numam-dpdk/drivers/net/ena/ena_ethdev.c
Jan Medala 1173fca25a ena: add polling-mode driver
This is a PMD for the Amazon ethernet ENA (Elastic Network Adapters)
family.
The driver operates variety of ENA adapters through feature negotiation
with the adapter and upgradable commands set.
ENA driver handles PCI Physical and Virtual ENA functions.

Signed-off-by: Evgeny Schemeilin <evgenys@amazon.com>
Signed-off-by: Jan Medala <jan@semihalf.com>
Signed-off-by: Jakub Palider <jpa@semihalf.com>

Release Note addition:
Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2016-03-25 18:56:43 +01:00

1446 lines
40 KiB
C

/*-
* BSD LICENSE
*
* Copyright (c) 2015-2016 Amazon.com, Inc. or its affiliates.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of copyright holder nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_tcp.h>
#include <rte_atomic.h>
#include <rte_dev.h>
#include <rte_errno.h>
#include "ena_ethdev.h"
#include "ena_logs.h"
#include "ena_platform.h"
#include "ena_com.h"
#include "ena_eth_com.h"
#include <ena_common_defs.h>
#include <ena_regs_defs.h>
#include <ena_admin_defs.h>
#include <ena_eth_io_defs.h>
#define ENA_IO_TXQ_IDX(q) (2 * (q))
#define ENA_IO_RXQ_IDX(q) (2 * (q) + 1)
/*reverse version of ENA_IO_RXQ_IDX*/
#define ENA_IO_RXQ_IDX_REV(q) ((q - 1) / 2)
/* While processing submitted and completed descriptors (rx and tx path
* respectively) in a loop it is desired to:
* - perform batch submissions while populating sumbissmion queue
* - avoid blocking transmission of other packets during cleanup phase
* Hence the utilization ratio of 1/8 of a queue size.
*/
#define ENA_RING_DESCS_RATIO(ring_size) (ring_size / 8)
#define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
#define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
#define GET_L4_HDR_LEN(mbuf) \
((rte_pktmbuf_mtod_offset(mbuf, struct tcp_hdr *, \
mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
#define ENA_RX_RSS_TABLE_LOG_SIZE 7
#define ENA_RX_RSS_TABLE_SIZE (1 << ENA_RX_RSS_TABLE_LOG_SIZE)
#define ENA_HASH_KEY_SIZE 40
/** Vendor ID used by Amazon devices */
#define PCI_VENDOR_ID_AMAZON 0x1D0F
/** Amazon devices */
#define PCI_DEVICE_ID_ENA_VF 0xEC20
#define PCI_DEVICE_ID_ENA_LLQ_VF 0xEC21
static struct rte_pci_id pci_id_ena_map[] = {
#define RTE_PCI_DEV_ID_DECL_ENA(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
RTE_PCI_DEV_ID_DECL_ENA(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF)
RTE_PCI_DEV_ID_DECL_ENA(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF)
{.device_id = 0},
};
static int ena_device_init(struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx);
static int ena_dev_configure(struct rte_eth_dev *dev);
static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts);
static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_txconf *tx_conf);
static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
uint16_t nb_desc, unsigned int socket_id,
const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp);
static uint16_t eth_ena_recv_pkts(void *rx_queue,
struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
static void ena_init_rings(struct ena_adapter *adapter);
static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
static int ena_start(struct rte_eth_dev *dev);
static void ena_close(struct rte_eth_dev *dev);
static void ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
static void ena_rx_queue_release(void *queue);
static void ena_tx_queue_release(void *queue);
static void ena_rx_queue_release_bufs(struct ena_ring *ring);
static void ena_tx_queue_release_bufs(struct ena_ring *ring);
static int ena_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete);
static int ena_queue_restart(struct ena_ring *ring);
static int ena_queue_restart_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type);
static void ena_stats_restart(struct rte_eth_dev *dev);
static void ena_infos_get(__rte_unused struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info);
static int ena_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static int ena_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size);
static struct eth_dev_ops ena_dev_ops = {
.dev_configure = ena_dev_configure,
.dev_infos_get = ena_infos_get,
.rx_queue_setup = ena_rx_queue_setup,
.tx_queue_setup = ena_tx_queue_setup,
.dev_start = ena_start,
.link_update = ena_link_update,
.stats_get = ena_stats_get,
.mtu_set = ena_mtu_set,
.rx_queue_release = ena_rx_queue_release,
.tx_queue_release = ena_tx_queue_release,
.dev_close = ena_close,
