq->shadow_used_idx = 0;
|
|
vhost_log_used_vring(dev, vq, offsetof(struct vring_used, idx),
|
|
sizeof(vq->used->idx));
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
update_shadow_used_ring_split(struct vhost_virtqueue *vq,
|
|
uint16_t desc_idx, uint32_t len)
|
|
{
|
|
uint16_t i = vq->shadow_used_idx++;
|
|
|
|
vq->shadow_used_split[i].id = desc_idx;
|
|
vq->shadow_used_split[i].len = len;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_flush_enqueue_shadow_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq)
|
|
{
|
|
int i;
|
|
uint16_t used_idx = vq->last_used_idx;
|
|
uint16_t head_idx = vq->last_used_idx;
|
|
uint16_t head_flags = 0;
|
|
|
|
/* Split loop in two to save memory barriers */
|
|
for (i = 0; i < vq->shadow_used_idx; i++) {
|
|
vq->desc_packed[used_idx].id = vq->shadow_used_packed[i].id;
|
|
vq->desc_packed[used_idx].len = vq->shadow_used_packed[i].len;
|
|
|
|
used_idx += vq->shadow_used_packed[i].count;
|
|
if (used_idx >= vq->size)
|
|
used_idx -= vq->size;
|
|
}
|
|
|
|
/* The ordering for storing desc flags needs to be enforced. */
|
|
rte_atomic_thread_fence(__ATOMIC_RELEASE);
|
|
|
|
for (i = 0; i < vq->shadow_used_idx; i++) {
|
|
uint16_t flags;
|
|
|
|
if (vq->shadow_used_packed[i].len)
|
|
flags = VRING_DESC_F_WRITE;
|
|
else
|
|
flags = 0;
|
|
|
|
if (vq->used_wrap_counter) {
|
|
flags |= VRING_DESC_F_USED;
|
|
flags |= VRING_DESC_F_AVAIL;
|
|
} else {
|
|
flags &= ~VRING_DESC_F_USED;
|
|
flags &= ~VRING_DESC_F_AVAIL;
|
|
}
|
|
|
|
if (i > 0) {
|
|
vq->desc_packed[vq->last_used_idx].flags = flags;
|
|
|
|
vhost_log_cache_used_vring(dev, vq,
|
|
vq->last_used_idx *
|
|
sizeof(struct vring_packed_desc),
|
|
sizeof(struct vring_packed_desc));
|
|
} else {
|
|
head_idx = vq->last_used_idx;
|
|
head_flags = flags;
|
|
}
|
|
|
|
vq_inc_last_used_packed(vq, vq->shadow_used_packed[i].count);
|
|
}
|
|
|
|
vq->desc_packed[head_idx].flags = head_flags;
|
|
|
|
vhost_log_cache_used_vring(dev, vq,
|
|
head_idx *
|
|
sizeof(struct vring_packed_desc),
|
|
sizeof(struct vring_packed_desc));
|
|
|
|
vq->shadow_used_idx = 0;
|
|
vhost_log_cache_sync(dev, vq);
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_flush_dequeue_shadow_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq)
|
|
{
|
|
struct vring_used_elem_packed *used_elem = &vq->shadow_used_packed[0];
|
|
|
|
vq->desc_packed[vq->shadow_last_used_idx].id = used_elem->id;
|
|
/* desc flags is the synchronization point for virtio packed vring */
|
|
__atomic_store_n(&vq->desc_packed[vq->shadow_last_used_idx].flags,
|
|
used_elem->flags, __ATOMIC_RELEASE);
|
|
|
|
vhost_log_cache_used_vring(dev, vq, vq->shadow_last_used_idx *
|
|
sizeof(struct vring_packed_desc),
|
|
sizeof(struct vring_packed_desc));
|
|
vq->shadow_used_idx = 0;
|
|
vhost_log_cache_sync(dev, vq);
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_flush_enqueue_batch_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
uint64_t *lens,
|
|
uint16_t *ids)
|
|
{
|
|
uint16_t i;
|
|
uint16_t flags;
|
|
|
|
if (vq->shadow_used_idx) {
|
|
do_data_copy_enqueue(dev, vq);
|
|
vhost_flush_enqueue_shadow_packed(dev, vq);
|
|
}
|
|
|
|
flags = PACKED_DESC_ENQUEUE_USED_FLAG(vq->used_wrap_counter);
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
vq->desc_packed[vq->last_used_idx + i].id = ids[i];
|
|
vq->desc_packed[vq->last_used_idx + i].len = lens[i];
|
|
}
|
|
|
|
rte_atomic_thread_fence(__ATOMIC_RELEASE);
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
vq->desc_packed[vq->last_used_idx + i].flags = flags;
|
|
|
|
vhost_log_cache_used_vring(dev, vq, vq->last_used_idx *
|
|
sizeof(struct vring_packed_desc),
|
|
sizeof(struct vring_packed_desc) *
|
|
PACKED_BATCH_SIZE);
|
|
vhost_log_cache_sync(dev, vq);
|
|
|
|
vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE);
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_shadow_dequeue_batch_packed_inorder(struct vhost_virtqueue *vq,
|
|
uint16_t id)
|
|
{
|
|
vq->shadow_used_packed[0].id = id;
|
|
|
|
if (!vq->shadow_used_idx) {
|
|
vq->shadow_last_used_idx = vq->last_used_idx;
|
|
vq->shadow_used_packed[0].flags =
|
|
PACKED_DESC_DEQUEUE_USED_FLAG(vq->used_wrap_counter);
|
|
vq->shadow_used_packed[0].len = 0;
|
|
vq->shadow_used_packed[0].count = 1;
|
|
vq->shadow_used_idx++;
|
|
}
|
|
|
|
vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE);
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_shadow_dequeue_batch_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
uint16_t *ids)
|
|
{
|
|
uint16_t flags;
|
|
uint16_t i;
|
|
uint16_t begin;
|
|
|
|
flags = PACKED_DESC_DEQUEUE_USED_FLAG(vq->used_wrap_counter);
|
|
|
|
if (!vq->shadow_used_idx) {
|
|
vq->shadow_last_used_idx = vq->last_used_idx;
|
|
vq->shadow_used_packed[0].id = ids[0];
|
|
vq->shadow_used_packed[0].len = 0;
|
|
vq->shadow_used_packed[0].count = 1;
|
|
vq->shadow_used_packed[0].flags = flags;
|
|
vq->shadow_used_idx++;
|
|
begin = 1;
|
|
} else
|
|
begin = 0;
|
|
|
|
vhost_for_each_try_unroll(i, begin, PACKED_BATCH_SIZE) {
|
|
vq->desc_packed[vq->last_used_idx + i].id = ids[i];
|
|
vq->desc_packed[vq->last_used_idx + i].len = 0;
|
|
}
|
|
|
|
rte_atomic_thread_fence(__ATOMIC_RELEASE);
|
|
vhost_for_each_try_unroll(i, begin, PACKED_BATCH_SIZE)
|
|
vq->desc_packed[vq->last_used_idx + i].flags = flags;
|
|
|
|
vhost_log_cache_used_vring(dev, vq, vq->last_used_idx *
|
|
sizeof(struct vring_packed_desc),
|
|
sizeof(struct vring_packed_desc) *
|
|
PACKED_BATCH_SIZE);
|
|
vhost_log_cache_sync(dev, vq);
|
|
|
|
vq_inc_last_used_packed(vq, PACKED_BATCH_SIZE);
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_shadow_dequeue_single_packed(struct vhost_virtqueue *vq,
|
|
uint16_t buf_id,
|
|
uint16_t count)
|
|
{
|
|
uint16_t flags;
|
|
|
|
flags = vq->desc_packed[vq->last_used_idx].flags;
|
|
if (vq->used_wrap_counter) {
|
|
flags |= VRING_DESC_F_USED;
|
|
flags |= VRING_DESC_F_AVAIL;
|
|
} else {
|
|
flags &= ~VRING_DESC_F_USED;
|
|
flags &= ~VRING_DESC_F_AVAIL;
|
|
}
|
|
|
|
if (!vq->shadow_used_idx) {
|
|
vq->shadow_last_used_idx = vq->last_used_idx;
|
|
|
|
vq->shadow_used_packed[0].id = buf_id;
|
|
vq->shadow_used_packed[0].len = 0;
|
|
vq->shadow_used_packed[0].flags = flags;
|
|
vq->shadow_used_idx++;
|
|
} else {
|
|
vq->desc_packed[vq->last_used_idx].id = buf_id;
|
|
vq->desc_packed[vq->last_used_idx].len = 0;
|
|
vq->desc_packed[vq->last_used_idx].flags = flags;
|
|
}
|
|
|
|
vq_inc_last_used_packed(vq, count);
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_shadow_dequeue_single_packed_inorder(struct vhost_virtqueue *vq,
|
|
uint16_t buf_id,
|
|
uint16_t count)
|
|
{
|
|
uint16_t flags;
|
|
|
|
vq->shadow_used_packed[0].id = buf_id;
|
|
|
|
flags = vq->desc_packed[vq->last_used_idx].flags;
|
|
if (vq->used_wrap_counter) {
|
|
flags |= VRING_DESC_F_USED;
|
|
flags |= VRING_DESC_F_AVAIL;
|
|
} else {
|
|
flags &= ~VRING_DESC_F_USED;
|
|
flags &= ~VRING_DESC_F_AVAIL;
|
|
}
|
|
|
|
if (!vq->shadow_used_idx) {
|
|
vq->shadow_last_used_idx = vq->last_used_idx;
|
|
vq->shadow_used_packed[0].len = 0;
|
|
vq->shadow_used_packed[0].flags = flags;
|
|
vq->shadow_used_idx++;
|
|
}
|
|
|
|
vq_inc_last_used_packed(vq, count);
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_shadow_enqueue_single_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
uint32_t len[],
|
|
uint16_t id[],
|
|
uint16_t count[],
|
|
uint16_t num_buffers)
|
|
{
|
|
uint16_t i;
|
|
for (i = 0; i < num_buffers; i++) {
|
|
/* enqueue shadow flush action aligned with batch num */
|
|
if (!vq->shadow_used_idx)
|
|
vq->shadow_aligned_idx = vq->last_used_idx &
|
|
PACKED_BATCH_MASK;
|
|
vq->shadow_used_packed[vq->shadow_used_idx].id = id[i];
|
|
vq->shadow_used_packed[vq->shadow_used_idx].len = len[i];
|
|
vq->shadow_used_packed[vq->shadow_used_idx].count = count[i];
|
|
vq->shadow_aligned_idx += count[i];
|
|
vq->shadow_used_idx++;
|
|
}
|
|
|
|
if (vq->shadow_aligned_idx >= PACKED_BATCH_SIZE) {
|
|
do_data_copy_enqueue(dev, vq);
|
|
vhost_flush_enqueue_shadow_packed(dev, vq);
|
|
}
|
|
}
|
|
|
|
/* avoid write operation when necessary, to lessen cache issues */
|
|
#define ASSIGN_UNLESS_EQUAL(var, val) do { \
