Thomas Monjalon bfa9a8a460 mbuf: rename data address helpers to IOVA
The following inline functions and macros have been renamed to be
consistent with the IOVA wording:

rte_mbuf_data_dma_addr         -> rte_mbuf_data_iova
rte_mbuf_data_dma_addr_default -> rte_mbuf_data_iova_default
rte_pktmbuf_mtophys            -> rte_pktmbuf_iova
rte_pktmbuf_mtophys_offset     -> rte_pktmbuf_iova_offset

The deprecated functions and macros are kept to avoid breaking the API.

Signed-off-by: Thomas Monjalon <thomas@monjalon.net>
Acked-by: Olivier Matz <olivier.matz@6wind.com>
2017-11-06 22:44:26 +01:00

1386 lines
33 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) 2016-2017 Solarflare Communications Inc.
* All rights reserved.
*
* This software was jointly developed between OKTET Labs (under contract
* for Solarflare) and Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_mempool.h>
#include "efx.h"
#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_ev.h"
#include "sfc_rx.h"
#include "sfc_kvargs.h"
#include "sfc_tweak.h"
/*
* Maximum number of Rx queue flush attempt in the case of failure or
* flush timeout
*/
#define SFC_RX_QFLUSH_ATTEMPTS (3)
/*
* Time to wait between event queue polling attempts when waiting for Rx
* queue flush done or failed events.
*/
#define SFC_RX_QFLUSH_POLL_WAIT_MS (1)
/*
* Maximum number of event queue polling attempts when waiting for Rx queue
* flush done or failed events. It defines Rx queue flush attempt timeout
* together with SFC_RX_QFLUSH_POLL_WAIT_MS.
*/
#define SFC_RX_QFLUSH_POLL_ATTEMPTS (2000)
void
sfc_rx_qflush_done(struct sfc_rxq *rxq)
{
rxq->state |= SFC_RXQ_FLUSHED;
rxq->state &= ~SFC_RXQ_FLUSHING;
}
void
sfc_rx_qflush_failed(struct sfc_rxq *rxq)
{
rxq->state |= SFC_RXQ_FLUSH_FAILED;
rxq->state &= ~SFC_RXQ_FLUSHING;
}
static void
sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
{
unsigned int free_space;
unsigned int bulks;
void *objs[SFC_RX_REFILL_BULK];
efsys_dma_addr_t addr[RTE_DIM(objs)];
unsigned int added = rxq->added;
unsigned int id;
unsigned int i;
struct sfc_efx_rx_sw_desc *rxd;
struct rte_mbuf *m;
uint16_t port_id = rxq->dp.dpq.port_id;
free_space = EFX_RXQ_LIMIT(rxq->ptr_mask + 1) -
(added - rxq->completed);
if (free_space < rxq->refill_threshold)
return;
bulks = free_space / RTE_DIM(objs);
/* refill_threshold guarantees that bulks is positive */
SFC_ASSERT(bulks > 0);
id = added & rxq->ptr_mask;
do {
if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
RTE_DIM(objs)) < 0)) {
/*
* It is hardly a safe way to increment counter
* from different contexts, but all PMDs do it.
*/
rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
RTE_DIM(objs);
/* Return if we have posted nothing yet */
if (added == rxq->added)
return;
/* Push posted */
break;
}
for (i = 0; i < RTE_DIM(objs);
++i, id = (id + 1) & rxq->ptr_mask) {
m = objs[i];
rxd = &rxq->sw_desc[id];
rxd->mbuf = m;
SFC_ASSERT(rte_mbuf_refcnt_read(m) == 1);
m->data_off = RTE_PKTMBUF_HEADROOM;
SFC_ASSERT(m->next == NULL);
SFC_ASSERT(m->nb_segs == 1);
m->port = port_id;
addr[i] = rte_pktmbuf_iova(m);
}
efx_rx_qpost(rxq->common, addr, rxq->buf_size,
RTE_DIM(objs), rxq->completed, added);
added += RTE_DIM(objs);
} while (--bulks > 0);
SFC_ASSERT(added != rxq->added);
rxq->added = added;
efx_rx_qpush(rxq->common, added, &rxq->pushed);
}
static uint64_t
sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
{
uint64_t mbuf_flags = 0;
switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
break;
case EFX_PKT_IPV4:
mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
break;
default:
RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
PKT_RX_IP_CKSUM_UNKNOWN);
break;
}
switch ((desc_flags &
(EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
break;
case EFX_PKT_TCP:
case EFX_PKT_UDP:
mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
break;
default:
RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
PKT_RX_L4_CKSUM_UNKNOWN);
break;
}
return mbuf_flags;
}
static uint32_t
sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
{
return RTE_PTYPE_L2_ETHER |
((desc_flags & EFX_PKT_IPV4) ?
