06c047b680
Functions like free, rte_free, and rte_mempool_free already handle NULL pointer so the checks here are not necessary. Remove redundant NULL pointer checks before free functions found by nullfree.cocci Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
2037 lines
57 KiB
C
2037 lines
57 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2016 6WIND S.A.
|
|
* Copyright 2020 Mellanox Technologies, Ltd
|
|
*/
|
|
#include <stddef.h>
|
|
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_eal_paging.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_rwlock.h>
|
|
|
|
#include "mlx5_glue.h"
|
|
#include "mlx5_common.h"
|
|
#include "mlx5_common_mp.h"
|
|
#include "mlx5_common_mr.h"
|
|
#include "mlx5_common_os.h"
|
|
#include "mlx5_common_log.h"
|
|
#include "mlx5_malloc.h"
|
|
|
|
struct mr_find_contig_memsegs_data {
|
|
uintptr_t addr;
|
|
uintptr_t start;
|
|
uintptr_t end;
|
|
const struct rte_memseg_list *msl;
|
|
};
|
|
|
|
/* Virtual memory range. */
|
|
struct mlx5_range {
|
|
uintptr_t start;
|
|
uintptr_t end;
|
|
};
|
|
|
|
/** Memory region for a mempool. */
|
|
struct mlx5_mempool_mr {
|
|
struct mlx5_pmd_mr pmd_mr;
|
|
uint32_t refcnt; /**< Number of mempools sharing this MR. */
|
|
};
|
|
|
|
/* Mempool registration. */
|
|
struct mlx5_mempool_reg {
|
|
LIST_ENTRY(mlx5_mempool_reg) next;
|
|
/** Registered mempool, used to designate registrations. */
|
|
struct rte_mempool *mp;
|
|
/** Memory regions for the address ranges of the mempool. */
|
|
struct mlx5_mempool_mr *mrs;
|
|
/** Number of memory regions. */
|
|
unsigned int mrs_n;
|
|
/** Whether the MR were created for external pinned memory. */
|
|
bool is_extmem;
|
|
};
|
|
|
|
void
|
|
mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
|
|
{
|
|
struct mlx5_mprq_buf *buf = opaque;
|
|
|
|
if (__atomic_load_n(&buf->refcnt, __ATOMIC_RELAXED) == 1) {
|
|
rte_mempool_put(buf->mp, buf);
|
|
} else if (unlikely(__atomic_sub_fetch(&buf->refcnt, 1,
|
|
__ATOMIC_RELAXED) == 0)) {
|
|
__atomic_store_n(&buf->refcnt, 1, __ATOMIC_RELAXED);
|
|
rte_mempool_put(buf->mp, buf);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Expand B-tree table to a given size. Can't be called with holding
|
|
* memory_hotplug_lock or share_cache.rwlock due to rte_realloc().
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param n
|
|
* Number of entries for expansion.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int
|
|
mr_btree_expand(struct mlx5_mr_btree *bt, int n)
|
|
{
|
|
void *mem;
|
|
int ret = 0;
|
|
|
|
if (n <= bt->size)
|
|
return ret;
|
|
/*
|
|
* Downside of directly using rte_realloc() is that SOCKET_ID_ANY is
|
|
* used inside if there's no room to expand. Because this is a quite
|
|
* rare case and a part of very slow path, it is very acceptable.
|
|
* Initially cache_bh[] will be given practically enough space and once
|
|
* it is expanded, expansion wouldn't be needed again ever.
