numam-dpdk/test/test-pipeline/pipeline_hash.c
Cristian Dumitrescu 71afef2c14 apps: add mask-based hash functions
Introduce mask-based hash functions in hash_func.h.

Propagate their usage in test/test, test/test-pipeline and
examples/ip_pipeline.

Remove the non-mask-based hash function prototype from API (which
was previously used as build workaround).

Signed-off-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
2017-10-24 13:10:08 +02:00

475 lines
13 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <rte_log.h>
#include <rte_ethdev.h>
#include <rte_ether.h>
#include <rte_ip.h>
#include <rte_byteorder.h>
#include <rte_port_ring.h>
#include <rte_table_hash.h>
#include <rte_hash.h>
#include <rte_pipeline.h>
#include "main.h"
static void
translate_options(uint32_t *special, uint32_t *ext, uint32_t *key_size)
{
switch (app.pipeline_type) {
case e_APP_PIPELINE_HASH_KEY8_EXT:
*special = 0; *ext = 1; *key_size = 8; return;
case e_APP_PIPELINE_HASH_KEY8_LRU:
*special = 0; *ext = 0; *key_size = 8; return;
case e_APP_PIPELINE_HASH_KEY16_EXT:
*special = 0; *ext = 1; *key_size = 16; return;
case e_APP_PIPELINE_HASH_KEY16_LRU:
*special = 0; *ext = 0; *key_size = 16; return;
case e_APP_PIPELINE_HASH_KEY32_EXT:
*special = 0; *ext = 1; *key_size = 32; return;
case e_APP_PIPELINE_HASH_KEY32_LRU:
*special = 0; *ext = 0; *key_size = 32; return;
case e_APP_PIPELINE_HASH_SPEC_KEY8_EXT:
*special = 1; *ext = 1; *key_size = 8; return;
case e_APP_PIPELINE_HASH_SPEC_KEY8_LRU:
*special = 1; *ext = 0; *key_size = 8; return;
case e_APP_PIPELINE_HASH_SPEC_KEY16_EXT:
*special = 1; *ext = 1; *key_size = 16; return;
case e_APP_PIPELINE_HASH_SPEC_KEY16_LRU:
*special = 1; *ext = 0; *key_size = 16; return;
case e_APP_PIPELINE_HASH_SPEC_KEY32_EXT:
*special = 1; *ext = 1; *key_size = 32; return;
case e_APP_PIPELINE_HASH_SPEC_KEY32_LRU:
*special = 1; *ext = 0; *key_size = 32; return;
case e_APP_PIPELINE_HASH_CUCKOO_KEY8:
*special = 0; *ext = 0; *key_size = 8; return;
case e_APP_PIPELINE_HASH_CUCKOO_KEY16:
*special = 0; *ext = 0; *key_size = 16; return;
case e_APP_PIPELINE_HASH_CUCKOO_KEY32:
*special = 0; *ext = 0; *key_size = 32; return;
case e_APP_PIPELINE_HASH_CUCKOO_KEY48:
*special = 0; *ext = 0; *key_size = 48; return;
case e_APP_PIPELINE_HASH_CUCKOO_KEY64:
*special = 0; *ext = 0; *key_size = 64; return;
case e_APP_PIPELINE_HASH_CUCKOO_KEY80:
*special = 0; *ext = 0; *key_size = 80; return;
case e_APP_PIPELINE_HASH_CUCKOO_KEY96:
*special = 0; *ext = 0; *key_size = 96; return;
case e_APP_PIPELINE_HASH_CUCKOO_KEY112:
*special = 0; *ext = 0; *key_size = 112; return;
case e_APP_PIPELINE_HASH_CUCKOO_KEY128:
*special = 0; *ext = 0; *key_size = 128; return;
default:
rte_panic("Invalid hash table type or key size\n");
}
}
void
app_main_loop_worker_pipeline_hash(void) {
struct rte_pipeline_params pipeline_params = {
.name = "pipeline",
.socket_id = rte_socket_id(),
};
struct rte_pipeline *p;
uint32_t port_in_id[APP_MAX_PORTS];
uint32_t port_out_id[APP_MAX_PORTS];
uint32_t table_id;
uint32_t i;
uint32_t special, ext, key_size;
translate_options(&special, &ext, &key_size);
RTE_LOG(INFO, USER1, "Core %u is doing work "
"(pipeline with hash table, %s, %s, %d-byte key)\n",
rte_lcore_id(),
special ? "specialized" : "non-specialized",
ext ? "extendible bucket" : "LRU",
key_size);
/* Pipeline configuration */
p = rte_pipeline_create(&pipeline_params);
if (p == NULL)
rte_panic("Unable to configure the pipeline\n");
/* Input port configuration */
for (i = 0; i < app.n_ports; i++) {
struct rte_port_ring_reader_params port_ring_params = {
.ring = app.rings_rx[i],
};
struct rte_pipeline_port_in_params port_params = {