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
((desc_flags & EFX_PKT_IPV6) ?
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
}
static const uint32_t *
sfc_efx_supported_ptypes_get(void)
{
static const uint32_t ptypes[] = {
RTE_PTYPE_L2_ETHER,
RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
RTE_PTYPE_L4_TCP,
RTE_PTYPE_L4_UDP,
RTE_PTYPE_UNKNOWN
};
return ptypes;
}
#if EFSYS_OPT_RX_SCALE
static void
sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
struct rte_mbuf *m)
{
uint8_t *mbuf_data;
if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
return;
mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
EFX_RX_HASHALG_TOEPLITZ,
mbuf_data);
m->ol_flags |= PKT_RX_RSS_HASH;
}
}
#else
static void
sfc_efx_rx_set_rss_hash(__rte_unused struct sfc_efx_rxq *rxq,
__rte_unused unsigned int flags,
__rte_unused struct rte_mbuf *m)
{
}
#endif
static uint16_t
sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
{
struct sfc_dp_rxq *dp_rxq = rx_queue;
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
unsigned int completed;
unsigned int prefix_size = rxq->prefix_size;
unsigned int done_pkts = 0;
boolean_t discard_next = B_FALSE;
struct rte_mbuf *scatter_pkt = NULL;
if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
return 0;
sfc_ev_qpoll(rxq->evq);
completed = rxq->completed;
while (completed != rxq->pending && done_pkts < nb_pkts) {
unsigned int id;
struct sfc_efx_rx_sw_desc *rxd;
struct rte_mbuf *m;
unsigned int seg_len;
unsigned int desc_flags;
id = completed++ & rxq->ptr_mask;
rxd = &rxq->sw_desc[id];
m = rxd->mbuf;
desc_flags = rxd->flags;
if (discard_next)
goto discard;
if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
goto discard;
if (desc_flags & EFX_PKT_PREFIX_LEN) {
uint16_t tmp_size;
int rc __rte_unused;
rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
SFC_ASSERT(rc == 0);
seg_len = tmp_size;
} else {
seg_len = rxd->size - prefix_size;
}
rte_pktmbuf_data_len(m) = seg_len;
rte_pktmbuf_pkt_len(m) = seg_len;
if (scatter_pkt != NULL) {
if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
rte_pktmbuf_free(scatter_pkt);
goto discard;
}
/* The packet to deliver */
m = scatter_pkt;
}
if (desc_flags & EFX_PKT_CONT) {
/* The packet is scattered, more fragments to come */
scatter_pkt = m;
/* Further fragments have no prefix */
prefix_size = 0;
continue;
}
/* Scattered packet is done */
scatter_pkt = NULL;
/* The first fragment of the packet has prefix */
prefix_size = rxq->prefix_size;
m->ol_flags =
sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
m->packet_type =
sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
/*
* Extract RSS hash from the packet prefix and
* set the corresponding field (if needed and possible)
*/
sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
m->data_off += prefix_size;
*rx_pkts++ = m;
done_pkts++;
continue;
discard:
discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
rte_mempool_put(rxq->refill_mb_pool, m);
rxd->mbuf = NULL;
}
/* pending is only moved when entire packet is received */
SFC_ASSERT(scatter_pkt == NULL);
rxq->completed = completed;
sfc_efx_rx_qrefill(rxq);
return done_pkts;
}
static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
static unsigned int
sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
return 0;
sfc_ev_qpoll(rxq->evq);
return rxq->pending - rxq->completed;
}
static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
static int
sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
if (unlikely(offset > rxq->ptr_mask))
return -EINVAL;
/*
* Poll EvQ to derive up-to-date 'rxq->pending' figure;
* it is required for the queue to be running, but the
* check is omitted because API design assumes that it
* is the duty of the caller to satisfy all conditions
*/
SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
SFC_EFX_RXQ_FLAG_RUNNING);
sfc_ev_qpoll(rxq->evq);
/*
* There is a handful of reserved entries in the ring,
* but an explicit check whether the offset points to
* a reserved entry is neglected since the two checks
* below rely on the figures which take the HW limits
* into account and thus if an entry is reserved, the
* checks will fail and UNAVAIL code will be returned
*/
if (offset < (rxq->pending - rxq->completed))
return RTE_ETH_RX_DESC_DONE;
if (offset < (rxq->added - rxq->completed))
return RTE_ETH_RX_DESC_AVAIL;
return RTE_ETH_RX_DESC_UNAVAIL;
}
struct sfc_rxq *
sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
{
const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
struct rte_eth_dev *eth_dev;
struct sfc_adapter *sa;
struct sfc_rxq *rxq;
SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
eth_dev = &rte_eth_devices[dpq->port_id];
sa = eth_dev->data->dev_private;
SFC_ASSERT(dpq->queue_id < sa->rxq_count);
rxq = sa->rxq_info[dpq->queue_id].rxq;
SFC_ASSERT(rxq != NULL);
return rxq;
}
static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
static int
sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
const struct rte_pci_addr *pci_addr, int socket_id,
const struct sfc_dp_rx_qcreate_info *info,
struct sfc_dp_rxq **dp_rxqp)
{
struct sfc_efx_rxq *rxq;
int rc;
rc = ENOMEM;
rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq == NULL)
goto fail_rxq_alloc;
sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
rc = ENOMEM;
rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
info->rxq_entries,
sizeof(*rxq->sw_desc),
RTE_CACHE_LINE_SIZE, socket_id);
if (rxq->sw_desc == NULL)
goto fail_desc_alloc;
/* efx datapath is bound to efx control path */
rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
rxq->ptr_mask = info->rxq_entries - 1;
rxq->batch_max = info->batch_max;
rxq->prefix_size = info->prefix_size;
rxq->refill_threshold = info->refill_threshold;
rxq->buf_size = info->buf_size;
rxq->refill_mb_pool = info->refill_mb_pool;
*dp_rxqp = &rxq->dp;
return 0;
fail_desc_alloc:
rte_free(rxq);
fail_rxq_alloc:
return rc;
}
static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
static void
sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
rte_free(rxq->sw_desc);
rte_free(rxq);
}
static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
static int
sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
__rte_unused unsigned int evq_read_ptr)
{
/* libefx-based datapath is specific to libefx-based PMD */
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
rxq->common = crxq->common;
rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
sfc_efx_rx_qrefill(rxq);
rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
return 0;
}
static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
static void
sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
__rte_unused unsigned int *evq_read_ptr)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
/* libefx-based datapath is bound to libefx-based PMD and uses
* event queue structure directly. So, there is no necessity to
* return EvQ read pointer.
*/
}
static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
static void
sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
{
struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
unsigned int i;
struct sfc_efx_rx_sw_desc *rxd;
for (i = rxq->completed; i != rxq->added; ++i) {
rxd = &rxq->sw_desc[i & rxq->ptr_mask];
rte_mempool_put(rxq->refill_mb_pool, rxd->mbuf);
rxd->mbuf = NULL;
/* Packed stream relies on 0 in inactive SW desc.
* Rx queue stop is not performance critical, so
* there is no harm to do it always.
*/
rxd->flags = 0;
rxd->size = 0;
}
rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
}
struct sfc_dp_rx sfc_efx_rx = {
.dp = {
.name = SFC_KVARG_DATAPATH_EFX,
.type = SFC_DP_RX,
.hw_fw_caps = 0,
},
.features = SFC_DP_RX_FEAT_SCATTER,
.qcreate = sfc_efx_rx_qcreate,
.qdestroy = sfc_efx_rx_qdestroy,
.qstart = sfc_efx_rx_qstart,
.qstop = sfc_efx_rx_qstop,
.qpurge = sfc_efx_rx_qpurge,
.supported_ptypes_get = sfc_efx_supported_ptypes_get,
.qdesc_npending = sfc_efx_rx_qdesc_npending,
.qdesc_status = sfc_efx_rx_qdesc_status,
.pkt_burst = sfc_efx_recv_pkts,
};
unsigned int
sfc_rx_qdesc_npending(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq *rxq;
SFC_ASSERT(sw_index < sa->rxq_count);
rxq = sa->rxq_info[sw_index].rxq;
if (rxq == NULL || (rxq->state & SFC_RXQ_STARTED) == 0)
return 0;
return sa->dp_rx->qdesc_npending(rxq->dp);
}
int
sfc_rx_qdesc_done(struct sfc_dp_rxq *dp_rxq, unsigned int offset)
{
struct sfc_rxq *rxq = sfc_rxq_by_dp_rxq(dp_rxq);
return offset < rxq->evq->sa->dp_rx->qdesc_npending(dp_rxq);
}
static void
sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq *rxq;
unsigned int retry_count;
unsigned int wait_count;
int rc;
rxq = sa->rxq_info[sw_index].rxq;
SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
/*
* Retry Rx queue flushing in the case of flush failed or
* timeout. In the worst case it can delay for 6 seconds.