.reta_update = ena_rss_reta_update,
.reta_query = ena_rss_reta_query,
};
static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
struct ena_com_rx_ctx *ena_rx_ctx)
{
uint64_t ol_flags = 0;
if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
ol_flags |= PKT_TX_TCP_CKSUM;
else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
ol_flags |= PKT_TX_UDP_CKSUM;
if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
ol_flags |= PKT_TX_IPV4;
else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
ol_flags |= PKT_TX_IPV6;
if (unlikely(ena_rx_ctx->l4_csum_err))
ol_flags |= PKT_RX_L4_CKSUM_BAD;
if (unlikely(ena_rx_ctx->l3_csum_err))
ol_flags |= PKT_RX_IP_CKSUM_BAD;
mbuf->ol_flags = ol_flags;
}
static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
struct ena_com_tx_ctx *ena_tx_ctx)
{
struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
if (mbuf->ol_flags &
(PKT_TX_L4_MASK | PKT_TX_IP_CKSUM | PKT_TX_TCP_SEG)) {
/* check if TSO is required */
if (mbuf->ol_flags & PKT_TX_TCP_SEG) {
ena_tx_ctx->tso_enable = true;
ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
}
/* check if L3 checksum is needed */
if (mbuf->ol_flags & PKT_TX_IP_CKSUM)
ena_tx_ctx->l3_csum_enable = true;
if (mbuf->ol_flags & PKT_TX_IPV6) {
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
} else {
ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
/* set don't fragment (DF) flag */
if (mbuf->packet_type &
(RTE_PTYPE_L4_NONFRAG
| RTE_PTYPE_INNER_L4_NONFRAG))
ena_tx_ctx->df = true;
}
/* check if L4 checksum is needed */
switch (mbuf->ol_flags & PKT_TX_L4_MASK) {
case PKT_TX_TCP_CKSUM:
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
ena_tx_ctx->l4_csum_enable = true;
break;
case PKT_TX_UDP_CKSUM:
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
ena_tx_ctx->l4_csum_enable = true;
break;
default:
ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
ena_tx_ctx->l4_csum_enable = false;
break;
}
ena_meta->mss = mbuf->tso_segsz;
ena_meta->l3_hdr_len = mbuf->l3_len;
ena_meta->l3_hdr_offset = mbuf->l2_len;
/* this param needed only for TSO */
ena_meta->l3_outer_hdr_len = 0;
ena_meta->l3_outer_hdr_offset = 0;
ena_tx_ctx->meta_valid = true;
} else {
ena_tx_ctx->meta_valid = false;
}
}
static void ena_close(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
adapter->state = ENA_ADAPTER_STATE_STOPPED;
ena_rx_queue_release_all(dev);
ena_tx_queue_release_all(dev);
}
static int ena_rss_reta_update(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
int ret, i;
u16 entry_value;
int conf_idx;
int idx;
if ((reta_size == 0) || (reta_conf == NULL))
return -EINVAL;
if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
RTE_LOG(WARNING, PMD,
"indirection table %d is bigger than supported (%d)\n",
reta_size, ENA_RX_RSS_TABLE_SIZE);
ret = -EINVAL;
goto err;
}
for (i = 0 ; i < reta_size ; i++) {
/* each reta_conf is for 64 entries.
* to support 128 we use 2 conf of 64
*/
conf_idx = i / RTE_RETA_GROUP_SIZE;
idx = i % RTE_RETA_GROUP_SIZE;
if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
entry_value =
ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
ret = ena_com_indirect_table_fill_entry(ena_dev,
i,
entry_value);
if (unlikely(ret && (ret != ENA_COM_PERMISSION))) {
RTE_LOG(ERR, PMD,
"Cannot fill indirect table\n");
ret = -ENOTSUP;
goto err;
}
}
}
ret = ena_com_indirect_table_set(ena_dev);
if (unlikely(ret && (ret != ENA_COM_PERMISSION))) {
RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
ret = -ENOTSUP;
goto err;
}
RTE_LOG(DEBUG, PMD, "%s(): RSS configured %d entries for port %d\n",
__func__, reta_size, adapter->rte_dev->data->port_id);
err:
return ret;
}
/* Query redirection table. */
static int ena_rss_reta_query(struct rte_eth_dev *dev,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t reta_size)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
int ret;
int i;
u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
int reta_conf_idx;
int reta_idx;
if (reta_size == 0 || reta_conf == NULL ||
(reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
return -EINVAL;
ret = ena_com_indirect_table_get(ena_dev, indirect_table);
if (unlikely(ret && (ret != ENA_COM_PERMISSION))) {
RTE_LOG(ERR, PMD, "cannot get indirect table\n");
ret = -ENOTSUP;
goto err;
}
for (i = 0 ; i < reta_size ; i++) {
reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
reta_idx = i % RTE_RETA_GROUP_SIZE;
if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
reta_conf[reta_conf_idx].reta[reta_idx] =
ENA_IO_RXQ_IDX_REV(indirect_table[i]);