|
|
*/
|
|
mem = mlx5_realloc(bt->table, MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
n * sizeof(struct mr_cache_entry), 0, SOCKET_ID_ANY);
|
|
if (mem == NULL) {
|
|
/* Not an error, B-tree search will be skipped. */
|
|
DRV_LOG(WARNING, "failed to expand MR B-tree (%p) table",
|
|
(void *)bt);
|
|
ret = -1;
|
|
} else {
|
|
DRV_LOG(DEBUG, "expanded MR B-tree table (size=%u)", n);
|
|
bt->table = mem;
|
|
bt->size = n;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Look up LKey from given B-tree lookup table, store the last index and return
|
|
* searched LKey.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param[out] idx
|
|
* Pointer to index. Even on search failure, returns index where it stops
|
|
* searching so that index can be used when inserting a new entry.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
static uint32_t
|
|
mr_btree_lookup(struct mlx5_mr_btree *bt, uint16_t *idx, uintptr_t addr)
|
|
{
|
|
struct mr_cache_entry *lkp_tbl;
|
|
uint16_t n;
|
|
uint16_t base = 0;
|
|
|
|
MLX5_ASSERT(bt != NULL);
|
|
lkp_tbl = *bt->table;
|
|
n = bt->len;
|
|
/* First entry must be NULL for comparison. */
|
|
MLX5_ASSERT(bt->len > 0 || (lkp_tbl[0].start == 0 &&
|
|
lkp_tbl[0].lkey == UINT32_MAX));
|
|
/* Binary search. */
|
|
do {
|
|
register uint16_t delta = n >> 1;
|
|
|
|
if (addr < lkp_tbl[base + delta].start) {
|
|
n = delta;
|
|
} else {
|
|
base += delta;
|
|
n -= delta;
|
|
}
|
|
} while (n > 1);
|
|
MLX5_ASSERT(addr >= lkp_tbl[base].start);
|
|
*idx = base;
|
|
if (addr < lkp_tbl[base].end)
|
|
return lkp_tbl[base].lkey;
|
|
/* Not found. */
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
/**
|
|
* Insert an entry to B-tree lookup table.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param entry
|
|
* Pointer to new entry to insert.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
static int
|
|
mr_btree_insert(struct mlx5_mr_btree *bt, struct mr_cache_entry *entry)
|
|
{
|
|
struct mr_cache_entry *lkp_tbl;
|
|
uint16_t idx = 0;
|
|
size_t shift;
|
|
|
|
MLX5_ASSERT(bt != NULL);
|
|
MLX5_ASSERT(bt->len <= bt->size);
|
|
MLX5_ASSERT(bt->len > 0);
|
|
lkp_tbl = *bt->table;
|
|
/* Find out the slot for insertion. */
|
|
if (mr_btree_lookup(bt, &idx, entry->start) != UINT32_MAX) {
|
|
DRV_LOG(DEBUG,
|
|
"abort insertion to B-tree(%p): already exist at"
|
|
" idx=%u [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
|
|
(void *)bt, idx, entry->start, entry->end, entry->lkey);
|
|
/* Already exist, return. */
|
|
return 0;
|
|
}
|
|
/* If table is full, return error. */
|
|
if (unlikely(bt->len == bt->size)) {
|
|
bt->overflow = 1;
|
|
return -1;
|
|
}
|
|
/* Insert entry. */
|
|
++idx;
|
|
shift = (bt->len - idx) * sizeof(struct mr_cache_entry);
|
|
if (shift)
|
|
memmove(&lkp_tbl[idx + 1], &lkp_tbl[idx], shift);
|
|
lkp_tbl[idx] = *entry;
|
|
bt->len++;
|
|
DRV_LOG(DEBUG,
|
|
"inserted B-tree(%p)[%u],"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
|
|
(void *)bt, idx, entry->start, entry->end, entry->lkey);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Initialize B-tree and allocate memory for lookup table.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
* @param n
|
|
* Number of entries to allocate.
|
|
* @param socket
|
|
* NUMA socket on which memory must be allocated.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
static int
|
|
mlx5_mr_btree_init(struct mlx5_mr_btree *bt, int n, int socket)
|
|
{
|
|
if (bt == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
MLX5_ASSERT(!bt->table && !bt->size);
|
|
memset(bt, 0, sizeof(*bt));
|
|
bt->table = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
sizeof(struct mr_cache_entry) * n,
|
|
0, socket);
|
|
if (bt->table == NULL) {
|
|
rte_errno = ENOMEM;
|
|
DRV_LOG(DEBUG,
|
|
"failed to allocate memory for btree cache on socket "
|
|
"%d", socket);
|
|
return -rte_errno;
|
|
}
|
|
bt->size = n;
|
|
/* First entry must be NULL for binary search. */
|
|
(*bt->table)[bt->len++] = (struct mr_cache_entry) {
|
|
.lkey = UINT32_MAX,
|
|
};
|
|
DRV_LOG(DEBUG, "initialized B-tree %p with table %p",
|
|
(void *)bt, (void *)bt->table);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Free B-tree resources.