*/
for (retry_count = 0;
((rxq->state & SFC_RXQ_FLUSHED) == 0) &&
(retry_count < SFC_RX_QFLUSH_ATTEMPTS);
++retry_count) {
rc = efx_rx_qflush(rxq->common);
if (rc != 0) {
rxq->state |= (rc == EALREADY) ?
SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
break;
}
rxq->state &= ~SFC_RXQ_FLUSH_FAILED;
rxq->state |= SFC_RXQ_FLUSHING;
/*
* Wait for Rx queue flush done or failed event at least
* SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
* than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
* by SFC_RX_QFLUSH_POLL_ATTEMPTS).
*/
wait_count = 0;
do {
rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
sfc_ev_qpoll(rxq->evq);
} while ((rxq->state & SFC_RXQ_FLUSHING) &&
(wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
if (rxq->state & SFC_RXQ_FLUSHING)
sfc_err(sa, "RxQ %u flush timed out", sw_index);
if (rxq->state & SFC_RXQ_FLUSH_FAILED)
sfc_err(sa, "RxQ %u flush failed", sw_index);
if (rxq->state & SFC_RXQ_FLUSHED)
sfc_info(sa, "RxQ %u flushed", sw_index);
}
sa->dp_rx->qpurge(rxq->dp);
}
static int
sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
{
boolean_t rss = (sa->rss_channels > 0) ? B_TRUE : B_FALSE;
struct sfc_port *port = &sa->port;
int rc;
/*
* If promiscuous or all-multicast mode has been requested, setting
* filter for the default Rx queue might fail, in particular, while
* running over PCI function which is not a member of corresponding
* privilege groups; if this occurs, few iterations will be made to
* repeat this step without promiscuous and all-multicast flags set
*/
retry:
rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, rss);
if (rc == 0)
return 0;
else if (rc != EOPNOTSUPP)
return rc;
if (port->promisc) {
sfc_warn(sa, "promiscuous mode has been requested, "
"but the HW rejects it");
sfc_warn(sa, "promiscuous mode will be disabled");
port->promisc = B_FALSE;
rc = sfc_set_rx_mode(sa);
if (rc != 0)
return rc;
goto retry;
}
if (port->allmulti) {
sfc_warn(sa, "all-multicast mode has been requested, "
"but the HW rejects it");
sfc_warn(sa, "all-multicast mode will be disabled");
port->allmulti = B_FALSE;
rc = sfc_set_rx_mode(sa);
if (rc != 0)
return rc;
goto retry;
}
return rc;
}
int
sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_port *port = &sa->port;
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
struct sfc_evq *evq;
int rc;
sfc_log_init(sa, "sw_index=%u", sw_index);
SFC_ASSERT(sw_index < sa->rxq_count);
rxq_info = &sa->rxq_info[sw_index];
rxq = rxq_info->rxq;
SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
evq = rxq->evq;
rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
if (rc != 0)
goto fail_ev_qstart;
rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
&rxq->mem, rxq_info->entries,
0 /* not used on EF10 */, evq->common,
&rxq->common);
if (rc != 0)
goto fail_rx_qcreate;
efx_rx_qenable(rxq->common);
rc = sa->dp_rx->qstart(rxq->dp, evq->read_ptr);
if (rc != 0)
goto fail_dp_qstart;
rxq->state |= SFC_RXQ_STARTED;
if ((sw_index == 0) && !port->isolated) {
rc = sfc_rx_default_rxq_set_filter(sa, rxq);
if (rc != 0)
goto fail_mac_filter_default_rxq_set;
}
/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
sa->eth_dev->data->rx_queue_state[sw_index] =
RTE_ETH_QUEUE_STATE_STARTED;
return 0;
fail_mac_filter_default_rxq_set:
sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
fail_dp_qstart:
sfc_rx_qflush(sa, sw_index);
fail_rx_qcreate:
sfc_ev_qstop(evq);
fail_ev_qstart:
return rc;
}
void
sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
sfc_log_init(sa, "sw_index=%u", sw_index);
SFC_ASSERT(sw_index < sa->rxq_count);