}
err:
return ret;
}
static int ena_rss_init_default(struct ena_adapter *adapter)
{
struct ena_com_dev *ena_dev = &adapter->ena_dev;
uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
int rc, i;
u32 val;
rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
if (unlikely(rc)) {
RTE_LOG(ERR, PMD, "Cannot init indirect table\n");
goto err_rss_init;
}
for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
val = i % nb_rx_queues;
rc = ena_com_indirect_table_fill_entry(ena_dev, i,
ENA_IO_RXQ_IDX(val));
if (unlikely(rc && (rc != ENA_COM_PERMISSION))) {
RTE_LOG(ERR, PMD, "Cannot fill indirect table\n");
goto err_fill_indir;
}
}
rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
if (unlikely(rc && (rc != ENA_COM_PERMISSION))) {
RTE_LOG(INFO, PMD, "Cannot fill hash function\n");
goto err_fill_indir;
}
rc = ena_com_set_default_hash_ctrl(ena_dev);
if (unlikely(rc && (rc != ENA_COM_PERMISSION))) {
RTE_LOG(INFO, PMD, "Cannot fill hash control\n");
goto err_fill_indir;
}
rc = ena_com_indirect_table_set(ena_dev);
if (unlikely(rc && (rc != ENA_COM_PERMISSION))) {
RTE_LOG(ERR, PMD, "Cannot flush the indirect table\n");
goto err_fill_indir;
}
RTE_LOG(DEBUG, PMD, "RSS configured for port %d\n",
adapter->rte_dev->data->port_id);
return 0;
err_fill_indir:
ena_com_rss_destroy(ena_dev);
err_rss_init:
return rc;
}
static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
{
struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
int nb_queues = dev->data->nb_rx_queues;
int i;
for (i = 0; i < nb_queues; i++)
ena_rx_queue_release(queues[i]);
}
static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
{
struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
int nb_queues = dev->data->nb_tx_queues;
int i;
for (i = 0; i < nb_queues; i++)
ena_tx_queue_release(queues[i]);
}
static void ena_rx_queue_release(void *queue)
{
struct ena_ring *ring = (struct ena_ring *)queue;
struct ena_adapter *adapter = ring->adapter;
int ena_qid;
ena_assert_msg(ring->configured,
"API violation - releasing not configured queue");
ena_assert_msg(ring->adapter->state != ENA_ADAPTER_STATE_RUNNING,
"API violation");
/* Destroy HW queue */
ena_qid = ENA_IO_RXQ_IDX(ring->id);
ena_com_destroy_io_queue(&adapter->ena_dev, ena_qid);
/* Free all bufs */
ena_rx_queue_release_bufs(ring);
/* Free ring resources */
if (ring->rx_buffer_info)
rte_free(ring->rx_buffer_info);
ring->rx_buffer_info = NULL;
ring->configured = 0;
RTE_LOG(NOTICE, PMD, "RX Queue %d:%d released\n",
ring->port_id, ring->id);
}
static void ena_tx_queue_release(void *queue)
{
struct ena_ring *ring = (struct ena_ring *)queue;
struct ena_adapter *adapter = ring->adapter;
int ena_qid;
ena_assert_msg(ring->configured,
"API violation. Releasing not configured queue");
ena_assert_msg(ring->adapter->state != ENA_ADAPTER_STATE_RUNNING,
"API violation");
/* Destroy HW queue */
ena_qid = ENA_IO_TXQ_IDX(ring->id);
ena_com_destroy_io_queue(&adapter->ena_dev, ena_qid);
/* Free all bufs */
ena_tx_queue_release_bufs(ring);
/* Free ring resources */
if (ring->tx_buffer_info)
rte_free(ring->tx_buffer_info);
if (ring->empty_tx_reqs)
rte_free(ring->empty_tx_reqs);
ring->empty_tx_reqs = NULL;
ring->tx_buffer_info = NULL;
ring->configured = 0;
RTE_LOG(NOTICE, PMD, "TX Queue %d:%d released\n",
ring->port_id, ring->id);
}
static void ena_rx_queue_release_bufs(struct ena_ring *ring)
{
unsigned int ring_mask = ring->ring_size - 1;
while (ring->next_to_clean != ring->next_to_use) {
struct rte_mbuf *m =
ring->rx_buffer_info[ring->next_to_clean & ring_mask];
if (m)
__rte_mbuf_raw_free(m);
ring->next_to_clean =
ENA_CIRC_INC(ring->next_to_clean, 1, ring->ring_size);
}
}
static void ena_tx_queue_release_bufs(struct ena_ring *ring)
{
unsigned int ring_mask = ring->ring_size - 1;
while (ring->next_to_clean != ring->next_to_use) {
struct ena_tx_buffer *tx_buf =
&ring->tx_buffer_info[ring->next_to_clean & ring_mask];
if (tx_buf->mbuf)
rte_pktmbuf_free(tx_buf->mbuf);
ring->next_to_clean =
ENA_CIRC_INC(ring->next_to_clean, 1, ring->ring_size);
}
}
static int ena_link_update(struct rte_eth_dev *dev,
__rte_unused int wait_to_complete)
{
struct rte_eth_link *link = &dev->data->dev_link;
link->link_status = 1;
link->link_speed = ETH_LINK_SPEED_10G;
link->link_duplex = ETH_LINK_FULL_DUPLEX;
return 0;
}
static int ena_queue_restart_all(struct rte_eth_dev *dev,
enum ena_ring_type ring_type)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_ring *queues = NULL;
int i = 0;
int rc = 0;
queues = (ring_type == ENA_RING_TYPE_RX) ?