|
|
if ((var) != (val)) \
|
|
(var) = (val); \
|
|
} while (0)
|
|
|
|
static __rte_always_inline void
|
|
virtio_enqueue_offload(struct rte_mbuf *m_buf, struct virtio_net_hdr *net_hdr)
|
|
{
|
|
uint64_t csum_l4 = m_buf->ol_flags & PKT_TX_L4_MASK;
|
|
|
|
if (m_buf->ol_flags & PKT_TX_TCP_SEG)
|
|
csum_l4 |= PKT_TX_TCP_CKSUM;
|
|
|
|
if (csum_l4) {
|
|
net_hdr->flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
|
|
net_hdr->csum_start = m_buf->l2_len + m_buf->l3_len;
|
|
|
|
switch (csum_l4) {
|
|
case PKT_TX_TCP_CKSUM:
|
|
net_hdr->csum_offset = (offsetof(struct rte_tcp_hdr,
|
|
cksum));
|
|
break;
|
|
case PKT_TX_UDP_CKSUM:
|
|
net_hdr->csum_offset = (offsetof(struct rte_udp_hdr,
|
|
dgram_cksum));
|
|
break;
|
|
case PKT_TX_SCTP_CKSUM:
|
|
net_hdr->csum_offset = (offsetof(struct rte_sctp_hdr,
|
|
cksum));
|
|
break;
|
|
}
|
|
} else {
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->csum_start, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->csum_offset, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->flags, 0);
|
|
}
|
|
|
|
/* IP cksum verification cannot be bypassed, then calculate here */
|
|
if (m_buf->ol_flags & PKT_TX_IP_CKSUM) {
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
|
|
ipv4_hdr = rte_pktmbuf_mtod_offset(m_buf, struct rte_ipv4_hdr *,
|
|
m_buf->l2_len);
|
|
ipv4_hdr->hdr_checksum = 0;
|
|
ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
|
|
}
|
|
|
|
if (m_buf->ol_flags & PKT_TX_TCP_SEG) {
|
|
if (m_buf->ol_flags & PKT_TX_IPV4)
|
|
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
|
|
else
|
|
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
|
|
net_hdr->gso_size = m_buf->tso_segsz;
|
|
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len
|
|
+ m_buf->l4_len;
|
|
} else if (m_buf->ol_flags & PKT_TX_UDP_SEG) {
|
|
net_hdr->gso_type = VIRTIO_NET_HDR_GSO_UDP;
|
|
net_hdr->gso_size = m_buf->tso_segsz;
|
|
net_hdr->hdr_len = m_buf->l2_len + m_buf->l3_len +
|
|
m_buf->l4_len;
|
|
} else {
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->gso_type, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->gso_size, 0);
|
|
ASSIGN_UNLESS_EQUAL(net_hdr->hdr_len, 0);
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
map_one_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct buf_vector *buf_vec, uint16_t *vec_idx,
|
|
uint64_t desc_iova, uint64_t desc_len, uint8_t perm)
|
|
{
|
|
uint16_t vec_id = *vec_idx;
|
|
|
|
while (desc_len) {
|
|
uint64_t desc_addr;
|
|
uint64_t desc_chunck_len = desc_len;
|
|
|
|
if (unlikely(vec_id >= BUF_VECTOR_MAX))
|
|
return -1;
|
|
|
|
desc_addr = vhost_iova_to_vva(dev, vq,
|
|
desc_iova,
|
|
&desc_chunck_len,
|
|
perm);
|
|
if (unlikely(!desc_addr))
|
|
return -1;
|
|
|
|
rte_prefetch0((void *)(uintptr_t)desc_addr);
|
|
|
|
buf_vec[vec_id].buf_iova = desc_iova;
|
|
buf_vec[vec_id].buf_addr = desc_addr;
|
|
buf_vec[vec_id].buf_len = desc_chunck_len;
|
|
|
|
desc_len -= desc_chunck_len;
|
|
desc_iova += desc_chunck_len;
|
|
vec_id++;
|
|
}
|
|
*vec_idx = vec_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_vec_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint32_t avail_idx, uint16_t *vec_idx,
|
|
struct buf_vector *buf_vec, uint16_t *desc_chain_head,
|
|
uint32_t *desc_chain_len, uint8_t perm)
|
|
{
|
|
uint16_t idx = vq->avail->ring[avail_idx & (vq->size - 1)];
|
|
uint16_t vec_id = *vec_idx;
|
|
uint32_t len = 0;
|
|
uint64_t dlen;
|
|
uint32_t nr_descs = vq->size;
|
|
uint32_t cnt = 0;
|
|
struct vring_desc *descs = vq->desc;
|
|
struct vring_desc *idesc = NULL;
|
|
|
|
if (unlikely(idx >= vq->size))
|
|
return -1;
|
|
|
|
*desc_chain_head = idx;
|
|
|
|
if (vq->desc[idx].flags & VRING_DESC_F_INDIRECT) {
|
|
dlen = vq->desc[idx].len;
|
|
nr_descs = dlen / sizeof(struct vring_desc);
|
|
if (unlikely(nr_descs > vq->size))
|
|
return -1;
|
|
|
|
descs = (struct vring_desc *)(uintptr_t)
|
|
vhost_iova_to_vva(dev, vq, vq->desc[idx].addr,
|
|
&dlen,
|
|
VHOST_ACCESS_RO);
|
|
if (unlikely(!descs))
|
|
return -1;
|
|
|
|
if (unlikely(dlen < vq->desc[idx].len)) {
|
|
/*
|
|
* The indirect desc table is not contiguous
|
|
* in process VA space, we have to copy it.
|
|
*/
|
|
idesc = vhost_alloc_copy_ind_table(dev, vq,
|
|
vq->desc[idx].addr, vq->desc[idx].len);
|
|
if (unlikely(!idesc))
|
|
return -1;
|
|
|
|
descs = idesc;
|
|
}
|
|
|
|
idx = 0;
|
|
}
|
|
|
|
while (1) {
|
|
if (unlikely(idx >= nr_descs || cnt++ >= nr_descs)) {
|
|
free_ind_table(idesc);
|
|
return -1;
|
|
}
|
|
|
|
len += descs[idx].len;
|
|
|
|
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
|
|
descs[idx].addr, descs[idx].len,
|
|
perm))) {
|
|
free_ind_table(idesc);
|
|
return -1;
|
|
}
|
|
|
|
if ((descs[idx].flags & VRING_DESC_F_NEXT) == 0)
|
|
break;
|
|
|
|
idx = descs[idx].next;
|
|
}
|
|
|
|
*desc_chain_len = len;
|
|
*vec_idx = vec_id;
|
|
|
|
if (unlikely(!!idesc))
|
|
free_ind_table(idesc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns -1 on fail, 0 on success
|
|
*/
|
|
static inline int
|
|
reserve_avail_buf_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint32_t size, struct buf_vector *buf_vec,
|
|
uint16_t *num_buffers, uint16_t avail_head,
|
|
uint16_t *nr_vec)
|
|
{
|
|
uint16_t cur_idx;
|
|
uint16_t vec_idx = 0;
|
|
uint16_t max_tries, tries = 0;
|
|
|
|
uint16_t head_idx = 0;
|
|
uint32_t len = 0;
|
|
|
|
*num_buffers = 0;
|
|
cur_idx = vq->last_avail_idx;
|
|
|
|
if (rxvq_is_mergeable(dev))
|
|
max_tries = vq->size - 1;
|
|
else
|
|
max_tries = 1;
|
|
|
|
while (size > 0) {
|
|
if (unlikely(cur_idx == avail_head))
|
|
return -1;
|
|
/*
|
|
* if we tried all available ring items, and still
|
|
* can't get enough buf, it means something abnormal
|
|
* happened.
|
|
*/
|
|
if (unlikely(++tries > max_tries))
|
|
return -1;
|
|
|
|
if (unlikely(fill_vec_buf_split(dev, vq, cur_idx,
|
|
&vec_idx, buf_vec,
|
|
&head_idx, &len,
|
|
VHOST_ACCESS_RW) < 0))
|
|
return -1;
|
|
len = RTE_MIN(len, size);
|
|
update_shadow_used_ring_split(vq, head_idx, len);
|
|
size -= len;
|
|
|
|
cur_idx++;
|
|
*num_buffers += 1;
|
|
}
|
|
|
|
*nr_vec = vec_idx;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_vec_buf_packed_indirect(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
struct vring_packed_desc *desc, uint16_t *vec_idx,
|
|
struct buf_vector *buf_vec, uint32_t *len, uint8_t perm)
|
|
{
|
|
uint16_t i;
|
|
uint32_t nr_descs;
|
|
uint16_t vec_id = *vec_idx;
|
|
uint64_t dlen;
|
|
struct vring_packed_desc *descs, *idescs = NULL;
|
|
|
|
dlen = desc->len;
|
|
descs = (struct vring_packed_desc *)(uintptr_t)
|
|
vhost_iova_to_vva(dev, vq, desc->addr, &dlen, VHOST_ACCESS_RO);
|
|
if (unlikely(!descs))
|
|
return -1;
|
|
|
|
if (unlikely(dlen < desc->len)) {
|
|
/*
|
|
* The indirect desc table is not contiguous
|
|
* in process VA space, we have to copy it.
|
|
*/
|
|
idescs = vhost_alloc_copy_ind_table(dev,
|
|
vq, desc->addr, desc->len);
|
|
if (unlikely(!idescs))
|
|
return -1;
|
|
|
|
descs = idescs;
|
|
}
|
|
|
|
nr_descs = desc->len / sizeof(struct vring_packed_desc);
|
|
if (unlikely(nr_descs >= vq->size)) {
|
|
free_ind_table(idescs);
|
|
return -1;
|
|
}
|
|
|
|
for (i = 0; i < nr_descs; i++) {
|
|
if (unlikely(vec_id >= BUF_VECTOR_MAX)) {
|
|
free_ind_table(idescs);
|
|
return -1;
|
|
}
|
|
|
|
*len += descs[i].len;
|
|
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
|
|
descs[i].addr, descs[i].len,
|
|
perm)))
|
|
return -1;
|
|
}
|
|
*vec_idx = vec_id;
|
|
|
|
if (unlikely(!!idescs))
|
|
free_ind_table(idescs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
fill_vec_buf_packed(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
uint16_t avail_idx, uint16_t *desc_count,
|
|
struct buf_vector *buf_vec, uint16_t *vec_idx,
|
|
uint16_t *buf_id, uint32_t *len, uint8_t perm)
|
|
{
|
|
bool wrap_counter = vq->avail_wrap_counter;
|
|
struct vring_packed_desc *descs = vq->desc_packed;
|
|
uint16_t vec_id = *vec_idx;
|
|
|
|
if (avail_idx < vq->last_avail_idx)
|
|
wrap_counter ^= 1;
|
|
|
|
/*
|
|
* Perform a load-acquire barrier in desc_is_avail to
|
|
* enforce the ordering between desc flags and desc
|
|
* content.