rxq_info = &sa->rxq_info[sw_index];
rxq = rxq_info->rxq;
if (rxq->state == SFC_RXQ_INITIALIZED)
return;
SFC_ASSERT(rxq->state & SFC_RXQ_STARTED);
/* It seems to be used by DPDK for debug purposes only ('rte_ether') */
sa->eth_dev->data->rx_queue_state[sw_index] =
RTE_ETH_QUEUE_STATE_STOPPED;
sa->dp_rx->qstop(rxq->dp, &rxq->evq->read_ptr);
if (sw_index == 0)
efx_mac_filter_default_rxq_clear(sa->nic);
sfc_rx_qflush(sa, sw_index);
rxq->state = SFC_RXQ_INITIALIZED;
efx_rx_qdestroy(rxq->common);
sfc_ev_qstop(rxq->evq);
}
static int
sfc_rx_qcheck_conf(struct sfc_adapter *sa, uint16_t nb_rx_desc,
const struct rte_eth_rxconf *rx_conf)
{
const uint16_t rx_free_thresh_max = EFX_RXQ_LIMIT(nb_rx_desc);
int rc = 0;
if (rx_conf->rx_thresh.pthresh != 0 ||
rx_conf->rx_thresh.hthresh != 0 ||
rx_conf->rx_thresh.wthresh != 0) {
sfc_err(sa,
"RxQ prefetch/host/writeback thresholds are not supported");
rc = EINVAL;
}
if (rx_conf->rx_free_thresh > rx_free_thresh_max) {
sfc_err(sa,
"RxQ free threshold too large: %u vs maximum %u",
rx_conf->rx_free_thresh, rx_free_thresh_max);
rc = EINVAL;
}
if (rx_conf->rx_drop_en == 0) {
sfc_err(sa, "RxQ drop disable is not supported");
rc = EINVAL;
}
return rc;
}
static unsigned int
sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
{
uint32_t data_off;
uint32_t order;
/* The mbuf object itself is always cache line aligned */
order = rte_bsf32(RTE_CACHE_LINE_SIZE);
/* Data offset from mbuf object start */
data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
RTE_PKTMBUF_HEADROOM;
order = MIN(order, rte_bsf32(data_off));
return 1u << (order - 1);
}
static uint16_t
sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
uint16_t buf_size;
unsigned int buf_aligned;
unsigned int start_alignment;
unsigned int end_padding_alignment;
/* Below it is assumed that both alignments are power of 2 */
SFC_ASSERT(rte_is_power_of_2(nic_align_start));
SFC_ASSERT(rte_is_power_of_2(nic_align_end));
/*
* mbuf is always cache line aligned, double-check
* that it meets rx buffer start alignment requirements.
*/
/* Start from mbuf pool data room size */
buf_size = rte_pktmbuf_data_room_size(mb_pool);
/* Remove headroom */
if (buf_size <= RTE_PKTMBUF_HEADROOM) {
sfc_err(sa,
"RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
return 0;
}
buf_size -= RTE_PKTMBUF_HEADROOM;
/* Calculate guaranteed data start alignment */
buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
/* Reserve space for start alignment */
if (buf_aligned < nic_align_start) {
start_alignment = nic_align_start - buf_aligned;
if (buf_size <= start_alignment) {
sfc_err(sa,
"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
mb_pool->name,
rte_pktmbuf_data_room_size(mb_pool),
RTE_PKTMBUF_HEADROOM, start_alignment);
return 0;
}
buf_aligned = nic_align_start;
buf_size -= start_alignment;
} else {
start_alignment = 0;
}
/* Make sure that end padding does not write beyond the buffer */
if (buf_aligned < nic_align_end) {
/*
* Estimate space which can be lost. If guarnteed buffer
* size is odd, lost space is (nic_align_end - 1). More
* accurate formula is below.
*/
end_padding_alignment = nic_align_end -
MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
if (buf_size <= end_padding_alignment) {
sfc_err(sa,
"RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
mb_pool->name,
rte_pktmbuf_data_room_size(mb_pool),
RTE_PKTMBUF_HEADROOM, start_alignment,
end_padding_alignment);
return 0;
}
buf_size -= end_padding_alignment;
} else {
/*
* Start is aligned the same or better than end,
* just align length.