adapter->rx_ring : adapter->tx_ring;
for (i = 0; i < adapter->num_queues; i++) {
if (queues[i].configured) {
if (ring_type == ENA_RING_TYPE_RX) {
ena_assert_msg(
dev->data->rx_queues[i] == &queues[i],
"Inconsistent state of rx queues\n");
} else {
ena_assert_msg(
dev->data->tx_queues[i] == &queues[i],
"Inconsistent state of tx queues\n");
}
rc = ena_queue_restart(&queues[i]);
if (rc) {
PMD_INIT_LOG(ERR,
"failed to restart queue %d type(%d)\n",
i, ring_type);
return -1;
}
}
}
return 0;
}
static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
{
uint32_t max_frame_len = adapter->max_mtu;
if (adapter->rte_eth_dev_data->dev_conf.rxmode.jumbo_frame == 1)
max_frame_len =
adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
return max_frame_len;
}
static int ena_check_valid_conf(struct ena_adapter *adapter)
{
uint32_t max_frame_len = ena_get_mtu_conf(adapter);
if (max_frame_len > adapter->max_mtu) {
PMD_INIT_LOG(ERR, "Unsupported MTU of %d\n", max_frame_len);
return -1;
}
return 0;
}
static int
ena_calc_queue_size(struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
uint32_t queue_size = ENA_DEFAULT_RING_SIZE;
queue_size = RTE_MIN(queue_size,
get_feat_ctx->max_queues.max_cq_depth);
queue_size = RTE_MIN(queue_size,
get_feat_ctx->max_queues.max_sq_depth);
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
queue_size = RTE_MIN(queue_size,
get_feat_ctx->max_queues.max_llq_depth);
/* Round down to power of 2 */
if (!rte_is_power_of_2(queue_size))
queue_size = rte_align32pow2(queue_size >> 1);
if (queue_size == 0) {
PMD_INIT_LOG(ERR, "Invalid queue size\n");
return -EFAULT;
}
return queue_size;
}
static void ena_stats_restart(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
rte_atomic64_init(&adapter->drv_stats->ierrors);
rte_atomic64_init(&adapter->drv_stats->oerrors);
rte_atomic64_init(&adapter->drv_stats->imcasts);
rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
}
static void ena_stats_get(struct rte_eth_dev *dev,
struct rte_eth_stats *stats)
{
struct ena_admin_basic_stats ena_stats;
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
int rc;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return;
memset(&ena_stats, 0, sizeof(ena_stats));
rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
if (unlikely(rc)) {
RTE_LOG(ERR, PMD, "Could not retrieve statistics from ENA");
return;
}
/* Set of basic statistics from ENA */
stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
ena_stats.rx_pkts_low);
stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
ena_stats.tx_pkts_low);
stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
ena_stats.rx_bytes_low);
stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
ena_stats.tx_bytes_low);
stats->imissed = __MERGE_64B_H_L(ena_stats.rx_drops_high,
ena_stats.rx_drops_low);
/* Driver related stats */
stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
stats->imcasts = rte_atomic64_read(&adapter->drv_stats->imcasts);
stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
}
static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
{
struct ena_adapter *adapter;
struct ena_com_dev *ena_dev;
int rc = 0;
ena_assert_msg(dev->data != NULL, "Uninitialized device");
ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device");
adapter = (struct ena_adapter *)(dev->data->dev_private);
ena_dev = &adapter->ena_dev;
ena_assert_msg(ena_dev != NULL, "Uninitialized device");
if (mtu > ena_get_mtu_conf(adapter)) {
RTE_LOG(ERR, PMD,
"Given MTU (%d) exceeds maximum MTU supported (%d)\n",
mtu, ena_get_mtu_conf(adapter));
rc = -EINVAL;
goto err;
}
rc = ena_com_set_dev_mtu(ena_dev, mtu);
if (rc)
RTE_LOG(ERR, PMD, "Could not set MTU: %d\n", mtu);
else
RTE_LOG(NOTICE, PMD, "Set MTU: %d\n", mtu);
err:
return rc;
}
static int ena_start(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
int rc = 0;
if (!(adapter->state == ENA_ADAPTER_STATE_CONFIG ||
adapter->state == ENA_ADAPTER_STATE_STOPPED)) {
PMD_INIT_LOG(ERR, "API violation");
return -1;
}
rc = ena_check_valid_conf(adapter);
if (rc)
return rc;
rc = ena_queue_restart_all(dev, ENA_RING_TYPE_RX);
if (rc)
return rc;
rc = ena_queue_restart_all(dev, ENA_RING_TYPE_TX);
if (rc)
return rc;
if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
ETH_MQ_RX_RSS_FLAG) {
rc = ena_rss_init_default(adapter);
if (rc)
return rc;
}
ena_stats_restart(dev);
adapter->state = ENA_ADAPTER_STATE_RUNNING;
return 0;
}
static int ena_queue_restart(struct ena_ring *ring)
{
int rc;
ena_assert_msg(ring->configured == 1,