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
*/
|
|
void
|
|
mlx5_mr_btree_free(struct mlx5_mr_btree *bt)
|
|
{
|
|
if (bt == NULL)
|
|
return;
|
|
DRV_LOG(DEBUG, "freeing B-tree %p with table %p",
|
|
(void *)bt, (void *)bt->table);
|
|
mlx5_free(bt->table);
|
|
memset(bt, 0, sizeof(*bt));
|
|
}
|
|
|
|
/**
|
|
* Dump all the entries in a B-tree
|
|
*
|
|
* @param bt
|
|
* Pointer to B-tree structure.
|
|
*/
|
|
void
|
|
mlx5_mr_btree_dump(struct mlx5_mr_btree *bt __rte_unused)
|
|
{
|
|
#ifdef RTE_LIBRTE_MLX5_DEBUG
|
|
int idx;
|
|
struct mr_cache_entry *lkp_tbl;
|
|
|
|
if (bt == NULL)
|
|
return;
|
|
lkp_tbl = *bt->table;
|
|
for (idx = 0; idx < bt->len; ++idx) {
|
|
struct mr_cache_entry *entry = &lkp_tbl[idx];
|
|
|
|
DRV_LOG(DEBUG, "B-tree(%p)[%u],"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR ") lkey=0x%x",
|
|
(void *)bt, idx, entry->start, entry->end, entry->lkey);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Initialize per-queue MR control descriptor.
|
|
*
|
|
* @param mr_ctrl
|
|
* Pointer to MR control structure.
|
|
* @param dev_gen_ptr
|
|
* Pointer to generation number of global cache.
|
|
* @param socket
|
|
* NUMA socket on which memory must be allocated.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx5_mr_ctrl_init(struct mlx5_mr_ctrl *mr_ctrl, uint32_t *dev_gen_ptr,
|
|
int socket)
|
|
{
|
|
if (mr_ctrl == NULL) {
|
|
rte_errno = EINVAL;
|
|
return -rte_errno;
|
|
}
|
|
/* Save pointer of global generation number to check memory event. */
|
|
mr_ctrl->dev_gen_ptr = dev_gen_ptr;
|
|
/* Initialize B-tree and allocate memory for bottom-half cache table. */
|
|
return mlx5_mr_btree_init(&mr_ctrl->cache_bh, MLX5_MR_BTREE_CACHE_N,
|
|
socket);
|
|
}
|
|
|
|
/**
|
|
* Find virtually contiguous memory chunk in a given MR.
|
|
*
|
|
* @param dev
|
|
* Pointer to MR structure.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry. If not found, this will not be
|
|
* updated.
|
|
* @param start_idx
|
|
* Start index of the memseg bitmap.
|
|
*
|
|
* @return
|
|
* Next index to go on lookup.
|
|
*/
|
|
static int
|
|
mr_find_next_chunk(struct mlx5_mr *mr, struct mr_cache_entry *entry,
|
|
int base_idx)
|
|
{
|
|
uintptr_t start = 0;
|
|
uintptr_t end = 0;
|
|
uint32_t idx = 0;
|
|
|
|
/* MR for external memory doesn't have memseg list. */
|
|
if (mr->msl == NULL) {
|
|
MLX5_ASSERT(mr->ms_bmp_n == 1);
|
|
MLX5_ASSERT(mr->ms_n == 1);
|
|
MLX5_ASSERT(base_idx == 0);
|
|
/*
|
|
* Can't search it from memseg list but get it directly from
|
|
* pmd_mr as there's only one chunk.
|
|
*/
|
|
entry->start = (uintptr_t)mr->pmd_mr.addr;
|
|
entry->end = (uintptr_t)mr->pmd_mr.addr + mr->pmd_mr.len;
|
|
entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
|
|
/* Returning 1 ends iteration. */
|
|
return 1;
|
|
}
|
|
for (idx = base_idx; idx < mr->ms_bmp_n; ++idx) {
|
|
if (rte_bitmap_get(mr->ms_bmp, idx)) {
|
|
const struct rte_memseg_list *msl;
|
|
const struct rte_memseg *ms;
|
|
|
|
msl = mr->msl;
|
|
ms = rte_fbarray_get(&msl->memseg_arr,
|
|
mr->ms_base_idx + idx);
|
|
MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
|
|
if (!start)
|
|
start = ms->addr_64;
|
|
end = ms->addr_64 + ms->hugepage_sz;
|
|
} else if (start) {
|
|
/* Passed the end of a fragment. */
|
|
break;
|
|
}
|
|
}
|
|
if (start) {
|
|
/* Found one chunk. */
|
|
entry->start = start;
|
|
entry->end = end;
|
|
entry->lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
/**
|
|
* Insert a MR to the global B-tree cache. It may fail due to low-on-memory.