*/
buf_size = P2ALIGN(buf_size, nic_align_end);
}
return buf_size;
}
int
sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
uint16_t nb_rx_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mb_pool)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
int rc;
uint16_t buf_size;
struct sfc_rxq_info *rxq_info;
struct sfc_evq *evq;
struct sfc_rxq *rxq;
struct sfc_dp_rx_qcreate_info info;
rc = sfc_rx_qcheck_conf(sa, nb_rx_desc, rx_conf);
if (rc != 0)
goto fail_bad_conf;
buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
if (buf_size == 0) {
sfc_err(sa, "RxQ %u mbuf pool object size is too small",
sw_index);
rc = EINVAL;
goto fail_bad_conf;
}
if ((buf_size < sa->port.pdu + encp->enc_rx_prefix_size) &&
!sa->eth_dev->data->dev_conf.rxmode.enable_scatter) {
sfc_err(sa, "Rx scatter is disabled and RxQ %u mbuf pool "
"object size is too small", sw_index);
sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
"PDU size %u plus Rx prefix %u bytes",
sw_index, buf_size, (unsigned int)sa->port.pdu,
encp->enc_rx_prefix_size);
rc = EINVAL;
goto fail_bad_conf;
}
SFC_ASSERT(sw_index < sa->rxq_count);
rxq_info = &sa->rxq_info[sw_index];
SFC_ASSERT(nb_rx_desc <= rxq_info->max_entries);
rxq_info->entries = nb_rx_desc;
rxq_info->type =
sa->eth_dev->data->dev_conf.rxmode.enable_scatter ?
EFX_RXQ_TYPE_SCATTER : EFX_RXQ_TYPE_DEFAULT;
rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
rxq_info->entries, socket_id, &evq);
if (rc != 0)
goto fail_ev_qinit;
rc = ENOMEM;
rxq = rte_zmalloc_socket("sfc-rxq", sizeof(*rxq), RTE_CACHE_LINE_SIZE,
socket_id);
if (rxq == NULL)
goto fail_rxq_alloc;
rxq_info->rxq = rxq;
rxq->evq = evq;
rxq->hw_index = sw_index;
rxq->refill_threshold =
RTE_MAX(rx_conf->rx_free_thresh, SFC_RX_REFILL_BULK);
rxq->refill_mb_pool = mb_pool;
rc = sfc_dma_alloc(sa, "rxq", sw_index, EFX_RXQ_SIZE(rxq_info->entries),
socket_id, &rxq->mem);
if (rc != 0)
goto fail_dma_alloc;
memset(&info, 0, sizeof(info));
info.refill_mb_pool = rxq->refill_mb_pool;
info.refill_threshold = rxq->refill_threshold;
info.buf_size = buf_size;
info.batch_max = encp->enc_rx_batch_max;
info.prefix_size = encp->enc_rx_prefix_size;
#if EFSYS_OPT_RX_SCALE
if (sa->hash_support == EFX_RX_HASH_AVAILABLE && sa->rss_channels > 0)
info.flags |= SFC_RXQ_FLAG_RSS_HASH;
#endif
info.rxq_entries = rxq_info->entries;
info.rxq_hw_ring = rxq->mem.esm_base;
info.evq_entries = rxq_info->entries;
info.evq_hw_ring = evq->mem.esm_base;
info.hw_index = rxq->hw_index;
info.mem_bar = sa->mem_bar.esb_base;
rc = sa->dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
&RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
socket_id, &info, &rxq->dp);
if (rc != 0)
goto fail_dp_rx_qcreate;
evq->dp_rxq = rxq->dp;
rxq->state = SFC_RXQ_INITIALIZED;
rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
return 0;
fail_dp_rx_qcreate:
sfc_dma_free(sa, &rxq->mem);
fail_dma_alloc:
rxq_info->rxq = NULL;
rte_free(rxq);
fail_rxq_alloc:
sfc_ev_qfini(evq);
fail_ev_qinit:
rxq_info->entries = 0;
fail_bad_conf:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info;
struct sfc_rxq *rxq;
SFC_ASSERT(sw_index < sa->rxq_count);
rxq_info = &sa->rxq_info[sw_index];
rxq = rxq_info->rxq;
SFC_ASSERT(rxq->state == SFC_RXQ_INITIALIZED);
sa->dp_rx->qdestroy(rxq->dp);
rxq->dp = NULL;
rxq_info->rxq = NULL;
rxq_info->entries = 0;
sfc_dma_free(sa, &rxq->mem);