"Trying to restart unconfigured queue\n");
ring->next_to_clean = 0;
ring->next_to_use = 0;
if (ring->type == ENA_RING_TYPE_TX)
return 0;
rc = ena_populate_rx_queue(ring, ring->ring_size - 1);
if ((unsigned int)rc != ring->ring_size - 1) {
PMD_INIT_LOG(ERR, "Failed to populate rx ring !\n");
return (-1);
}
return 0;
}
static int ena_tx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
__rte_unused unsigned int socket_id,
__rte_unused const struct rte_eth_txconf *tx_conf)
{
struct ena_ring *txq = NULL;
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
unsigned int i;
int ena_qid;
int rc;
struct ena_com_dev *ena_dev = &adapter->ena_dev;
txq = &adapter->tx_ring[queue_idx];
if (txq->configured) {
RTE_LOG(CRIT, PMD,
"API violation. Queue %d is already configured\n",
queue_idx);
return -1;
}
if (nb_desc > adapter->tx_ring_size) {
RTE_LOG(ERR, PMD,
"Unsupported size of TX queue (max size: %d)\n",
adapter->tx_ring_size);
return -EINVAL;
}
ena_qid = ENA_IO_TXQ_IDX(queue_idx);
rc = ena_com_create_io_queue(ena_dev, ena_qid,
ENA_COM_IO_QUEUE_DIRECTION_TX,
ena_dev->tx_mem_queue_type,
-1 /* admin interrupts is not used */,
nb_desc);
if (rc) {
RTE_LOG(ERR, PMD,
"failed to create io TX queue #%d (qid:%d) rc: %d\n",
queue_idx, ena_qid, rc);
}
txq->ena_com_io_cq = &ena_dev->io_cq_queues[ena_qid];
txq->ena_com_io_sq = &ena_dev->io_sq_queues[ena_qid];
txq->port_id = dev->data->port_id;
txq->next_to_clean = 0;
txq->next_to_use = 0;
txq->ring_size = nb_desc;
txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
sizeof(struct ena_tx_buffer) *
txq->ring_size,
RTE_CACHE_LINE_SIZE);
if (!txq->tx_buffer_info) {
RTE_LOG(ERR, PMD, "failed to alloc mem for tx buffer info\n");
return -ENOMEM;
}
txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
sizeof(u16) * txq->ring_size,
RTE_CACHE_LINE_SIZE);
if (!txq->empty_tx_reqs) {
RTE_LOG(ERR, PMD, "failed to alloc mem for tx reqs\n");
rte_free(txq->tx_buffer_info);
return -ENOMEM;
}
for (i = 0; i < txq->ring_size; i++)
txq->empty_tx_reqs[i] = i;
/* Store pointer to this queue in upper layer */
txq->configured = 1;
dev->data->tx_queues[queue_idx] = txq;
return rc;
}
static int ena_rx_queue_setup(struct rte_eth_dev *dev,
uint16_t queue_idx,
uint16_t nb_desc,
__rte_unused unsigned int socket_id,
__rte_unused const struct rte_eth_rxconf *rx_conf,
struct rte_mempool *mp)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
struct ena_ring *rxq = NULL;
uint16_t ena_qid = 0;
int rc = 0;
struct ena_com_dev *ena_dev = &adapter->ena_dev;
rxq = &adapter->rx_ring[queue_idx];
if (rxq->configured) {
RTE_LOG(CRIT, PMD,
"API violation. Queue %d is already configured\n",
queue_idx);
return -1;
}
if (nb_desc > adapter->rx_ring_size) {
RTE_LOG(ERR, PMD,
"Unsupported size of RX queue (max size: %d)\n",
adapter->rx_ring_size);
return -EINVAL;
}
ena_qid = ENA_IO_RXQ_IDX(queue_idx);
rc = ena_com_create_io_queue(ena_dev, ena_qid,
ENA_COM_IO_QUEUE_DIRECTION_RX,
ENA_ADMIN_PLACEMENT_POLICY_HOST,
-1 /* admin interrupts not used */,
nb_desc);
if (rc)
RTE_LOG(ERR, PMD, "failed to create io RX queue #%d rc: %d\n",
queue_idx, rc);
rxq->ena_com_io_cq = &ena_dev->io_cq_queues[ena_qid];
rxq->ena_com_io_sq = &ena_dev->io_sq_queues[ena_qid];
rxq->port_id = dev->data->port_id;
rxq->next_to_clean = 0;
rxq->next_to_use = 0;
rxq->ring_size = nb_desc;
rxq->mb_pool = mp;
rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
sizeof(struct rte_mbuf *) * nb_desc,
RTE_CACHE_LINE_SIZE);
if (!rxq->rx_buffer_info) {
RTE_LOG(ERR, PMD, "failed to alloc mem for rx buffer info\n");
return -ENOMEM;
}
/* Store pointer to this queue in upper layer */
rxq->configured = 1;
dev->data->rx_queues[queue_idx] = rxq;
return rc;
}
static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
{
unsigned int i;
int rc;
unsigned int ring_size = rxq->ring_size;
unsigned int ring_mask = ring_size - 1;
int next_to_use = rxq->next_to_use & ring_mask;
struct rte_mbuf **mbufs = &rxq->rx_buffer_info[0];
if (unlikely(!count))
return 0;
ena_assert_msg((((ENA_CIRC_COUNT(rxq->next_to_use, rxq->next_to_clean,
rxq->ring_size)) +
count) < rxq->ring_size), "bad ring state");
count = RTE_MIN(count, ring_size - next_to_use);
/* get resources for incoming packets */
rc = rte_mempool_get_bulk(rxq->mb_pool,
(void **)(&mbufs[next_to_use]), count);
if (unlikely(rc < 0)) {
rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
PMD_RX_LOG(DEBUG, "there are no enough free buffers");
return 0;
}
for (i = 0; i < count; i++) {
struct rte_mbuf *mbuf = mbufs[next_to_use];
struct ena_com_buf ebuf;