|
|
* Then, this entry will have to be searched by mr_lookup_list() in
|
|
* mlx5_mr_create() on miss.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param mr
|
|
* Pointer to MR to insert.
|
|
*
|
|
* @return
|
|
* 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
mlx5_mr_insert_cache(struct mlx5_mr_share_cache *share_cache,
|
|
struct mlx5_mr *mr)
|
|
{
|
|
unsigned int n;
|
|
|
|
DRV_LOG(DEBUG, "Inserting MR(%p) to global cache(%p)",
|
|
(void *)mr, (void *)share_cache);
|
|
for (n = 0; n < mr->ms_bmp_n; ) {
|
|
struct mr_cache_entry entry;
|
|
|
|
memset(&entry, 0, sizeof(entry));
|
|
/* Find a contiguous chunk and advance the index. */
|
|
n = mr_find_next_chunk(mr, &entry, n);
|
|
if (!entry.end)
|
|
break;
|
|
if (mr_btree_insert(&share_cache->cache, &entry) < 0) {
|
|
/*
|
|
* Overflowed, but the global table cannot be expanded
|
|
* because of deadlock.
|
|
*/
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Look up address in the original global MR list.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry. If no match, this will not be updated.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Found MR on match, NULL otherwise.
|
|
*/
|
|
struct mlx5_mr *
|
|
mlx5_mr_lookup_list(struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr)
|
|
{
|
|
struct mlx5_mr *mr;
|
|
|
|
/* Iterate all the existing MRs. */
|
|
LIST_FOREACH(mr, &share_cache->mr_list, mr) {
|
|
unsigned int n;
|
|
|
|
if (mr->ms_n == 0)
|
|
continue;
|
|
for (n = 0; n < mr->ms_bmp_n; ) {
|
|
struct mr_cache_entry ret;
|
|
|
|
memset(&ret, 0, sizeof(ret));
|
|
n = mr_find_next_chunk(mr, &ret, n);
|
|
if (addr >= ret.start && addr < ret.end) {
|
|
/* Found. */
|
|
*entry = ret;
|
|
return mr;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* Look up address on global MR cache.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry. If no match, this will not be updated.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
static uint32_t
|
|
mlx5_mr_lookup_cache(struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr)
|
|
{
|
|
uint16_t idx;
|
|
uint32_t lkey = UINT32_MAX;
|
|
struct mlx5_mr *mr;
|
|
|
|
/*
|
|
* If the global cache has overflowed since it failed to expand the
|
|
* B-tree table, it can't have all the existing MRs. Then, the address
|
|
* has to be searched by traversing the original MR list instead, which
|
|
* is very slow path. Otherwise, the global cache is all inclusive.
|
|
*/
|
|
if (!unlikely(share_cache->cache.overflow)) {
|
|
lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
|
|
if (lkey != UINT32_MAX)
|
|
*entry = (*share_cache->cache.table)[idx];
|
|
} else {
|
|
/* Falling back to the slowest path. */
|
|
mr = mlx5_mr_lookup_list(share_cache, entry, addr);
|
|
if (mr != NULL)
|
|
lkey = entry->lkey;
|
|
}
|
|
MLX5_ASSERT(lkey == UINT32_MAX || (addr >= entry->start &&
|
|
addr < entry->end));
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Free MR resources. MR lock must not be held to avoid a deadlock. rte_free()
|
|
* can raise memory free event and the callback function will spin on the lock.
|
|
*
|
|
* @param mr
|
|
* Pointer to MR to free.