|
|
*/
|
|
if (unlikely(!desc_is_avail(&descs[avail_idx], wrap_counter)))
|
|
return -1;
|
|
|
|
*desc_count = 0;
|
|
*len = 0;
|
|
|
|
while (1) {
|
|
if (unlikely(vec_id >= BUF_VECTOR_MAX))
|
|
return -1;
|
|
|
|
if (unlikely(*desc_count >= vq->size))
|
|
return -1;
|
|
|
|
*desc_count += 1;
|
|
*buf_id = descs[avail_idx].id;
|
|
|
|
if (descs[avail_idx].flags & VRING_DESC_F_INDIRECT) {
|
|
if (unlikely(fill_vec_buf_packed_indirect(dev, vq,
|
|
&descs[avail_idx],
|
|
&vec_id, buf_vec,
|
|
len, perm) < 0))
|
|
return -1;
|
|
} else {
|
|
*len += descs[avail_idx].len;
|
|
|
|
if (unlikely(map_one_desc(dev, vq, buf_vec, &vec_id,
|
|
descs[avail_idx].addr,
|
|
descs[avail_idx].len,
|
|
perm)))
|
|
return -1;
|
|
}
|
|
|
|
if ((descs[avail_idx].flags & VRING_DESC_F_NEXT) == 0)
|
|
break;
|
|
|
|
if (++avail_idx >= vq->size) {
|
|
avail_idx -= vq->size;
|
|
wrap_counter ^= 1;
|
|
}
|
|
}
|
|
|
|
*vec_idx = vec_id;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_noinline void
|
|
copy_vnet_hdr_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct buf_vector *buf_vec,
|
|
struct virtio_net_hdr_mrg_rxbuf *hdr)
|
|
{
|
|
uint64_t len;
|
|
uint64_t remain = dev->vhost_hlen;
|
|
uint64_t src = (uint64_t)(uintptr_t)hdr, dst;
|
|
uint64_t iova = buf_vec->buf_iova;
|
|
|
|
while (remain) {
|
|
len = RTE_MIN(remain,
|
|
buf_vec->buf_len);
|
|
dst = buf_vec->buf_addr;
|
|
rte_memcpy((void *)(uintptr_t)dst,
|
|
(void *)(uintptr_t)src,
|
|
len);
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)dst,
|
|
(uint32_t)len, 0);
|
|
vhost_log_cache_write_iova(dev, vq,
|
|
iova, len);
|
|
|
|
remain -= len;
|
|
iova += len;
|
|
src += len;
|
|
buf_vec++;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
copy_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct rte_mbuf *m, struct buf_vector *buf_vec,
|
|
uint16_t nr_vec, uint16_t num_buffers)
|
|
{
|
|
uint32_t vec_idx = 0;
|
|
uint32_t mbuf_offset, mbuf_avail;
|
|
uint32_t buf_offset, buf_avail;
|
|
uint64_t buf_addr, buf_iova, buf_len;
|
|
uint32_t cpy_len;
|
|
uint64_t hdr_addr;
|
|
struct rte_mbuf *hdr_mbuf;
|
|
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
|
|
struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
|
|
int error = 0;
|
|
|
|
if (unlikely(m == NULL)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
hdr_mbuf = m;
|
|
hdr_addr = buf_addr;
|
|
if (unlikely(buf_len < dev->vhost_hlen))
|
|
hdr = &tmp_hdr;
|
|
else
|
|
hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
|
|
|
|
VHOST_LOG_DATA(DEBUG, "(%d) RX: num merge buffers %d\n",
|
|
dev->vid, num_buffers);
|
|
|
|
if (unlikely(buf_len < dev->vhost_hlen)) {
|
|
buf_offset = dev->vhost_hlen - buf_len;
|
|
vec_idx++;
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
buf_avail = buf_len - buf_offset;
|
|
} else {
|
|
buf_offset = dev->vhost_hlen;
|
|
buf_avail = buf_len - dev->vhost_hlen;
|
|
}
|
|
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
mbuf_offset = 0;
|
|
while (mbuf_avail != 0 || m->next != NULL) {
|
|
/* done with current buf, get the next one */
|
|
if (buf_avail == 0) {
|
|
vec_idx++;
|
|
if (unlikely(vec_idx >= nr_vec)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
buf_offset = 0;
|
|
buf_avail = buf_len;
|
|
}
|
|
|
|
/* done with current mbuf, get the next one */
|
|
if (mbuf_avail == 0) {
|
|
m = m->next;
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
}
|
|
|
|
if (hdr_addr) {
|
|
virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
|
|
if (rxvq_is_mergeable(dev))
|
|
ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
|
|
num_buffers);
|
|
|
|
if (unlikely(hdr == &tmp_hdr)) {
|
|
copy_vnet_hdr_to_desc(dev, vq, buf_vec, hdr);
|
|
} else {
|
|
PRINT_PACKET(dev, (uintptr_t)hdr_addr,
|
|
dev->vhost_hlen, 0);
|
|
vhost_log_cache_write_iova(dev, vq,
|
|
buf_vec[0].buf_iova,
|
|
dev->vhost_hlen);
|
|
}
|
|
|
|
hdr_addr = 0;
|
|
}
|
|
|
|
cpy_len = RTE_MIN(buf_avail, mbuf_avail);
|
|
|
|
if (likely(cpy_len > MAX_BATCH_LEN ||
|
|
vq->batch_copy_nb_elems >= vq->size)) {
|
|
rte_memcpy((void *)((uintptr_t)(buf_addr + buf_offset)),
|
|
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
|
|
cpy_len);
|
|
vhost_log_cache_write_iova(dev, vq,
|
|
buf_iova + buf_offset,
|
|
cpy_len);
|
|
PRINT_PACKET(dev, (uintptr_t)(buf_addr + buf_offset),
|
|
cpy_len, 0);
|
|
} else {
|
|
batch_copy[vq->batch_copy_nb_elems].dst =
|
|
(void *)((uintptr_t)(buf_addr + buf_offset));
|
|
batch_copy[vq->batch_copy_nb_elems].src =
|
|
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
|
|
batch_copy[vq->batch_copy_nb_elems].log_addr =
|
|
buf_iova + buf_offset;
|
|
batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
|
|
vq->batch_copy_nb_elems++;
|
|
}
|
|
|
|
mbuf_avail -= cpy_len;
|
|
mbuf_offset += cpy_len;
|
|
buf_avail -= cpy_len;
|
|
buf_offset += cpy_len;
|
|
}
|
|
|
|
out:
|
|
|
|
return error;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
async_fill_vec(struct iovec *v, void *base, size_t len)
|
|
{
|
|
v->iov_base = base;
|
|
v->iov_len = len;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
async_fill_iter(struct rte_vhost_iov_iter *it, size_t count,
|
|
struct iovec *vec, unsigned long nr_seg)
|
|
{
|
|
it->offset = 0;
|
|
it->count = count;
|
|
|
|
if (count) {
|
|
it->iov = vec;
|
|
it->nr_segs = nr_seg;
|
|
} else {
|
|
it->iov = 0;
|
|
it->nr_segs = 0;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
async_fill_desc(struct rte_vhost_async_desc *desc,
|
|
struct rte_vhost_iov_iter *src, struct rte_vhost_iov_iter *dst)
|
|
{
|
|
desc->src = src;
|
|
desc->dst = dst;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
async_mbuf_to_desc(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct rte_mbuf *m, struct buf_vector *buf_vec,
|
|
uint16_t nr_vec, uint16_t num_buffers,
|
|
struct iovec *src_iovec, struct iovec *dst_iovec,
|
|
struct rte_vhost_iov_iter *src_it,
|
|
struct rte_vhost_iov_iter *dst_it)
|
|
{
|
|
uint32_t vec_idx = 0;
|
|
uint32_t mbuf_offset, mbuf_avail;
|
|
uint32_t buf_offset, buf_avail;
|
|
uint64_t buf_addr, buf_iova, buf_len;
|
|
uint32_t cpy_len, cpy_threshold;
|
|
uint64_t hdr_addr;
|
|
struct rte_mbuf *hdr_mbuf;
|
|
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
|
|
struct virtio_net_hdr_mrg_rxbuf tmp_hdr, *hdr = NULL;
|
|
int error = 0;
|
|
uint64_t mapped_len;
|
|
|
|
uint32_t tlen = 0;
|
|
int tvec_idx = 0;
|
|
void *hpa;
|
|
|
|
if (unlikely(m == NULL)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
cpy_threshold = vq->async_threshold;
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
hdr_mbuf = m;
|
|
hdr_addr = buf_addr;
|
|
if (unlikely(buf_len < dev->vhost_hlen))
|
|
hdr = &tmp_hdr;
|
|
else
|
|
hdr = (struct virtio_net_hdr_mrg_rxbuf *)(uintptr_t)hdr_addr;
|
|
|
|
VHOST_LOG_DATA(DEBUG, "(%d) RX: num merge buffers %d\n",
|
|
dev->vid, num_buffers);
|
|
|
|
if (unlikely(buf_len < dev->vhost_hlen)) {
|
|
buf_offset = dev->vhost_hlen - buf_len;
|
|
vec_idx++;
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
buf_avail = buf_len - buf_offset;
|
|
} else {
|
|
buf_offset = dev->vhost_hlen;
|
|
buf_avail = buf_len - dev->vhost_hlen;
|
|
}
|
|
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
mbuf_offset = 0;
|
|
|
|
while (mbuf_avail != 0 || m->next != NULL) {
|
|
/* done with current buf, get the next one */
|
|
if (buf_avail == 0) {
|
|
vec_idx++;
|
|
if (unlikely(vec_idx >= nr_vec)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_iova = buf_vec[vec_idx].buf_iova;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
buf_offset = 0;
|
|
buf_avail = buf_len;
|
|
}
|
|
|
|
/* done with current mbuf, get the next one */
|
|
if (mbuf_avail == 0) {
|
|
m = m->next;
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = rte_pktmbuf_data_len(m);
|
|
}
|
|
|
|
if (hdr_addr) {
|
|
virtio_enqueue_offload(hdr_mbuf, &hdr->hdr);
|
|
if (rxvq_is_mergeable(dev))
|
|
ASSIGN_UNLESS_EQUAL(hdr->num_buffers,
|
|
num_buffers);
|
|
|
|
if (unlikely(hdr == &tmp_hdr)) {
|
|
copy_vnet_hdr_to_desc(dev, vq, buf_vec, hdr);
|
|
} else {
|
|
PRINT_PACKET(dev, (uintptr_t)hdr_addr,
|
|
dev->vhost_hlen, 0);
|
|
vhost_log_cache_write_iova(dev, vq,
|
|
buf_vec[0].buf_iova,
|
|
dev->vhost_hlen);
|
|
}
|
|
|
|
hdr_addr = 0;
|
|
}
|
|
|
|
cpy_len = RTE_MIN(buf_avail, mbuf_avail);
|
|
|
|
while (unlikely(cpy_len && cpy_len >= cpy_threshold)) {
|
|
hpa = (void *)(uintptr_t)gpa_to_first_hpa(dev,
|
|
buf_iova + buf_offset,
|
|
cpy_len, &mapped_len);
|
|
|
|
if (unlikely(!hpa || mapped_len < cpy_threshold))
|
|
break;
|
|
|
|
async_fill_vec(src_iovec + tvec_idx,
|
|
(void *)(uintptr_t)rte_pktmbuf_iova_offset(m,
|
|
mbuf_offset), (size_t)mapped_len);
|
|
|
|
async_fill_vec(dst_iovec + tvec_idx,
|
|
hpa, (size_t)mapped_len);
|
|
|
|
tlen += (uint32_t)mapped_len;
|
|
cpy_len -= (uint32_t)mapped_len;
|
|
mbuf_avail -= (uint32_t)mapped_len;
|
|
mbuf_offset += (uint32_t)mapped_len;
|
|
buf_avail -= (uint32_t)mapped_len;
|
|
buf_offset += (uint32_t)mapped_len;
|
|
tvec_idx++;
|
|
}
|
|
|
|
if (likely(cpy_len)) {
|
|
if (unlikely(vq->batch_copy_nb_elems >= vq->size)) {
|
|
rte_memcpy(
|
|
(void *)((uintptr_t)(buf_addr + buf_offset)),
|
|
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset),
|
|
cpy_len);
|
|
|
|
PRINT_PACKET(dev,
|
|
(uintptr_t)(buf_addr + buf_offset),
|
|
cpy_len, 0);
|
|
} else {
|
|
batch_copy[vq->batch_copy_nb_elems].dst =
|
|
(void *)((uintptr_t)(buf_addr + buf_offset));
|
|
batch_copy[vq->batch_copy_nb_elems].src =
|
|
rte_pktmbuf_mtod_offset(m, void *, mbuf_offset);
|
|
batch_copy[vq->batch_copy_nb_elems].log_addr =
|
|
buf_iova + buf_offset;
|
|
batch_copy[vq->batch_copy_nb_elems].len =
|
|
cpy_len;
|
|
vq->batch_copy_nb_elems++;
|
|
}
|
|
|
|
mbuf_avail -= cpy_len;
|
|
mbuf_offset += cpy_len;
|
|
buf_avail -= cpy_len;
|
|
buf_offset += cpy_len;
|
|
}
|
|
|
|
}
|
|
|
|
out:
|
|
if (tlen) {
|
|
async_fill_iter(src_it, tlen, src_iovec, tvec_idx);
|
|
async_fill_iter(dst_it, tlen, dst_iovec, tvec_idx);
|
|
} else {
|
|
src_it->count = 0;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
vhost_enqueue_single_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
struct rte_mbuf *pkt,
|
|
struct buf_vector *buf_vec,
|
|
uint16_t *nr_descs)
|
|
{
|
|
uint16_t nr_vec = 0;
|
|
uint16_t avail_idx = vq->last_avail_idx;
|
|
uint16_t max_tries, tries = 0;
|
|
uint16_t buf_id = 0;
|
|
uint32_t len = 0;
|
|
uint16_t desc_count;
|
|
uint32_t size = pkt->pkt_len + sizeof(struct virtio_net_hdr_mrg_rxbuf);
|
|
uint16_t num_buffers = 0;
|
|
uint32_t buffer_len[vq->size];
|
|
uint16_t buffer_buf_id[vq->size];
|
|
uint16_t buffer_desc_count[vq->size];
|
|
|
|
if (rxvq_is_mergeable(dev))
|
|
max_tries = vq->size - 1;
|
|
else
|
|
max_tries = 1;
|
|
|
|
while (size > 0) {
|
|
/*
|
|
* if we tried all available ring items, and still
|
|
* can't get enough buf, it means something abnormal
|
|
* happened.