rte_prefetch0(mbufs[((next_to_use + 4) & ring_mask)]);
/* prepare physical address for DMA transaction */
ebuf.paddr = mbuf->buf_physaddr + RTE_PKTMBUF_HEADROOM;
ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
/* pass resource to device */
rc = ena_com_add_single_rx_desc(rxq->ena_com_io_sq,
&ebuf, next_to_use);
if (unlikely(rc)) {
RTE_LOG(WARNING, PMD, "failed adding rx desc\n");
break;
}
next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, ring_size);
}
rte_wmb();
rxq->next_to_use = next_to_use;
/* let HW know that it can fill buffers with data */
ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
return i;
}
static int ena_device_init(struct ena_com_dev *ena_dev,
struct ena_com_dev_get_features_ctx *get_feat_ctx)
{
int rc;
/* Initialize mmio registers */
rc = ena_com_mmio_reg_read_request_init(ena_dev);
if (rc) {
RTE_LOG(ERR, PMD, "failed to init mmio read less\n");
return rc;
}
/* reset device */
rc = ena_com_dev_reset(ena_dev);
if (rc) {
RTE_LOG(ERR, PMD, "cannot reset device\n");
goto err_mmio_read_less;
}
/* check FW version */
rc = ena_com_validate_version(ena_dev);
if (rc) {
RTE_LOG(ERR, PMD, "device version is too low\n");
goto err_mmio_read_less;
}
ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
/* ENA device administration layer init */
rc = ena_com_admin_init(ena_dev, NULL, true);
if (rc) {
RTE_LOG(ERR, PMD,
"cannot initialize ena admin queue with device\n");
goto err_mmio_read_less;
}
/* To enable the msix interrupts the driver needs to know the number
* of queues. So the driver uses polling mode to retrieve this
* information.
*/
ena_com_set_admin_polling_mode(ena_dev, true);
/* Get Device Attributes and features */
rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
if (rc) {
RTE_LOG(ERR, PMD,
"cannot get attribute for ena device rc= %d\n", rc);
goto err_admin_init;
}
return 0;
err_admin_init:
ena_com_admin_destroy(ena_dev);
err_mmio_read_less:
ena_com_mmio_reg_read_request_destroy(ena_dev);
return rc;
}
static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
{
struct rte_pci_device *pci_dev;
struct ena_adapter *adapter =
(struct ena_adapter *)(eth_dev->data->dev_private);
struct ena_com_dev *ena_dev = &adapter->ena_dev;
struct ena_com_dev_get_features_ctx get_feat_ctx;
int queue_size, rc;
static int adapters_found;
memset(adapter, 0, sizeof(struct ena_adapter));
ena_dev = &adapter->ena_dev;
eth_dev->dev_ops = &ena_dev_ops;
eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
adapter->rte_eth_dev_data = eth_dev->data;
adapter->rte_dev = eth_dev;
if (rte_eal_process_type() != RTE_PROC_PRIMARY)
return 0;
pci_dev = eth_dev->pci_dev;
adapter->pdev = pci_dev;
PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d\n",
pci_dev->addr.domain,
pci_dev->addr.bus,
pci_dev->addr.devid,
pci_dev->addr.function);
adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
/* Present ENA_MEM_BAR indicates available LLQ mode.
* Use corresponding policy
*/
if (adapter->dev_mem_base)
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_DEV;
else if (adapter->regs)
ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
else
PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)\n",
ENA_REGS_BAR);
ena_dev->reg_bar = adapter->regs;
ena_dev->dmadev = adapter->pdev;
adapter->id_number = adapters_found;
snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
adapter->id_number);
/* device specific initialization routine */
rc = ena_device_init(ena_dev, &get_feat_ctx);
if (rc) {
PMD_INIT_LOG(CRIT, "Failed to init ENA device\n");
return -1;
}
if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
if (get_feat_ctx.max_queues.max_llq_num == 0) {
PMD_INIT_LOG(ERR,
"Trying to use LLQ but llq_num is 0.\n"
"Fall back into regular queues.\n");
ena_dev->tx_mem_queue_type =
ENA_ADMIN_PLACEMENT_POLICY_HOST;
adapter->num_queues =
get_feat_ctx.max_queues.max_sq_num;
} else {
adapter->num_queues =
get_feat_ctx.max_queues.max_llq_num;
}
} else {
adapter->num_queues = get_feat_ctx.max_queues.max_sq_num;
}
queue_size = ena_calc_queue_size(ena_dev, &get_feat_ctx);
if ((queue_size <= 0) || (adapter->num_queues <= 0))
return -EFAULT;
adapter->tx_ring_size = queue_size;
adapter->rx_ring_size = queue_size;
/* prepare ring structures */
ena_init_rings(adapter);
/* Set max MTU for this device */
adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
/* Copy MAC address and point DPDK to it */
eth_dev->data->mac_addrs = (struct ether_addr *)adapter->mac_addr;
ether_addr_copy((struct ether_addr *)get_feat_ctx.dev_attr.mac_addr,