|
|
*/
|
|
void
|
|
mlx5_mr_free(struct mlx5_mr *mr, mlx5_dereg_mr_t dereg_mr_cb)
|
|
{
|
|
if (mr == NULL)
|
|
return;
|
|
DRV_LOG(DEBUG, "freeing MR(%p):", (void *)mr);
|
|
dereg_mr_cb(&mr->pmd_mr);
|
|
rte_bitmap_free(mr->ms_bmp);
|
|
mlx5_free(mr);
|
|
}
|
|
|
|
void
|
|
mlx5_mr_rebuild_cache(struct mlx5_mr_share_cache *share_cache)
|
|
{
|
|
struct mlx5_mr *mr;
|
|
|
|
DRV_LOG(DEBUG, "Rebuild dev cache[] %p", (void *)share_cache);
|
|
/* Flush cache to rebuild. */
|
|
share_cache->cache.len = 1;
|
|
share_cache->cache.overflow = 0;
|
|
/* Iterate all the existing MRs. */
|
|
LIST_FOREACH(mr, &share_cache->mr_list, mr)
|
|
if (mlx5_mr_insert_cache(share_cache, mr) < 0)
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Release resources of detached MR having no online entry.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
*/
|
|
static void
|
|
mlx5_mr_garbage_collect(struct mlx5_mr_share_cache *share_cache)
|
|
{
|
|
struct mlx5_mr *mr_next;
|
|
struct mlx5_mr_list free_list = LIST_HEAD_INITIALIZER(free_list);
|
|
|
|
/* Must be called from the primary process. */
|
|
MLX5_ASSERT(rte_eal_process_type() == RTE_PROC_PRIMARY);
|
|
/*
|
|
* MR can't be freed with holding the lock because rte_free() could call
|
|
* memory free callback function. This will be a deadlock situation.
|
|
*/
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
/* Detach the whole free list and release it after unlocking. */
|
|
free_list = share_cache->mr_free_list;
|
|
LIST_INIT(&share_cache->mr_free_list);
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
/* Release resources. */
|
|
mr_next = LIST_FIRST(&free_list);
|
|
while (mr_next != NULL) {
|
|
struct mlx5_mr *mr = mr_next;
|
|
|
|
mr_next = LIST_NEXT(mr, mr);
|
|
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
|
|
}
|
|
}
|
|
|
|
/* Called during rte_memseg_contig_walk() by mlx5_mr_create(). */
|
|
static int
|
|
mr_find_contig_memsegs_cb(const struct rte_memseg_list *msl,
|
|
const struct rte_memseg *ms, size_t len, void *arg)
|
|
{
|
|
struct mr_find_contig_memsegs_data *data = arg;
|
|
|
|
if (data->addr < ms->addr_64 || data->addr >= ms->addr_64 + len)
|
|
return 0;
|
|
/* Found, save it and stop walking. */
|
|
data->start = ms->addr_64;
|
|
data->end = ms->addr_64 + len;
|
|
data->msl = msl;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Create a new global Memory Region (MR) for a missing virtual address.
|
|
* This API should be called on a secondary process, then a request is sent to
|
|
* the primary process in order to create a MR for the address. As the global MR
|
|
* list is on the shared memory, following LKey lookup should succeed unless the
|
|
* request fails.
|
|
*
|
|
* @param cdev
|
|
* Pointer to the mlx5 common device.
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this will not be updated.
|
|
* @param addr
|
|
* Target virtual address to register.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
static uint32_t
|
|
mlx5_mr_create_secondary(struct mlx5_common_device *cdev,
|
|
struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr)
|
|
{
|
|
int ret;
|
|
|
|
DRV_LOG(DEBUG, "Requesting MR creation for address (%p)", (void *)addr);
|
|
ret = mlx5_mp_req_mr_create(cdev, addr);
|
|
if (ret) {
|
|
DRV_LOG(DEBUG, "Fail to request MR creation for address (%p)",
|
|
(void *)addr);
|
|
return UINT32_MAX;
|
|
}
|
|
rte_rwlock_read_lock(&share_cache->rwlock);
|
|
/* Fill in output data. */
|
|
mlx5_mr_lookup_cache(share_cache, entry, addr);
|
|
/* Lookup can't fail. */
|
|
MLX5_ASSERT(entry->lkey != UINT32_MAX);
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
DRV_LOG(DEBUG, "MR CREATED by primary process for %p:\n"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR "), lkey=0x%x",
|
|
(void *)addr, entry->start, entry->end, entry->lkey);
|
|
return entry->lkey;
|
|
}
|
|
|
|
/**
|
|
* Create a new global Memory Region (MR) for a missing virtual address.
|
|
* Register entire virtually contiguous memory chunk around the address.
|
|
*
|
|
* @param pd
|
|
* Pointer to pd of a device (net, regex, vdpa,...).