|
|
*/
|
|
if (unlikely(++tries > max_tries))
|
|
return -1;
|
|
|
|
if (unlikely(fill_vec_buf_packed(dev, vq,
|
|
avail_idx, &desc_count,
|
|
buf_vec, &nr_vec,
|
|
&buf_id, &len,
|
|
VHOST_ACCESS_RW) < 0))
|
|
return -1;
|
|
|
|
len = RTE_MIN(len, size);
|
|
size -= len;
|
|
|
|
buffer_len[num_buffers] = len;
|
|
buffer_buf_id[num_buffers] = buf_id;
|
|
buffer_desc_count[num_buffers] = desc_count;
|
|
num_buffers += 1;
|
|
|
|
*nr_descs += desc_count;
|
|
avail_idx += desc_count;
|
|
if (avail_idx >= vq->size)
|
|
avail_idx -= vq->size;
|
|
}
|
|
|
|
if (copy_mbuf_to_desc(dev, vq, pkt, buf_vec, nr_vec, num_buffers) < 0)
|
|
return -1;
|
|
|
|
vhost_shadow_enqueue_single_packed(dev, vq, buffer_len, buffer_buf_id,
|
|
buffer_desc_count, num_buffers);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_noinline uint32_t
|
|
virtio_dev_rx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct rte_mbuf **pkts, uint32_t count)
|
|
{
|
|
uint32_t pkt_idx = 0;
|
|
uint16_t num_buffers;
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
uint16_t avail_head;
|
|
|
|
/*
|
|
* The ordering between avail index and
|
|
* desc reads needs to be enforced.
|
|
*/
|
|
avail_head = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE);
|
|
|
|
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
|
|
|
|
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
|
|
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
|
|
uint16_t nr_vec = 0;
|
|
|
|
if (unlikely(reserve_avail_buf_split(dev, vq,
|
|
pkt_len, buf_vec, &num_buffers,
|
|
avail_head, &nr_vec) < 0)) {
|
|
VHOST_LOG_DATA(DEBUG,
|
|
"(%d) failed to get enough desc from vring\n",
|
|
dev->vid);
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
VHOST_LOG_DATA(DEBUG, "(%d) current index %d | end index %d\n",
|
|
dev->vid, vq->last_avail_idx,
|
|
vq->last_avail_idx + num_buffers);
|
|
|
|
if (copy_mbuf_to_desc(dev, vq, pkts[pkt_idx],
|
|
buf_vec, nr_vec,
|
|
num_buffers) < 0) {
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
vq->last_avail_idx += num_buffers;
|
|
}
|
|
|
|
do_data_copy_enqueue(dev, vq);
|
|
|
|
if (likely(vq->shadow_used_idx)) {
|
|
flush_shadow_used_ring_split(dev, vq);
|
|
vhost_vring_call_split(dev, vq);
|
|
}
|
|
|
|
return pkt_idx;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
virtio_dev_rx_batch_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
struct rte_mbuf **pkts)
|
|
{
|
|
bool wrap_counter = vq->avail_wrap_counter;
|
|
struct vring_packed_desc *descs = vq->desc_packed;
|
|
uint16_t avail_idx = vq->last_avail_idx;
|
|
uint64_t desc_addrs[PACKED_BATCH_SIZE];
|
|
struct virtio_net_hdr_mrg_rxbuf *hdrs[PACKED_BATCH_SIZE];
|
|
uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf);
|
|
uint64_t lens[PACKED_BATCH_SIZE];
|
|
uint16_t ids[PACKED_BATCH_SIZE];
|
|
uint16_t i;
|
|
|
|
if (unlikely(avail_idx & PACKED_BATCH_MASK))
|
|
return -1;
|
|
|
|
if (unlikely((avail_idx + PACKED_BATCH_SIZE) > vq->size))
|
|
return -1;
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
if (unlikely(pkts[i]->next != NULL))
|
|
return -1;
|
|
if (unlikely(!desc_is_avail(&descs[avail_idx + i],
|
|
wrap_counter)))
|
|
return -1;
|
|
}
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
lens[i] = descs[avail_idx + i].len;
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
if (unlikely(pkts[i]->pkt_len > (lens[i] - buf_offset)))
|
|
return -1;
|
|
}
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
desc_addrs[i] = vhost_iova_to_vva(dev, vq,
|
|
descs[avail_idx + i].addr,
|
|
&lens[i],
|
|
VHOST_ACCESS_RW);
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
if (unlikely(!desc_addrs[i]))
|
|
return -1;
|
|
if (unlikely(lens[i] != descs[avail_idx + i].len))
|
|
return -1;
|
|
}
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
rte_prefetch0((void *)(uintptr_t)desc_addrs[i]);
|
|
hdrs[i] = (struct virtio_net_hdr_mrg_rxbuf *)
|
|
(uintptr_t)desc_addrs[i];
|
|
lens[i] = pkts[i]->pkt_len +
|
|
sizeof(struct virtio_net_hdr_mrg_rxbuf);
|
|
}
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
virtio_enqueue_offload(pkts[i], &hdrs[i]->hdr);
|
|
|
|
vq_inc_last_avail_packed(vq, PACKED_BATCH_SIZE);
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
rte_memcpy((void *)(uintptr_t)(desc_addrs[i] + buf_offset),
|
|
rte_pktmbuf_mtod_offset(pkts[i], void *, 0),
|
|
pkts[i]->pkt_len);
|
|
}
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
vhost_log_cache_write_iova(dev, vq, descs[avail_idx + i].addr,
|
|
lens[i]);
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
ids[i] = descs[avail_idx + i].id;
|
|
|
|
vhost_flush_enqueue_batch_packed(dev, vq, lens, ids);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int16_t
|
|
virtio_dev_rx_single_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
struct rte_mbuf *pkt)
|
|
{
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
uint16_t nr_descs = 0;
|
|
|
|
if (unlikely(vhost_enqueue_single_packed(dev, vq, pkt, buf_vec,
|
|
&nr_descs) < 0)) {
|
|
VHOST_LOG_DATA(DEBUG,
|
|
"(%d) failed to get enough desc from vring\n",
|
|
dev->vid);
|
|
return -1;
|
|
}
|
|
|
|
VHOST_LOG_DATA(DEBUG, "(%d) current index %d | end index %d\n",
|
|
dev->vid, vq->last_avail_idx,
|
|
vq->last_avail_idx + nr_descs);
|
|
|
|
vq_inc_last_avail_packed(vq, nr_descs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_noinline uint32_t
|
|
virtio_dev_rx_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *__rte_restrict vq,
|
|
struct rte_mbuf **__rte_restrict pkts,
|
|
uint32_t count)
|
|
{
|
|
uint32_t pkt_idx = 0;
|
|
uint32_t remained = count;
|
|
|
|
do {
|
|
rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]);
|
|
|
|
if (remained >= PACKED_BATCH_SIZE) {
|
|
if (!virtio_dev_rx_batch_packed(dev, vq,
|
|
&pkts[pkt_idx])) {
|
|
pkt_idx += PACKED_BATCH_SIZE;
|
|
remained -= PACKED_BATCH_SIZE;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (virtio_dev_rx_single_packed(dev, vq, pkts[pkt_idx]))
|
|
break;
|
|
pkt_idx++;
|
|
remained--;
|
|
|
|
} while (pkt_idx < count);
|
|
|
|
if (vq->shadow_used_idx) {
|
|
do_data_copy_enqueue(dev, vq);
|
|
vhost_flush_enqueue_shadow_packed(dev, vq);
|
|
}
|
|
|
|
if (pkt_idx)
|
|
vhost_vring_call_packed(dev, vq);
|
|
|
|
return pkt_idx;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
virtio_dev_rx(struct virtio_net *dev, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint32_t count)
|
|
{
|
|
struct vhost_virtqueue *vq;
|
|
uint32_t nb_tx = 0;
|
|
|
|
VHOST_LOG_DATA(DEBUG, "(%d) %s\n", dev->vid, __func__);
|
|
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
|
|
VHOST_LOG_DATA(ERR, "(%d) %s: invalid virtqueue idx %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[queue_id];
|
|
|
|
rte_spinlock_lock(&vq->access_lock);
|
|
|
|
if (unlikely(vq->enabled == 0))
|
|
goto out_access_unlock;
|
|
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_lock(vq);
|
|
|
|
if (unlikely(vq->access_ok == 0))
|
|
if (unlikely(vring_translate(dev, vq) < 0))
|
|
goto out;
|
|
|
|
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
|
|
if (count == 0)
|
|
goto out;
|
|
|
|
if (vq_is_packed(dev))
|
|
nb_tx = virtio_dev_rx_packed(dev, vq, pkts, count);
|
|
else
|
|
nb_tx = virtio_dev_rx_split(dev, vq, pkts, count);
|
|
|
|
out:
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_unlock(vq);
|
|
|
|
out_access_unlock:
|
|
rte_spinlock_unlock(&vq->access_lock);
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
uint16_t
|
|
rte_vhost_enqueue_burst(int vid, uint16_t queue_id,
|
|
struct rte_mbuf **__rte_restrict pkts, uint16_t count)
|
|
{
|
|
struct virtio_net *dev = get_device(vid);
|
|
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
|
|
VHOST_LOG_DATA(ERR,
|
|
"(%d) %s: built-in vhost net backend is disabled.\n",
|
|
dev->vid, __func__);
|
|
return 0;
|
|
}
|
|
|
|
return virtio_dev_rx(dev, queue_id, pkts, count);
|
|
}
|
|
|
|
static __rte_always_inline uint16_t
|
|
virtio_dev_rx_async_get_info_idx(uint16_t pkts_idx,
|
|
uint16_t vq_size, uint16_t n_inflight)
|
|
{
|
|
return pkts_idx > n_inflight ? (pkts_idx - n_inflight) :
|
|
(vq_size - n_inflight + pkts_idx) & (vq_size - 1);
|
|
}
|
|
|
|
static __rte_noinline uint32_t
|
|
virtio_dev_rx_async_submit_split(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint32_t count,
|
|
struct rte_mbuf **comp_pkts, uint32_t *comp_count)
|
|
{
|
|
uint32_t pkt_idx = 0, pkt_burst_idx = 0;
|
|
uint16_t num_buffers;
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
uint16_t avail_head;
|
|
|
|
struct rte_vhost_iov_iter *it_pool = vq->it_pool;
|
|
struct iovec *vec_pool = vq->vec_pool;
|
|
struct rte_vhost_async_desc tdes[MAX_PKT_BURST];
|
|
struct iovec *src_iovec = vec_pool;
|
|
struct iovec *dst_iovec = vec_pool + (VHOST_MAX_ASYNC_VEC >> 1);
|
|
struct rte_vhost_iov_iter *src_it = it_pool;
|
|
struct rte_vhost_iov_iter *dst_it = it_pool + 1;
|
|
uint16_t slot_idx = 0;
|
|
uint16_t segs_await = 0;
|
|
struct async_inflight_info *pkts_info = vq->async_pkts_info;
|
|
uint32_t n_pkts = 0, pkt_err = 0;
|
|
uint32_t num_async_pkts = 0, num_done_pkts = 0;
|
|
struct {
|
|
uint16_t pkt_idx;
|
|
uint16_t last_avail_idx;
|
|
} async_pkts_log[MAX_PKT_BURST];
|
|
|
|
/*
|
|
* The ordering between avail index and desc reads need to be enforced.