(struct ether_addr *)adapter->mac_addr);
adapter->drv_stats = rte_zmalloc("adapter stats",
sizeof(*adapter->drv_stats),
RTE_CACHE_LINE_SIZE);
if (!adapter->drv_stats) {
RTE_LOG(ERR, PMD, "failed to alloc mem for adapter stats\n");
return -ENOMEM;
}
adapters_found++;
adapter->state = ENA_ADAPTER_STATE_INIT;
return 0;
}
static int ena_dev_configure(struct rte_eth_dev *dev)
{
struct ena_adapter *adapter =
(struct ena_adapter *)(dev->data->dev_private);
if (!(adapter->state == ENA_ADAPTER_STATE_INIT ||
adapter->state == ENA_ADAPTER_STATE_STOPPED)) {
PMD_INIT_LOG(ERR, "Illegal adapter state: %d\n",
adapter->state);
return -1;
}
switch (adapter->state) {
case ENA_ADAPTER_STATE_INIT:
case ENA_ADAPTER_STATE_STOPPED:
adapter->state = ENA_ADAPTER_STATE_CONFIG;
break;
case ENA_ADAPTER_STATE_CONFIG:
RTE_LOG(WARNING, PMD,
"Ivalid driver state while trying to configure device\n");
break;
default:
break;
}
return 0;
}
static void ena_init_rings(struct ena_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_queues; i++) {
struct ena_ring *ring = &adapter->tx_ring[i];
ring->configured = 0;
ring->type = ENA_RING_TYPE_TX;
ring->adapter = adapter;
ring->id = i;
ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
}
for (i = 0; i < adapter->num_queues; i++) {
struct ena_ring *ring = &adapter->rx_ring[i];
ring->configured = 0;
ring->type = ENA_RING_TYPE_RX;
ring->adapter = adapter;
ring->id = i;
}
}
static void ena_infos_get(struct rte_eth_dev *dev,
struct rte_eth_dev_info *dev_info)
{
struct ena_adapter *adapter;
struct ena_com_dev *ena_dev;
struct ena_com_dev_get_features_ctx feat;
uint32_t rx_feat = 0, tx_feat = 0;
int rc = 0;
ena_assert_msg(dev->data != NULL, "Uninitialized device");
ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device");
adapter = (struct ena_adapter *)(dev->data->dev_private);
ena_dev = &adapter->ena_dev;
ena_assert_msg(ena_dev != NULL, "Uninitialized device");
/* Get supported features from HW */
rc = ena_com_get_dev_attr_feat(ena_dev, &feat);
if (unlikely(rc)) {
RTE_LOG(ERR, PMD,
"Cannot get attribute for ena device rc= %d\n", rc);
return;
}
/* Set Tx & Rx features available for device */
if (feat.offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK)
tx_feat |= DEV_TX_OFFLOAD_TCP_TSO;
if (feat.offload.tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)
tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM;
if (feat.offload.tx &
ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK)
rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
DEV_RX_OFFLOAD_UDP_CKSUM |
DEV_RX_OFFLOAD_TCP_CKSUM;
/* Inform framework about available features */
dev_info->rx_offload_capa = rx_feat;
dev_info->tx_offload_capa = tx_feat;
dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
dev_info->max_rx_pktlen = adapter->max_mtu;
dev_info->max_mac_addrs = 1;
dev_info->max_rx_queues = adapter->num_queues;
dev_info->max_tx_queues = adapter->num_queues;
dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
}
static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
unsigned int ring_size = rx_ring->ring_size;
unsigned int ring_mask = ring_size - 1;
uint16_t next_to_clean = rx_ring->next_to_clean;
int desc_in_use = 0;
unsigned int recv_idx = 0;
struct rte_mbuf *mbuf = NULL;
struct rte_mbuf *mbuf_head = NULL;
struct rte_mbuf *mbuf_prev = NULL;
struct rte_mbuf **rx_buff_info = rx_ring->rx_buffer_info;
unsigned int completed;
struct ena_com_rx_ctx ena_rx_ctx;
int rc = 0;
/* Check adapter state */
if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
RTE_LOG(ALERT, PMD,
"Trying to receive pkts while device is NOT running\n");
return 0;
}
desc_in_use = ENA_CIRC_COUNT(rx_ring->next_to_use,
next_to_clean, ring_size);
if (unlikely(nb_pkts > desc_in_use))
nb_pkts = desc_in_use;
for (completed = 0; completed < nb_pkts; completed++) {
int segments = 0;
ena_rx_ctx.max_bufs = rx_ring->ring_size;
ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
ena_rx_ctx.descs = 0;
/* receive packet context */
rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
rx_ring->ena_com_io_sq,
&ena_rx_ctx);
if (unlikely(rc)) {
RTE_LOG(ERR, PMD, "ena_com_rx_pkt error %d\n", rc);
return 0;
}
if (unlikely(ena_rx_ctx.descs == 0))
break;
while (segments < ena_rx_ctx.descs) {
mbuf = rx_buff_info[next_to_clean & ring_mask];
mbuf->data_len = ena_rx_ctx.ena_bufs[segments].len;
mbuf->data_off = RTE_PKTMBUF_HEADROOM;
mbuf->refcnt = 1;
mbuf->next = NULL;
if (segments == 0) {
mbuf->nb_segs = ena_rx_ctx.descs;
mbuf->port = rx_ring->port_id;
mbuf->pkt_len = 0;