sfc_ev_qfini(rxq->evq);
rxq->evq = NULL;
rte_free(rxq);
}
#if EFSYS_OPT_RX_SCALE
efx_rx_hash_type_t
sfc_rte_to_efx_hash_type(uint64_t rss_hf)
{
efx_rx_hash_type_t efx_hash_types = 0;
if ((rss_hf & (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
ETH_RSS_NONFRAG_IPV4_OTHER)) != 0)
efx_hash_types |= EFX_RX_HASH_IPV4;
if ((rss_hf & ETH_RSS_NONFRAG_IPV4_TCP) != 0)
efx_hash_types |= EFX_RX_HASH_TCPIPV4;
if ((rss_hf & (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX)) != 0)
efx_hash_types |= EFX_RX_HASH_IPV6;
if ((rss_hf & (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX)) != 0)
efx_hash_types |= EFX_RX_HASH_TCPIPV6;
return efx_hash_types;
}
uint64_t
sfc_efx_to_rte_hash_type(efx_rx_hash_type_t efx_hash_types)
{
uint64_t rss_hf = 0;
if ((efx_hash_types & EFX_RX_HASH_IPV4) != 0)
rss_hf |= (ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 |
ETH_RSS_NONFRAG_IPV4_OTHER);
if ((efx_hash_types & EFX_RX_HASH_TCPIPV4) != 0)
rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
if ((efx_hash_types & EFX_RX_HASH_IPV6) != 0)
rss_hf |= (ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 |
ETH_RSS_NONFRAG_IPV6_OTHER | ETH_RSS_IPV6_EX);
if ((efx_hash_types & EFX_RX_HASH_TCPIPV6) != 0)
rss_hf |= (ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX);
return rss_hf;
}
#endif
#if EFSYS_OPT_RX_SCALE
static int
sfc_rx_rss_config(struct sfc_adapter *sa)
{
int rc = 0;
if (sa->rss_channels > 0) {
rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
EFX_RX_HASHALG_TOEPLITZ,
sa->rss_hash_types, B_TRUE);
if (rc != 0)
goto finish;
rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
sa->rss_key,
sizeof(sa->rss_key));
if (rc != 0)
goto finish;
rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
sa->rss_tbl, RTE_DIM(sa->rss_tbl));
}
finish:
return rc;
}
#else
static int
sfc_rx_rss_config(__rte_unused struct sfc_adapter *sa)
{
return 0;
}
#endif
int
sfc_rx_start(struct sfc_adapter *sa)
{
unsigned int sw_index;
int rc;
sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
rc = efx_rx_init(sa->nic);
if (rc != 0)
goto fail_rx_init;
rc = sfc_rx_rss_config(sa);
if (rc != 0)
goto fail_rss_config;
for (sw_index = 0; sw_index < sa->rxq_count; ++sw_index) {
if ((!sa->rxq_info[sw_index].deferred_start ||
sa->rxq_info[sw_index].deferred_started)) {
rc = sfc_rx_qstart(sa, sw_index);
if (rc != 0)
goto fail_rx_qstart;
}
}
return 0;
fail_rx_qstart:
while (sw_index-- > 0)
sfc_rx_qstop(sa, sw_index);
fail_rss_config:
efx_rx_fini(sa->nic);
fail_rx_init:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
void
sfc_rx_stop(struct sfc_adapter *sa)
{
unsigned int sw_index;
sfc_log_init(sa, "rxq_count=%u", sa->rxq_count);
sw_index = sa->rxq_count;
while (sw_index-- > 0) {
if (sa->rxq_info[sw_index].rxq != NULL)
sfc_rx_qstop(sa, sw_index);
}
efx_rx_fini(sa->nic);
}
static int
sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
{
struct sfc_rxq_info *rxq_info = &sa->rxq_info[sw_index];
unsigned int max_entries;
max_entries = EFX_RXQ_MAXNDESCS;
SFC_ASSERT(rte_is_power_of_2(max_entries));
rxq_info->max_entries = max_entries;
return 0;
}
static int
sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
{
int rc = 0;
switch (rxmode->mq_mode) {
case ETH_MQ_RX_NONE:
/* No special checks are required */
break;
#if EFSYS_OPT_RX_SCALE
case ETH_MQ_RX_RSS:
if (sa->rss_support == EFX_RX_SCALE_UNAVAILABLE) {