|
|
*/
|
|
avail_head = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE);
|
|
|
|
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
|
|
|
|
for (pkt_idx = 0; pkt_idx < count; pkt_idx++) {
|
|
uint32_t pkt_len = pkts[pkt_idx]->pkt_len + dev->vhost_hlen;
|
|
uint16_t nr_vec = 0;
|
|
|
|
if (unlikely(reserve_avail_buf_split(dev, vq,
|
|
pkt_len, buf_vec, &num_buffers,
|
|
avail_head, &nr_vec) < 0)) {
|
|
VHOST_LOG_DATA(DEBUG,
|
|
"(%d) failed to get enough desc from vring\n",
|
|
dev->vid);
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
VHOST_LOG_DATA(DEBUG, "(%d) current index %d | end index %d\n",
|
|
dev->vid, vq->last_avail_idx,
|
|
vq->last_avail_idx + num_buffers);
|
|
|
|
if (async_mbuf_to_desc(dev, vq, pkts[pkt_idx],
|
|
buf_vec, nr_vec, num_buffers,
|
|
src_iovec, dst_iovec, src_it, dst_it) < 0) {
|
|
vq->shadow_used_idx -= num_buffers;
|
|
break;
|
|
}
|
|
|
|
slot_idx = (vq->async_pkts_idx + num_async_pkts) &
|
|
(vq->size - 1);
|
|
if (src_it->count) {
|
|
uint16_t from, to;
|
|
|
|
async_fill_desc(&tdes[pkt_burst_idx++], src_it, dst_it);
|
|
pkts_info[slot_idx].descs = num_buffers;
|
|
pkts_info[slot_idx].mbuf = pkts[pkt_idx];
|
|
async_pkts_log[num_async_pkts].pkt_idx = pkt_idx;
|
|
async_pkts_log[num_async_pkts++].last_avail_idx =
|
|
vq->last_avail_idx;
|
|
src_iovec += src_it->nr_segs;
|
|
dst_iovec += dst_it->nr_segs;
|
|
src_it += 2;
|
|
dst_it += 2;
|
|
segs_await += src_it->nr_segs;
|
|
|
|
/**
|
|
* recover shadow used ring and keep DMA-occupied
|
|
* descriptors.
|
|
*/
|
|
from = vq->shadow_used_idx - num_buffers;
|
|
to = vq->async_desc_idx & (vq->size - 1);
|
|
if (num_buffers + to <= vq->size) {
|
|
rte_memcpy(&vq->async_descs_split[to],
|
|
&vq->shadow_used_split[from],
|
|
num_buffers *
|
|
sizeof(struct vring_used_elem));
|
|
} else {
|
|
int size = vq->size - to;
|
|
|
|
rte_memcpy(&vq->async_descs_split[to],
|
|
&vq->shadow_used_split[from],
|
|
size *
|
|
sizeof(struct vring_used_elem));
|
|
rte_memcpy(vq->async_descs_split,
|
|
&vq->shadow_used_split[from +
|
|
size], (num_buffers - size) *
|
|
sizeof(struct vring_used_elem));
|
|
}
|
|
vq->async_desc_idx += num_buffers;
|
|
vq->shadow_used_idx -= num_buffers;
|
|
} else
|
|
comp_pkts[num_done_pkts++] = pkts[pkt_idx];
|
|
|
|
vq->last_avail_idx += num_buffers;
|
|
|
|
/*
|
|
* conditions to trigger async device transfer:
|
|
* - buffered packet number reaches transfer threshold
|
|
* - unused async iov number is less than max vhost vector
|
|
*/
|
|
if (unlikely(pkt_burst_idx >= VHOST_ASYNC_BATCH_THRESHOLD ||
|
|
((VHOST_MAX_ASYNC_VEC >> 1) - segs_await <
|
|
BUF_VECTOR_MAX))) {
|
|
n_pkts = vq->async_ops.transfer_data(dev->vid,
|
|
queue_id, tdes, 0, pkt_burst_idx);
|
|
src_iovec = vec_pool;
|
|
dst_iovec = vec_pool + (VHOST_MAX_ASYNC_VEC >> 1);
|
|
src_it = it_pool;
|
|
dst_it = it_pool + 1;
|
|
segs_await = 0;
|
|
vq->async_pkts_inflight_n += n_pkts;
|
|
|
|
if (unlikely(n_pkts < pkt_burst_idx)) {
|
|
/*
|
|
* log error packets number here and do actual
|
|
* error processing when applications poll
|
|
* completion
|
|
*/
|
|
pkt_err = pkt_burst_idx - n_pkts;
|
|
pkt_burst_idx = 0;
|
|
break;
|
|
}
|
|
|
|
pkt_burst_idx = 0;
|
|
}
|
|
}
|
|
|
|
if (pkt_burst_idx) {
|
|
n_pkts = vq->async_ops.transfer_data(dev->vid,
|
|
queue_id, tdes, 0, pkt_burst_idx);
|
|
vq->async_pkts_inflight_n += n_pkts;
|
|
|
|
if (unlikely(n_pkts < pkt_burst_idx))
|
|
pkt_err = pkt_burst_idx - n_pkts;
|
|
}
|
|
|
|
do_data_copy_enqueue(dev, vq);
|
|
|
|
if (unlikely(pkt_err)) {
|
|
uint16_t num_descs = 0;
|
|
|
|
num_async_pkts -= pkt_err;
|
|
/* calculate the sum of descriptors of DMA-error packets. */
|
|
while (pkt_err-- > 0) {
|
|
num_descs += pkts_info[slot_idx & (vq->size - 1)].descs;
|
|
slot_idx--;
|
|
}
|
|
vq->async_desc_idx -= num_descs;
|
|
/* recover shadow used ring and available ring */
|
|
vq->shadow_used_idx -= (vq->last_avail_idx -
|
|
async_pkts_log[num_async_pkts].last_avail_idx -
|
|
num_descs);
|
|
vq->last_avail_idx =
|
|
async_pkts_log[num_async_pkts].last_avail_idx;
|
|
pkt_idx = async_pkts_log[num_async_pkts].pkt_idx;
|
|
num_done_pkts = pkt_idx - num_async_pkts;
|
|
}
|
|
|
|
vq->async_pkts_idx += num_async_pkts;
|
|
*comp_count = num_done_pkts;
|
|
|
|
if (likely(vq->shadow_used_idx)) {
|
|
flush_shadow_used_ring_split(dev, vq);
|
|
vhost_vring_call_split(dev, vq);
|
|
}
|
|
|
|
return pkt_idx;
|
|
}
|
|
|
|
uint16_t rte_vhost_poll_enqueue_completed(int vid, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
struct virtio_net *dev = get_device(vid);
|
|
struct vhost_virtqueue *vq;
|
|
uint16_t n_pkts_cpl = 0, n_pkts_put = 0, n_descs = 0;
|
|
uint16_t start_idx, pkts_idx, vq_size;
|
|
struct async_inflight_info *pkts_info;
|
|
uint16_t from, i;
|
|
|
|
if (!dev)
|
|
return 0;
|
|
|
|
VHOST_LOG_DATA(DEBUG, "(%d) %s\n", dev->vid, __func__);
|
|
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
|
|
VHOST_LOG_DATA(ERR, "(%d) %s: invalid virtqueue idx %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[queue_id];
|
|
|
|
if (unlikely(!vq->async_registered)) {
|
|
VHOST_LOG_DATA(ERR, "(%d) %s: async not registered for queue id %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
rte_spinlock_lock(&vq->access_lock);
|
|
|
|
pkts_idx = vq->async_pkts_idx & (vq->size - 1);
|
|
pkts_info = vq->async_pkts_info;
|
|
vq_size = vq->size;
|
|
start_idx = virtio_dev_rx_async_get_info_idx(pkts_idx,
|
|
vq_size, vq->async_pkts_inflight_n);
|
|
|
|
if (count > vq->async_last_pkts_n)
|
|
n_pkts_cpl = vq->async_ops.check_completed_copies(vid,
|
|
queue_id, 0, count - vq->async_last_pkts_n);
|
|
n_pkts_cpl += vq->async_last_pkts_n;
|
|
|
|
n_pkts_put = RTE_MIN(count, n_pkts_cpl);
|
|
if (unlikely(n_pkts_put == 0)) {
|
|
vq->async_last_pkts_n = n_pkts_cpl;
|
|
goto done;
|
|
}
|
|
|
|
for (i = 0; i < n_pkts_put; i++) {
|
|
from = (start_idx + i) & (vq_size - 1);
|
|
n_descs += pkts_info[from].descs;
|
|
pkts[i] = pkts_info[from].mbuf;
|
|
}
|
|
vq->async_last_pkts_n = n_pkts_cpl - n_pkts_put;
|
|
vq->async_pkts_inflight_n -= n_pkts_put;
|
|
|
|
if (likely(vq->enabled && vq->access_ok)) {
|
|
uint16_t nr_left = n_descs;
|
|
uint16_t nr_copy;
|
|
uint16_t to;
|
|
|
|
/* write back completed descriptors to used ring */
|
|
do {
|
|
from = vq->last_async_desc_idx & (vq->size - 1);
|
|
nr_copy = nr_left + from <= vq->size ? nr_left :
|
|
vq->size - from;
|
|
to = vq->last_used_idx & (vq->size - 1);
|
|
|
|
if (to + nr_copy <= vq->size) {
|
|
rte_memcpy(&vq->used->ring[to],
|
|
&vq->async_descs_split[from],
|
|
nr_copy *
|
|
sizeof(struct vring_used_elem));
|
|
} else {
|
|
uint16_t size = vq->size - to;
|
|
|
|
rte_memcpy(&vq->used->ring[to],
|
|
&vq->async_descs_split[from],
|
|
size *
|
|
sizeof(struct vring_used_elem));
|
|
rte_memcpy(vq->used->ring,
|
|
&vq->async_descs_split[from +
|
|
size], (nr_copy - size) *
|
|
sizeof(struct vring_used_elem));
|