.ops = &rte_port_ring_reader_ops,
.arg_create = (void *) &port_ring_params,
.f_action = NULL,
.arg_ah = NULL,
.burst_size = app.burst_size_worker_read,
};
if (rte_pipeline_port_in_create(p, &port_params,
&port_in_id[i]))
rte_panic("Unable to configure input port for "
"ring %d\n", i);
}
/* Output port configuration */
for (i = 0; i < app.n_ports; i++) {
struct rte_port_ring_writer_params port_ring_params = {
.ring = app.rings_tx[i],
.tx_burst_sz = app.burst_size_worker_write,
};
struct rte_pipeline_port_out_params port_params = {
.ops = &rte_port_ring_writer_ops,
.arg_create = (void *) &port_ring_params,
.f_action = NULL,
.arg_ah = NULL,
};
if (rte_pipeline_port_out_create(p, &port_params,
&port_out_id[i]))
rte_panic("Unable to configure output port for "
"ring %d\n", i);
}
struct rte_table_hash_params table_hash_params = {
.name = "TABLE",
.key_size = key_size,
.key_offset = APP_METADATA_OFFSET(32),
.key_mask = NULL,
.n_keys = 1 << 24,
.n_buckets = 1 << 22,
.f_hash = test_hash,
.seed = 0,
};
/* Table configuration */
switch (app.pipeline_type) {
case e_APP_PIPELINE_HASH_KEY8_EXT:
case e_APP_PIPELINE_HASH_KEY16_EXT:
case e_APP_PIPELINE_HASH_KEY32_EXT:
{
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_ext_ops,
.arg_create = &table_hash_params,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
if (rte_pipeline_table_create(p, &table_params, &table_id))
rte_panic("Unable to configure the hash table\n");
}
break;
case e_APP_PIPELINE_HASH_KEY8_LRU:
case e_APP_PIPELINE_HASH_KEY16_LRU:
case e_APP_PIPELINE_HASH_KEY32_LRU:
{
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_lru_ops,
.arg_create = &table_hash_params,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
if (rte_pipeline_table_create(p, &table_params, &table_id))
rte_panic("Unable to configure the hash table\n");
}
break;
case e_APP_PIPELINE_HASH_SPEC_KEY8_EXT:
{
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_key8_ext_ops,
.arg_create = &table_hash_params,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
if (rte_pipeline_table_create(p, &table_params, &table_id))
rte_panic("Unable to configure the hash table\n");
}
break;
case e_APP_PIPELINE_HASH_SPEC_KEY8_LRU:
{
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_key8_lru_ops,
.arg_create = &table_hash_params,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
if (rte_pipeline_table_create(p, &table_params, &table_id))
rte_panic("Unable to configure the hash table\n");
}
break;
case e_APP_PIPELINE_HASH_SPEC_KEY16_EXT:
{
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_key16_ext_ops,
.arg_create = &table_hash_params,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
if (rte_pipeline_table_create(p, &table_params, &table_id))
rte_panic("Unable to configure the hash table)\n");
}
break;
case e_APP_PIPELINE_HASH_SPEC_KEY16_LRU:
{
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_key16_lru_ops,
.arg_create = &table_hash_params,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
if (rte_pipeline_table_create(p, &table_params, &table_id))
rte_panic("Unable to configure the hash table\n");
}
break;
case e_APP_PIPELINE_HASH_SPEC_KEY32_EXT:
{
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_key32_ext_ops,
.arg_create = &table_hash_params,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
if (rte_pipeline_table_create(p, &table_params, &table_id))
rte_panic("Unable to configure the hash table\n");
}
break;
case e_APP_PIPELINE_HASH_SPEC_KEY32_LRU:
{
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_key32_lru_ops,
.arg_create = &table_hash_params,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