mbuf_head = mbuf;
} else {
/* for multi-segment pkts create mbuf chain */
mbuf_prev->next = mbuf;
}
mbuf_head->pkt_len += mbuf->data_len;
mbuf_prev = mbuf;
segments++;
next_to_clean =
ENA_RX_RING_IDX_NEXT(next_to_clean, ring_size);
}
/* fill mbuf attributes if any */
ena_rx_mbuf_prepare(mbuf_head, &ena_rx_ctx);
mbuf_head->hash.rss = (uint32_t)rx_ring->id;
/* pass to DPDK application head mbuf */
rx_pkts[recv_idx] = mbuf_head;
recv_idx++;
}
/* Burst refill to save doorbells, memory barriers, const interval */
if (ring_size - desc_in_use - 1 > ENA_RING_DESCS_RATIO(ring_size))
ena_populate_rx_queue(rx_ring, ring_size - desc_in_use - 1);
rx_ring->next_to_clean = next_to_clean & ring_mask;
return recv_idx;
}
static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
unsigned int next_to_use = tx_ring->next_to_use;
struct rte_mbuf *mbuf;
unsigned int ring_size = tx_ring->ring_size;
unsigned int ring_mask = ring_size - 1;
struct ena_com_tx_ctx ena_tx_ctx;
struct ena_tx_buffer *tx_info;
struct ena_com_buf *ebuf;
uint16_t rc, req_id, total_tx_descs = 0;
int sent_idx = 0;
int nb_hw_desc;
/* Check adapter state */
if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
RTE_LOG(ALERT, PMD,
"Trying to xmit pkts while device is NOT running\n");
return 0;
}
for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
mbuf = tx_pkts[sent_idx];
req_id = tx_ring->empty_tx_reqs[next_to_use];
tx_info = &tx_ring->tx_buffer_info[req_id];
tx_info->mbuf = mbuf;
tx_info->num_of_bufs = 0;
ebuf = tx_info->bufs;
/* Prepare TX context */
memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx));
memset(&ena_tx_ctx.ena_meta, 0x0,
sizeof(struct ena_com_tx_meta));
ena_tx_ctx.ena_bufs = ebuf;
ena_tx_ctx.req_id = req_id;
if (tx_ring->tx_mem_queue_type ==
ENA_ADMIN_PLACEMENT_POLICY_DEV) {
/* prepare the push buffer with
* virtual address of the data
*/
ena_tx_ctx.header_len =
RTE_MIN(mbuf->data_len,
tx_ring->tx_max_header_size);
ena_tx_ctx.push_header =
(void *)((char *)mbuf->buf_addr +
mbuf->data_off);
} /* there's no else as we take advantage of memset zeroing */
/* Set TX offloads flags, if applicable */
ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx);
if (unlikely(mbuf->ol_flags &
(PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD)))
rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
rte_prefetch0(tx_pkts[(sent_idx + 4) & ring_mask]);
/* Process first segment taking into
* consideration pushed header
*/
if (mbuf->data_len > ena_tx_ctx.header_len) {
ebuf->paddr = mbuf->buf_physaddr +
mbuf->data_off +
ena_tx_ctx.header_len;
ebuf->len = mbuf->data_len - ena_tx_ctx.header_len;
ebuf++;
tx_info->num_of_bufs++;
}
while ((mbuf = mbuf->next) != NULL) {
ebuf->paddr = mbuf->buf_physaddr + mbuf->data_off;
ebuf->len = mbuf->data_len;
ebuf++;
tx_info->num_of_bufs++;
}
ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
/* Write data to device */
rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq,
&ena_tx_ctx, &nb_hw_desc);
if (unlikely(rc))
break;
tx_info->tx_descs = nb_hw_desc;
next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, ring_size);
}
/* Let HW do it's best :-) */
rte_wmb();
ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
/* Clear complete packets */
while (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) >= 0) {
/* Get Tx info & store how many descs were processed */
tx_info = &tx_ring->tx_buffer_info[req_id];
total_tx_descs += tx_info->tx_descs;
/* Free whole mbuf chain */
mbuf = tx_info->mbuf;
rte_pktmbuf_free(mbuf);
/* Put back descriptor to the ring for reuse */
tx_ring->empty_tx_reqs[tx_ring->next_to_clean] = req_id;
tx_ring->next_to_clean =
ENA_TX_RING_IDX_NEXT(tx_ring->next_to_clean,
tx_ring->ring_size);
/* If too many descs to clean, leave it for another run */
if (unlikely(total_tx_descs > ENA_RING_DESCS_RATIO(ring_size)))
break;
}
/* acknowledge completion of sent packets */
ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
tx_ring->next_to_use = next_to_use;
return sent_idx;
}
static struct eth_driver rte_ena_pmd = {
{
.name = "rte_ena_pmd",
.id_table = pci_id_ena_map,
.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
},
.eth_dev_init = eth_ena_dev_init,
.dev_private_size = sizeof(struct ena_adapter),
};
static int
rte_ena_pmd_init(const char *name __rte_unused,
const char *params __rte_unused)
{
rte_eth_driver_register(&rte_ena_pmd);
return 0;
};
struct rte_driver ena_pmd_drv = {
.name = "ena_driver",
.type = PMD_PDEV,
.init = rte_ena_pmd_init,
};
PMD_REGISTER_DRIVER(ena_pmd_drv);