|
}
|
|
|
|
vq->last_async_desc_idx += nr_copy;
|
|
vq->last_used_idx += nr_copy;
|
|
nr_left -= nr_copy;
|
|
} while (nr_left > 0);
|
|
|
|
__atomic_add_fetch(&vq->used->idx, n_descs, __ATOMIC_RELEASE);
|
|
vhost_vring_call_split(dev, vq);
|
|
} else
|
|
vq->last_async_desc_idx += n_descs;
|
|
|
|
done:
|
|
rte_spinlock_unlock(&vq->access_lock);
|
|
|
|
return n_pkts_put;
|
|
}
|
|
|
|
static __rte_always_inline uint32_t
|
|
virtio_dev_rx_async_submit(struct virtio_net *dev, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint32_t count,
|
|
struct rte_mbuf **comp_pkts, uint32_t *comp_count)
|
|
{
|
|
struct vhost_virtqueue *vq;
|
|
uint32_t nb_tx = 0;
|
|
|
|
VHOST_LOG_DATA(DEBUG, "(%d) %s\n", dev->vid, __func__);
|
|
if (unlikely(!is_valid_virt_queue_idx(queue_id, 0, dev->nr_vring))) {
|
|
VHOST_LOG_DATA(ERR, "(%d) %s: invalid virtqueue idx %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[queue_id];
|
|
|
|
rte_spinlock_lock(&vq->access_lock);
|
|
|
|
if (unlikely(vq->enabled == 0 || !vq->async_registered))
|
|
goto out_access_unlock;
|
|
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_lock(vq);
|
|
|
|
if (unlikely(vq->access_ok == 0))
|
|
if (unlikely(vring_translate(dev, vq) < 0))
|
|
goto out;
|
|
|
|
count = RTE_MIN((uint32_t)MAX_PKT_BURST, count);
|
|
if (count == 0)
|
|
goto out;
|
|
|
|
/* TODO: packed queue not implemented */
|
|
if (vq_is_packed(dev))
|
|
nb_tx = 0;
|
|
else
|
|
nb_tx = virtio_dev_rx_async_submit_split(dev,
|
|
vq, queue_id, pkts, count, comp_pkts,
|
|
comp_count);
|
|
|
|
out:
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_unlock(vq);
|
|
|
|
out_access_unlock:
|
|
rte_spinlock_unlock(&vq->access_lock);
|
|
|
|
return nb_tx;
|
|
}
|
|
|
|
uint16_t
|
|
rte_vhost_submit_enqueue_burst(int vid, uint16_t queue_id,
|
|
struct rte_mbuf **pkts, uint16_t count,
|
|
struct rte_mbuf **comp_pkts, uint32_t *comp_count)
|
|
{
|
|
struct virtio_net *dev = get_device(vid);
|
|
|
|
*comp_count = 0;
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
|
|
VHOST_LOG_DATA(ERR,
|
|
"(%d) %s: built-in vhost net backend is disabled.\n",
|
|
dev->vid, __func__);
|
|
return 0;
|
|
}
|
|
|
|
return virtio_dev_rx_async_submit(dev, queue_id, pkts, count, comp_pkts,
|
|
comp_count);
|
|
}
|
|
|
|
static inline bool
|
|
virtio_net_with_host_offload(struct virtio_net *dev)
|
|
{
|
|
if (dev->features &
|
|
((1ULL << VIRTIO_NET_F_CSUM) |
|
|
(1ULL << VIRTIO_NET_F_HOST_ECN) |
|
|
(1ULL << VIRTIO_NET_F_HOST_TSO4) |
|
|
(1ULL << VIRTIO_NET_F_HOST_TSO6) |
|
|
(1ULL << VIRTIO_NET_F_HOST_UFO)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
parse_ethernet(struct rte_mbuf *m, uint16_t *l4_proto, void **l4_hdr)
|
|
{
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
void *l3_hdr = NULL;
|
|
struct rte_ether_hdr *eth_hdr;
|
|
uint16_t ethertype;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
|
|
|
|
m->l2_len = sizeof(struct rte_ether_hdr);
|
|
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
|
|
|
|
if (ethertype == RTE_ETHER_TYPE_VLAN) {
|
|
struct rte_vlan_hdr *vlan_hdr =
|
|
(struct rte_vlan_hdr *)(eth_hdr + 1);
|
|
|
|
m->l2_len += sizeof(struct rte_vlan_hdr);
|
|
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
|
|
}
|
|
|
|
l3_hdr = (char *)eth_hdr + m->l2_len;
|
|
|
|
switch (ethertype) {
|
|
case RTE_ETHER_TYPE_IPV4:
|
|
ipv4_hdr = l3_hdr;
|
|
*l4_proto = ipv4_hdr->next_proto_id;
|
|
m->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
|
|
*l4_hdr = (char *)l3_hdr + m->l3_len;
|
|
m->ol_flags |= PKT_TX_IPV4;
|
|
break;
|
|
case RTE_ETHER_TYPE_IPV6:
|
|
ipv6_hdr = l3_hdr;
|
|
*l4_proto = ipv6_hdr->proto;
|
|
m->l3_len = sizeof(struct rte_ipv6_hdr);
|
|
*l4_hdr = (char *)l3_hdr + m->l3_len;
|
|
m->ol_flags |= PKT_TX_IPV6;
|
|
break;
|
|
default:
|
|
m->l3_len = 0;
|
|
*l4_proto = 0;
|
|
*l4_hdr = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
vhost_dequeue_offload(struct virtio_net_hdr *hdr, struct rte_mbuf *m)
|
|
{
|
|
uint16_t l4_proto = 0;
|
|
void *l4_hdr = NULL;
|
|
struct rte_tcp_hdr *tcp_hdr = NULL;
|
|
|
|
if (hdr->flags == 0 && hdr->gso_type == VIRTIO_NET_HDR_GSO_NONE)
|
|
return;
|
|
|
|
parse_ethernet(m, &l4_proto, &l4_hdr);
|
|
if (hdr->flags == VIRTIO_NET_HDR_F_NEEDS_CSUM) {
|
|
if (hdr->csum_start == (m->l2_len + m->l3_len)) {
|
|
switch (hdr->csum_offset) {
|
|
case (offsetof(struct rte_tcp_hdr, cksum)):
|
|
if (l4_proto == IPPROTO_TCP)
|
|
m->ol_flags |= PKT_TX_TCP_CKSUM;
|
|
break;
|
|
case (offsetof(struct rte_udp_hdr, dgram_cksum)):
|
|
if (l4_proto == IPPROTO_UDP)
|
|
m->ol_flags |= PKT_TX_UDP_CKSUM;
|
|
break;
|
|
case (offsetof(struct rte_sctp_hdr, cksum)):
|
|
if (l4_proto == IPPROTO_SCTP)
|
|
m->ol_flags |= PKT_TX_SCTP_CKSUM;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (l4_hdr && hdr->gso_type != VIRTIO_NET_HDR_GSO_NONE) {
|
|
switch (hdr->gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
|
|
case VIRTIO_NET_HDR_GSO_TCPV4:
|
|
case VIRTIO_NET_HDR_GSO_TCPV6:
|
|
tcp_hdr = l4_hdr;
|
|
m->ol_flags |= PKT_TX_TCP_SEG;
|
|
m->tso_segsz = hdr->gso_size;
|
|
m->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
|
|
break;
|
|
case VIRTIO_NET_HDR_GSO_UDP:
|
|
m->ol_flags |= PKT_TX_UDP_SEG;
|
|
m->tso_segsz = hdr->gso_size;
|
|
m->l4_len = sizeof(struct rte_udp_hdr);
|
|
break;
|
|
default:
|
|
VHOST_LOG_DATA(WARNING,
|
|
"unsupported gso type %u.\n", hdr->gso_type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static __rte_noinline void
|
|
copy_vnet_hdr_from_desc(struct virtio_net_hdr *hdr,
|
|
struct buf_vector *buf_vec)
|
|
{
|
|
uint64_t len;
|
|
uint64_t remain = sizeof(struct virtio_net_hdr);
|
|
uint64_t src;
|
|
uint64_t dst = (uint64_t)(uintptr_t)hdr;
|
|
|
|
while (remain) {
|
|
len = RTE_MIN(remain, buf_vec->buf_len);
|
|
src = buf_vec->buf_addr;
|
|
rte_memcpy((void *)(uintptr_t)dst,
|
|
(void *)(uintptr_t)src, len);
|
|
|
|
remain -= len;
|
|
dst += len;
|
|
buf_vec++;
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
copy_desc_to_mbuf(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct buf_vector *buf_vec, uint16_t nr_vec,
|
|
struct rte_mbuf *m, struct rte_mempool *mbuf_pool)
|
|
{
|
|
uint32_t buf_avail, buf_offset;
|
|
uint64_t buf_addr, buf_len;
|
|
uint32_t mbuf_avail, mbuf_offset;
|
|
uint32_t cpy_len;
|
|
struct rte_mbuf *cur = m, *prev = m;
|
|
struct virtio_net_hdr tmp_hdr;
|
|
struct virtio_net_hdr *hdr = NULL;
|
|
/* A counter to avoid desc dead loop chain */
|
|
uint16_t vec_idx = 0;
|
|
struct batch_copy_elem *batch_copy = vq->batch_copy_elems;
|
|
int error = 0;
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
if (unlikely(buf_len < dev->vhost_hlen && nr_vec <= 1)) {
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
if (virtio_net_with_host_offload(dev)) {
|
|
if (unlikely(buf_len < sizeof(struct virtio_net_hdr))) {
|
|
/*
|
|
* No luck, the virtio-net header doesn't fit
|
|
* in a contiguous virtual area.