sfc_err(sa, "RSS is not available");
rc = EINVAL;
}
break;
#endif
default:
sfc_err(sa, "Rx multi-queue mode %u not supported",
rxmode->mq_mode);
rc = EINVAL;
}
if (rxmode->header_split) {
sfc_err(sa, "Header split on Rx not supported");
rc = EINVAL;
}
if (rxmode->hw_vlan_filter) {
sfc_err(sa, "HW VLAN filtering not supported");
rc = EINVAL;
}
if (rxmode->hw_vlan_strip) {
sfc_err(sa, "HW VLAN stripping not supported");
rc = EINVAL;
}
if (rxmode->hw_vlan_extend) {
sfc_err(sa,
"Q-in-Q HW VLAN stripping not supported");
rc = EINVAL;
}
if (!rxmode->hw_strip_crc) {
sfc_warn(sa,
"FCS stripping control not supported - always stripped");
rxmode->hw_strip_crc = 1;
}
if (rxmode->enable_scatter &&
(~sa->dp_rx->features & SFC_DP_RX_FEAT_SCATTER)) {
sfc_err(sa, "Rx scatter not supported by %s datapath",
sa->dp_rx->dp.name);
rc = EINVAL;
}
if (rxmode->enable_lro) {
sfc_err(sa, "LRO not supported");
rc = EINVAL;
}
return rc;
}
/**
* Destroy excess queues that are no longer needed after reconfiguration
* or complete close.
*/
static void
sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
{
int sw_index;
SFC_ASSERT(nb_rx_queues <= sa->rxq_count);
sw_index = sa->rxq_count;
while (--sw_index >= (int)nb_rx_queues) {
if (sa->rxq_info[sw_index].rxq != NULL)
sfc_rx_qfini(sa, sw_index);
}
sa->rxq_count = nb_rx_queues;
}
/**
* Initialize Rx subsystem.
*
* Called at device (re)configuration stage when number of receive queues is
* specified together with other device level receive configuration.
*
* It should be used to allocate NUMA-unaware resources.
*/
int
sfc_rx_configure(struct sfc_adapter *sa)
{
struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
int rc;
sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
nb_rx_queues, sa->rxq_count);
rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
if (rc != 0)
goto fail_check_mode;
if (nb_rx_queues == sa->rxq_count)
goto done;
if (sa->rxq_info == NULL) {
rc = ENOMEM;
sa->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
sizeof(sa->rxq_info[0]), 0,
sa->socket_id);
if (sa->rxq_info == NULL)
goto fail_rxqs_alloc;
} else {
struct sfc_rxq_info *new_rxq_info;
if (nb_rx_queues < sa->rxq_count)
sfc_rx_fini_queues(sa, nb_rx_queues);
rc = ENOMEM;
new_rxq_info =
rte_realloc(sa->rxq_info,
nb_rx_queues * sizeof(sa->rxq_info[0]), 0);
if (new_rxq_info == NULL && nb_rx_queues > 0)
goto fail_rxqs_realloc;
sa->rxq_info = new_rxq_info;
if (nb_rx_queues > sa->rxq_count)
memset(&sa->rxq_info[sa->rxq_count], 0,
(nb_rx_queues - sa->rxq_count) *
sizeof(sa->rxq_info[0]));
}
while (sa->rxq_count < nb_rx_queues) {
rc = sfc_rx_qinit_info(sa, sa->rxq_count);
if (rc != 0)
goto fail_rx_qinit_info;
sa->rxq_count++;
}
#if EFSYS_OPT_RX_SCALE
sa->rss_channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
MIN(sa->rxq_count, EFX_MAXRSS) : 0;
if (sa->rss_channels > 0) {
unsigned int sw_index;
for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
sa->rss_tbl[sw_index] = sw_index % sa->rss_channels;
}
#endif
done:
return 0;
fail_rx_qinit_info:
fail_rxqs_realloc:
fail_rxqs_alloc:
sfc_rx_close(sa);
fail_check_mode:
sfc_log_init(sa, "failed %d", rc);
return rc;
}
/**
* Shutdown Rx subsystem.
*
* Called at device close stage, for example, before device shutdown.
*/
void
sfc_rx_close(struct sfc_adapter *sa)
{
sfc_rx_fini_queues(sa, 0);
sa->rss_channels = 0;
rte_free(sa->rxq_info);
sa->rxq_info = NULL;
}