if (rte_pipeline_table_create(p, &table_params, &table_id))
rte_panic("Unable to configure the hash table\n");
}
break;
case e_APP_PIPELINE_HASH_CUCKOO_KEY8:
case e_APP_PIPELINE_HASH_CUCKOO_KEY16:
case e_APP_PIPELINE_HASH_CUCKOO_KEY32:
case e_APP_PIPELINE_HASH_CUCKOO_KEY48:
case e_APP_PIPELINE_HASH_CUCKOO_KEY64:
case e_APP_PIPELINE_HASH_CUCKOO_KEY80:
case e_APP_PIPELINE_HASH_CUCKOO_KEY96:
case e_APP_PIPELINE_HASH_CUCKOO_KEY112:
case e_APP_PIPELINE_HASH_CUCKOO_KEY128:
{
struct rte_pipeline_table_params table_params = {
.ops = &rte_table_hash_cuckoo_ops,
.arg_create = &table_hash_params,
.f_action_hit = NULL,
.f_action_miss = NULL,
.arg_ah = NULL,
.action_data_size = 0,
};
if (rte_pipeline_table_create(p, &table_params, &table_id))
rte_panic("Unable to configure the hash table\n");
}
break;
default:
rte_panic("Invalid hash table type or key size\n");
}
/* Interconnecting ports and tables */
for (i = 0; i < app.n_ports; i++)
if (rte_pipeline_port_in_connect_to_table(p, port_in_id[i],
table_id))
rte_panic("Unable to connect input port %u to "
"table %u\n", port_in_id[i], table_id);
/* Add entries to tables */
for (i = 0; i < (1 << 24); i++) {
struct rte_pipeline_table_entry entry = {
.action = RTE_PIPELINE_ACTION_PORT,
{.port_id = port_out_id[i & (app.n_ports - 1)]},
};
struct rte_pipeline_table_entry *entry_ptr;
uint8_t key[32];
uint32_t *k32 = (uint32_t *) key;
int key_found, status;
memset(key, 0, sizeof(key));
k32[0] = rte_be_to_cpu_32(i);
status = rte_pipeline_table_entry_add(p, table_id, key, &entry,
&key_found, &entry_ptr);
if (status < 0)
rte_panic("Unable to add entry to table %u (%d)\n",
table_id, status);
}
/* Enable input ports */
for (i = 0; i < app.n_ports; i++)
if (rte_pipeline_port_in_enable(p, port_in_id[i]))
rte_panic("Unable to enable input port %u\n",
port_in_id[i]);
/* Check pipeline consistency */
if (rte_pipeline_check(p) < 0)
rte_panic("Pipeline consistency check failed\n");
/* Run-time */
#if APP_FLUSH == 0
for ( ; ; )
rte_pipeline_run(p);
#else
for (i = 0; ; i++) {
rte_pipeline_run(p);
if ((i & APP_FLUSH) == 0)
rte_pipeline_flush(p);
}
#endif
}
uint64_t test_hash(
void *key,
__attribute__((unused)) void *key_mask,
__attribute__((unused)) uint32_t key_size,
__attribute__((unused)) uint64_t seed)
{
uint32_t *k32 = key;
uint32_t ip_dst = rte_be_to_cpu_32(k32[0]);
uint64_t signature = (ip_dst >> 2) | ((ip_dst & 0x3) << 30);
return signature;
}
void
app_main_loop_rx_metadata(void) {
uint32_t i, j;
int ret;
RTE_LOG(INFO, USER1, "Core %u is doing RX (with meta-data)\n",
rte_lcore_id());
for (i = 0; ; i = ((i + 1) & (app.n_ports - 1))) {
uint16_t n_mbufs;
n_mbufs = rte_eth_rx_burst(
app.ports[i],
0,
app.mbuf_rx.array,
app.burst_size_rx_read);
if (n_mbufs == 0)
continue;
for (j = 0; j < n_mbufs; j++) {
struct rte_mbuf *m;
uint8_t *m_data, *key;
struct ipv4_hdr *ip_hdr;
struct ipv6_hdr *ipv6_hdr;
uint32_t ip_dst;
uint8_t *ipv6_dst;
uint32_t *signature, *k32;
m = app.mbuf_rx.array[j];
m_data = rte_pktmbuf_mtod(m, uint8_t *);
signature = RTE_MBUF_METADATA_UINT32_PTR(m,
APP_METADATA_OFFSET(0));
key = RTE_MBUF_METADATA_UINT8_PTR(m,
APP_METADATA_OFFSET(32));
if (RTE_ETH_IS_IPV4_HDR(m->packet_type)) {
ip_hdr = (struct ipv4_hdr *)
&m_data[sizeof(struct ether_hdr)];
ip_dst = ip_hdr->dst_addr;
k32 = (uint32_t *) key;
k32[0] = ip_dst & 0xFFFFFF00;
} else if (RTE_ETH_IS_IPV6_HDR(m->packet_type)) {
ipv6_hdr = (struct ipv6_hdr *)
&m_data[sizeof(struct ether_hdr)];
ipv6_dst = ipv6_hdr->dst_addr;
memcpy(key, ipv6_dst, 16);
} else
continue;
*signature = test_hash(key, NULL, 0, 0);
}
do {
ret = rte_ring_sp_enqueue_bulk(
app.rings_rx[i],
(void **) app.mbuf_rx.array,
n_mbufs,
NULL);
} while (ret == 0);
}
}