|
|
*/
|
|
copy_vnet_hdr_from_desc(&tmp_hdr, buf_vec);
|
|
hdr = &tmp_hdr;
|
|
} else {
|
|
hdr = (struct virtio_net_hdr *)((uintptr_t)buf_addr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A virtio driver normally uses at least 2 desc buffers
|
|
* for Tx: the first for storing the header, and others
|
|
* for storing the data.
|
|
*/
|
|
if (unlikely(buf_len < dev->vhost_hlen)) {
|
|
buf_offset = dev->vhost_hlen - buf_len;
|
|
vec_idx++;
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
buf_avail = buf_len - buf_offset;
|
|
} else if (buf_len == dev->vhost_hlen) {
|
|
if (unlikely(++vec_idx >= nr_vec))
|
|
goto out;
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
buf_offset = 0;
|
|
buf_avail = buf_len;
|
|
} else {
|
|
buf_offset = dev->vhost_hlen;
|
|
buf_avail = buf_vec[vec_idx].buf_len - dev->vhost_hlen;
|
|
}
|
|
|
|
PRINT_PACKET(dev,
|
|
(uintptr_t)(buf_addr + buf_offset),
|
|
(uint32_t)buf_avail, 0);
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = m->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
while (1) {
|
|
cpy_len = RTE_MIN(buf_avail, mbuf_avail);
|
|
|
|
if (likely(cpy_len > MAX_BATCH_LEN ||
|
|
vq->batch_copy_nb_elems >= vq->size ||
|
|
(hdr && cur == m))) {
|
|
rte_memcpy(rte_pktmbuf_mtod_offset(cur, void *,
|
|
mbuf_offset),
|
|
(void *)((uintptr_t)(buf_addr +
|
|
buf_offset)), cpy_len);
|
|
} else {
|
|
batch_copy[vq->batch_copy_nb_elems].dst =
|
|
rte_pktmbuf_mtod_offset(cur, void *,
|
|
mbuf_offset);
|
|
batch_copy[vq->batch_copy_nb_elems].src =
|
|
(void *)((uintptr_t)(buf_addr + buf_offset));
|
|
batch_copy[vq->batch_copy_nb_elems].len = cpy_len;
|
|
vq->batch_copy_nb_elems++;
|
|
}
|
|
|
|
mbuf_avail -= cpy_len;
|
|
mbuf_offset += cpy_len;
|
|
buf_avail -= cpy_len;
|
|
buf_offset += cpy_len;
|
|
|
|
/* This buf reaches to its end, get the next one */
|
|
if (buf_avail == 0) {
|
|
if (++vec_idx >= nr_vec)
|
|
break;
|
|
|
|
buf_addr = buf_vec[vec_idx].buf_addr;
|
|
buf_len = buf_vec[vec_idx].buf_len;
|
|
|
|
buf_offset = 0;
|
|
buf_avail = buf_len;
|
|
|
|
PRINT_PACKET(dev, (uintptr_t)buf_addr,
|
|
(uint32_t)buf_avail, 0);
|
|
}
|
|
|
|
/*
|
|
* This mbuf reaches to its end, get a new one
|
|
* to hold more data.
|
|
*/
|
|
if (mbuf_avail == 0) {
|
|
cur = rte_pktmbuf_alloc(mbuf_pool);
|
|
if (unlikely(cur == NULL)) {
|
|
VHOST_LOG_DATA(ERR, "Failed to "
|
|
"allocate memory for mbuf.\n");
|
|
error = -1;
|
|
goto out;
|
|
}
|
|
|
|
prev->next = cur;
|
|
prev->data_len = mbuf_offset;
|
|
m->nb_segs += 1;
|
|
m->pkt_len += mbuf_offset;
|
|
prev = cur;
|
|
|
|
mbuf_offset = 0;
|
|
mbuf_avail = cur->buf_len - RTE_PKTMBUF_HEADROOM;
|
|
}
|
|
}
|
|
|
|
prev->data_len = mbuf_offset;
|
|
m->pkt_len += mbuf_offset;
|
|
|
|
if (hdr)
|
|
vhost_dequeue_offload(hdr, m);
|
|
|
|
out:
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
virtio_dev_extbuf_free(void *addr __rte_unused, void *opaque)
|
|
{
|
|
rte_free(opaque);
|
|
}
|
|
|
|
static int
|
|
virtio_dev_extbuf_alloc(struct rte_mbuf *pkt, uint32_t size)
|
|
{
|
|
struct rte_mbuf_ext_shared_info *shinfo = NULL;
|
|
uint32_t total_len = RTE_PKTMBUF_HEADROOM + size;
|
|
uint16_t buf_len;
|
|
rte_iova_t iova;
|
|
void *buf;
|
|
|
|
total_len += sizeof(*shinfo) + sizeof(uintptr_t);
|
|
total_len = RTE_ALIGN_CEIL(total_len, sizeof(uintptr_t));
|
|
|
|
if (unlikely(total_len > UINT16_MAX))
|
|
return -ENOSPC;
|
|
|
|
buf_len = total_len;
|
|
buf = rte_malloc(NULL, buf_len, RTE_CACHE_LINE_SIZE);
|
|
if (unlikely(buf == NULL))
|
|
return -ENOMEM;
|
|
|
|
/* Initialize shinfo */
|
|
shinfo = rte_pktmbuf_ext_shinfo_init_helper(buf, &buf_len,
|
|
virtio_dev_extbuf_free, buf);
|
|
if (unlikely(shinfo == NULL)) {
|
|
rte_free(buf);
|
|
VHOST_LOG_DATA(ERR, "Failed to init shinfo\n");
|
|
return -1;
|
|
}
|
|
|
|
iova = rte_malloc_virt2iova(buf);
|
|
rte_pktmbuf_attach_extbuf(pkt, buf, iova, buf_len, shinfo);
|
|
rte_pktmbuf_reset_headroom(pkt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate a host supported pktmbuf.
|
|
*/
|
|
static __rte_always_inline struct rte_mbuf *
|
|
virtio_dev_pktmbuf_alloc(struct virtio_net *dev, struct rte_mempool *mp,
|
|
uint32_t data_len)
|
|
{
|
|
struct rte_mbuf *pkt = rte_pktmbuf_alloc(mp);
|
|
|
|
if (unlikely(pkt == NULL)) {
|
|
VHOST_LOG_DATA(ERR,
|
|
"Failed to allocate memory for mbuf.\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (rte_pktmbuf_tailroom(pkt) >= data_len)
|
|
return pkt;
|
|
|
|
/* attach an external buffer if supported */
|
|
if (dev->extbuf && !virtio_dev_extbuf_alloc(pkt, data_len))
|
|
return pkt;
|
|
|
|
/* check if chained buffers are allowed */
|
|
if (!dev->linearbuf)
|
|
return pkt;
|
|
|
|
/* Data doesn't fit into the buffer and the host supports
|
|
* only linear buffers
|
|
*/
|
|
rte_pktmbuf_free(pkt);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static __rte_noinline uint16_t
|
|
virtio_dev_tx_split(struct virtio_net *dev, struct vhost_virtqueue *vq,
|
|
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
uint16_t i;
|
|
uint16_t free_entries;
|
|
uint16_t dropped = 0;
|
|
static bool allocerr_warned;
|
|
|
|
/*
|
|
* The ordering between avail index and
|
|
* desc reads needs to be enforced.
|
|
*/
|
|
free_entries = __atomic_load_n(&vq->avail->idx, __ATOMIC_ACQUIRE) -
|
|
vq->last_avail_idx;
|
|
if (free_entries == 0)
|
|
return 0;
|
|
|
|
rte_prefetch0(&vq->avail->ring[vq->last_avail_idx & (vq->size - 1)]);
|
|
|
|
VHOST_LOG_DATA(DEBUG, "(%d) %s\n", dev->vid, __func__);
|
|
|
|
count = RTE_MIN(count, MAX_PKT_BURST);
|
|
count = RTE_MIN(count, free_entries);
|
|
VHOST_LOG_DATA(DEBUG, "(%d) about to dequeue %u buffers\n",
|
|
dev->vid, count);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
uint16_t head_idx;
|
|
uint32_t buf_len;
|
|
uint16_t nr_vec = 0;
|
|
int err;
|
|
|
|
if (unlikely(fill_vec_buf_split(dev, vq,
|
|
vq->last_avail_idx + i,
|
|
&nr_vec, buf_vec,
|
|
&head_idx, &buf_len,
|
|
VHOST_ACCESS_RO) < 0))
|
|
break;
|
|
|
|
update_shadow_used_ring_split(vq, head_idx, 0);
|
|
|
|
pkts[i] = virtio_dev_pktmbuf_alloc(dev, mbuf_pool, buf_len);
|
|
if (unlikely(pkts[i] == NULL)) {
|
|
/*
|
|
* mbuf allocation fails for jumbo packets when external
|
|
* buffer allocation is not allowed and linear buffer
|
|
* is required. Drop this packet.
|
|
*/
|
|
if (!allocerr_warned) {
|
|
VHOST_LOG_DATA(ERR,
|
|
"Failed mbuf alloc of size %d from %s on %s.\n",
|
|
buf_len, mbuf_pool->name, dev->ifname);
|
|
allocerr_warned = true;
|
|
}
|
|
dropped += 1;
|
|
i++;
|
|
break;
|
|
}
|
|
|
|
err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, pkts[i],
|
|
mbuf_pool);
|
|
if (unlikely(err)) {
|
|
rte_pktmbuf_free(pkts[i]);
|
|
if (!allocerr_warned) {
|
|
VHOST_LOG_DATA(ERR,
|
|
"Failed to copy desc to mbuf on %s.\n",
|
|
dev->ifname);
|
|
allocerr_warned = true;
|
|
}
|
|
dropped += 1;
|
|
i++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vq->last_avail_idx += i;
|
|
|
|
do_data_copy_dequeue(vq);
|
|
if (unlikely(i < count))
|
|
vq->shadow_used_idx = i;
|
|
if (likely(vq->shadow_used_idx)) {
|
|
flush_shadow_used_ring_split(dev, vq);
|
|
vhost_vring_call_split(dev, vq);
|
|
}
|
|
|
|
return (i - dropped);
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
vhost_reserve_avail_batch_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
struct rte_mempool *mbuf_pool,
|
|
struct rte_mbuf **pkts,
|
|
uint16_t avail_idx,
|
|
uintptr_t *desc_addrs,
|
|
uint16_t *ids)
|
|
{
|
|
bool wrap = vq->avail_wrap_counter;
|
|
struct vring_packed_desc *descs = vq->desc_packed;
|
|
struct virtio_net_hdr *hdr;
|
|
uint64_t lens[PACKED_BATCH_SIZE];
|
|
uint64_t buf_lens[PACKED_BATCH_SIZE];
|
|
uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf);
|
|
uint16_t flags, i;
|
|
|
|
if (unlikely(avail_idx & PACKED_BATCH_MASK))
|
|
return -1;
|
|
if (unlikely((avail_idx + PACKED_BATCH_SIZE) > vq->size))
|
|
return -1;
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
flags = descs[avail_idx + i].flags;
|
|
if (unlikely((wrap != !!(flags & VRING_DESC_F_AVAIL)) ||
|
|
(wrap == !!(flags & VRING_DESC_F_USED)) ||
|
|
(flags & PACKED_DESC_SINGLE_DEQUEUE_FLAG)))
|
|
return -1;
|
|
}
|
|
|
|
rte_atomic_thread_fence(__ATOMIC_ACQUIRE);
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
lens[i] = descs[avail_idx + i].len;
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
desc_addrs[i] = vhost_iova_to_vva(dev, vq,
|
|
descs[avail_idx + i].addr,
|
|
&lens[i], VHOST_ACCESS_RW);
|
|
}
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
if (unlikely(!desc_addrs[i]))
|
|
return -1;
|
|
if (unlikely((lens[i] != descs[avail_idx + i].len)))
|
|
return -1;
|
|
}
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
pkts[i] = virtio_dev_pktmbuf_alloc(dev, mbuf_pool, lens[i]);
|
|
if (!pkts[i])
|
|
goto free_buf;
|
|
}
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
buf_lens[i] = pkts[i]->buf_len - pkts[i]->data_off;
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
if (unlikely(buf_lens[i] < (lens[i] - buf_offset)))
|
|
goto free_buf;
|
|
}
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
pkts[i]->pkt_len = descs[avail_idx + i].len - buf_offset;
|
|
pkts[i]->data_len = pkts[i]->pkt_len;
|
|
ids[i] = descs[avail_idx + i].id;
|
|
}
|
|
|
|
if (virtio_net_with_host_offload(dev)) {
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE) {
|
|
hdr = (struct virtio_net_hdr *)(desc_addrs[i]);
|
|
vhost_dequeue_offload(hdr, pkts[i]);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
free_buf:
|
|
for (i = 0; i < PACKED_BATCH_SIZE; i++)
|
|
rte_pktmbuf_free(pkts[i]);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
virtio_dev_tx_batch_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
struct rte_mempool *mbuf_pool,
|
|
struct rte_mbuf **pkts)
|
|
{
|
|
uint16_t avail_idx = vq->last_avail_idx;
|
|
uint32_t buf_offset = sizeof(struct virtio_net_hdr_mrg_rxbuf);
|
|
uintptr_t desc_addrs[PACKED_BATCH_SIZE];
|
|
uint16_t ids[PACKED_BATCH_SIZE];
|
|
uint16_t i;
|
|
|
|
if (vhost_reserve_avail_batch_packed(dev, vq, mbuf_pool, pkts,
|
|
avail_idx, desc_addrs, ids))
|
|
return -1;
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
rte_prefetch0((void *)(uintptr_t)desc_addrs[i]);
|
|
|
|
vhost_for_each_try_unroll(i, 0, PACKED_BATCH_SIZE)
|
|
rte_memcpy(rte_pktmbuf_mtod_offset(pkts[i], void *, 0),
|
|
(void *)(uintptr_t)(desc_addrs[i] + buf_offset),
|
|
pkts[i]->pkt_len);
|
|
|
|
if (virtio_net_is_inorder(dev))
|
|
vhost_shadow_dequeue_batch_packed_inorder(vq,
|
|
ids[PACKED_BATCH_SIZE - 1]);
|
|
else
|
|
vhost_shadow_dequeue_batch_packed(dev, vq, ids);
|
|
|
|
vq_inc_last_avail_packed(vq, PACKED_BATCH_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
vhost_dequeue_single_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
struct rte_mempool *mbuf_pool,
|
|
struct rte_mbuf **pkts,
|
|
uint16_t *buf_id,
|
|
uint16_t *desc_count)
|
|
{
|
|
struct buf_vector buf_vec[BUF_VECTOR_MAX];
|
|
uint32_t buf_len;
|
|
uint16_t nr_vec = 0;
|
|
int err;
|
|
static bool allocerr_warned;
|
|
|
|
if (unlikely(fill_vec_buf_packed(dev, vq,
|
|
vq->last_avail_idx, desc_count,
|
|
buf_vec, &nr_vec,
|
|
buf_id, &buf_len,
|
|
VHOST_ACCESS_RO) < 0))
|
|
return -1;
|
|
|
|
*pkts = virtio_dev_pktmbuf_alloc(dev, mbuf_pool, buf_len);
|
|
if (unlikely(*pkts == NULL)) {
|
|
if (!allocerr_warned) {
|
|
VHOST_LOG_DATA(ERR,
|
|
"Failed mbuf alloc of size %d from %s on %s.\n",
|
|
buf_len, mbuf_pool->name, dev->ifname);
|
|
allocerr_warned = true;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
err = copy_desc_to_mbuf(dev, vq, buf_vec, nr_vec, *pkts,
|
|
mbuf_pool);
|
|
if (unlikely(err)) {
|
|
if (!allocerr_warned) {
|
|
VHOST_LOG_DATA(ERR,
|
|
"Failed to copy desc to mbuf on %s.\n",
|
|
dev->ifname);
|
|
allocerr_warned = true;
|
|
}
|
|
rte_pktmbuf_free(*pkts);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline int
|
|
virtio_dev_tx_single_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *vq,
|
|
struct rte_mempool *mbuf_pool,
|
|
struct rte_mbuf **pkts)
|
|
{
|
|
|
|
uint16_t buf_id, desc_count = 0;
|
|
int ret;
|
|
|
|
ret = vhost_dequeue_single_packed(dev, vq, mbuf_pool, pkts, &buf_id,
|
|
&desc_count);
|
|
|
|
if (likely(desc_count > 0)) {
|
|
if (virtio_net_is_inorder(dev))
|
|
vhost_shadow_dequeue_single_packed_inorder(vq, buf_id,
|
|
desc_count);
|
|
else
|
|
vhost_shadow_dequeue_single_packed(vq, buf_id,
|
|
desc_count);
|
|
|
|
vq_inc_last_avail_packed(vq, desc_count);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __rte_noinline uint16_t
|
|
virtio_dev_tx_packed(struct virtio_net *dev,
|
|
struct vhost_virtqueue *__rte_restrict vq,
|
|
struct rte_mempool *mbuf_pool,
|
|
struct rte_mbuf **__rte_restrict pkts,
|
|
uint32_t count)
|
|
{
|
|
uint32_t pkt_idx = 0;
|
|
uint32_t remained = count;
|
|
|
|
do {
|
|
rte_prefetch0(&vq->desc_packed[vq->last_avail_idx]);
|
|
|
|
if (remained >= PACKED_BATCH_SIZE) {
|
|
if (!virtio_dev_tx_batch_packed(dev, vq, mbuf_pool,
|
|
&pkts[pkt_idx])) {
|
|
pkt_idx += PACKED_BATCH_SIZE;
|
|
remained -= PACKED_BATCH_SIZE;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (virtio_dev_tx_single_packed(dev, vq, mbuf_pool,
|
|
&pkts[pkt_idx]))
|
|
break;
|
|
pkt_idx++;
|
|
remained--;
|
|
|
|
} while (remained);
|
|
|
|
if (vq->shadow_used_idx) {
|
|
do_data_copy_dequeue(vq);
|
|
|
|
vhost_flush_dequeue_shadow_packed(dev, vq);
|
|
vhost_vring_call_packed(dev, vq);
|
|
}
|
|
|
|
return pkt_idx;
|
|
}
|
|
|
|
uint16_t
|
|
rte_vhost_dequeue_burst(int vid, uint16_t queue_id,
|
|
struct rte_mempool *mbuf_pool, struct rte_mbuf **pkts, uint16_t count)
|
|
{
|
|
struct virtio_net *dev;
|
|
struct rte_mbuf *rarp_mbuf = NULL;
|
|
struct vhost_virtqueue *vq;
|
|
int16_t success = 1;
|
|
|
|
dev = get_device(vid);
|
|
if (!dev)
|
|
return 0;
|
|
|
|
if (unlikely(!(dev->flags & VIRTIO_DEV_BUILTIN_VIRTIO_NET))) {
|
|
VHOST_LOG_DATA(ERR,
|
|
"(%d) %s: built-in vhost net backend is disabled.\n",
|
|
dev->vid, __func__);
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(!is_valid_virt_queue_idx(queue_id, 1, dev->nr_vring))) {
|
|
VHOST_LOG_DATA(ERR,
|
|
"(%d) %s: invalid virtqueue idx %d.\n",
|
|
dev->vid, __func__, queue_id);
|
|
return 0;
|
|
}
|
|
|
|
vq = dev->virtqueue[queue_id];
|
|
|
|
if (unlikely(rte_spinlock_trylock(&vq->access_lock) == 0))
|
|
return 0;
|
|
|
|
if (unlikely(vq->enabled == 0)) {
|
|
count = 0;
|
|
goto out_access_unlock;
|
|
}
|
|
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_lock(vq);
|
|
|
|
if (unlikely(vq->access_ok == 0))
|
|
if (unlikely(vring_translate(dev, vq) < 0)) {
|
|
count = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Construct a RARP broadcast packet, and inject it to the "pkts"
|
|
* array, to looks like that guest actually send such packet.
|
|
*
|
|
* Check user_send_rarp() for more information.
|
|
*
|
|
* broadcast_rarp shares a cacheline in the virtio_net structure
|
|
* with some fields that are accessed during enqueue and
|
|
* __atomic_compare_exchange_n causes a write if performed compare
|
|
* and exchange. This could result in false sharing between enqueue
|
|
* and dequeue.
|
|
*
|
|
* Prevent unnecessary false sharing by reading broadcast_rarp first
|
|
* and only performing compare and exchange if the read indicates it
|
|
* is likely to be set.
|
|
*/
|
|
if (unlikely(__atomic_load_n(&dev->broadcast_rarp, __ATOMIC_ACQUIRE) &&
|
|
__atomic_compare_exchange_n(&dev->broadcast_rarp,
|
|
&success, 0, 0, __ATOMIC_RELEASE, __ATOMIC_RELAXED))) {
|
|
|
|
rarp_mbuf = rte_net_make_rarp_packet(mbuf_pool, &dev->mac);
|
|
if (rarp_mbuf == NULL) {
|
|
VHOST_LOG_DATA(ERR, "Failed to make RARP packet.\n");
|
|
count = 0;
|
|
goto out;
|
|
}
|
|
count -= 1;
|
|
}
|
|
|
|
if (vq_is_packed(dev))
|
|
count = virtio_dev_tx_packed(dev, vq, mbuf_pool, pkts, count);
|
|
else
|
|
count = virtio_dev_tx_split(dev, vq, mbuf_pool, pkts, count);
|
|
|
|
out:
|
|
if (dev->features & (1ULL << VIRTIO_F_IOMMU_PLATFORM))
|
|
vhost_user_iotlb_rd_unlock(vq);
|
|
|
|
out_access_unlock:
|
|
rte_spinlock_unlock(&vq->access_lock);
|
|
|
|
if (unlikely(rarp_mbuf != NULL)) {
|
|
/*
|
|
* Inject it to the head of "pkts" array, so that switch's mac
|
|
* learning table will get updated first.
|
|
*/
|
|
memmove(&pkts[1], pkts, count * sizeof(struct rte_mbuf *));
|
|
pkts[0] = rarp_mbuf;
|
|
count += 1;
|
|
}
|
|
|
|
return count;
|
|
}
|