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this will not be updated.
|
|
* @param addr
|
|
* Target virtual address to register.
|
|
* @param mr_ext_memseg_en
|
|
* Configurable flag about external memory segment enable or not.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
static uint32_t
|
|
mlx5_mr_create_primary(void *pd,
|
|
struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr,
|
|
unsigned int mr_ext_memseg_en)
|
|
{
|
|
struct mr_find_contig_memsegs_data data = {.addr = addr, };
|
|
struct mr_find_contig_memsegs_data data_re;
|
|
const struct rte_memseg_list *msl;
|
|
const struct rte_memseg *ms;
|
|
struct mlx5_mr *mr = NULL;
|
|
int ms_idx_shift = -1;
|
|
uint32_t bmp_size;
|
|
void *bmp_mem;
|
|
uint32_t ms_n;
|
|
uint32_t n;
|
|
size_t len;
|
|
|
|
DRV_LOG(DEBUG, "Creating a MR using address (%p)", (void *)addr);
|
|
/*
|
|
* Release detached MRs if any. This can't be called with holding either
|
|
* memory_hotplug_lock or share_cache->rwlock. MRs on the free list have
|
|
* been detached by the memory free event but it couldn't be released
|
|
* inside the callback due to deadlock. As a result, releasing resources
|
|
* is quite opportunistic.
|
|
*/
|
|
mlx5_mr_garbage_collect(share_cache);
|
|
/*
|
|
* If enabled, find out a contiguous virtual address chunk in use, to
|
|
* which the given address belongs, in order to register maximum range.
|
|
* In the best case where mempools are not dynamically recreated and
|
|
* '--socket-mem' is specified as an EAL option, it is very likely to
|
|
* have only one MR(LKey) per a socket and per a hugepage-size even
|
|
* though the system memory is highly fragmented. As the whole memory
|
|
* chunk will be pinned by kernel, it can't be reused unless entire
|
|
* chunk is freed from EAL.
|
|
*
|
|
* If disabled, just register one memseg (page). Then, memory
|
|
* consumption will be minimized but it may drop performance if there
|
|
* are many MRs to lookup on the datapath.
|
|
*/
|
|
if (!mr_ext_memseg_en) {
|
|
data.msl = rte_mem_virt2memseg_list((void *)addr);
|
|
data.start = RTE_ALIGN_FLOOR(addr, data.msl->page_sz);
|
|
data.end = data.start + data.msl->page_sz;
|
|
} else if (!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data)) {
|
|
DRV_LOG(WARNING,
|
|
"Unable to find virtually contiguous"
|
|
" chunk for address (%p)."
|
|
" rte_memseg_contig_walk() failed.", (void *)addr);
|
|
rte_errno = ENXIO;
|
|
goto err_nolock;
|
|
}
|
|
alloc_resources:
|
|
/* Addresses must be page-aligned. */
|
|
MLX5_ASSERT(data.msl);
|
|
MLX5_ASSERT(rte_is_aligned((void *)data.start, data.msl->page_sz));
|
|
MLX5_ASSERT(rte_is_aligned((void *)data.end, data.msl->page_sz));
|
|
msl = data.msl;
|
|
ms = rte_mem_virt2memseg((void *)data.start, msl);
|
|
len = data.end - data.start;
|
|
MLX5_ASSERT(ms);
|
|
MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
|
|
/* Number of memsegs in the range. */
|
|
ms_n = len / msl->page_sz;
|
|
DRV_LOG(DEBUG, "Extending %p to [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
|
|
" page_sz=0x%" PRIx64 ", ms_n=%u",
|
|
(void *)addr, data.start, data.end, msl->page_sz, ms_n);
|
|
/* Size of memory for bitmap. */
|
|
bmp_size = rte_bitmap_get_memory_footprint(ms_n);
|
|
mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE) +
|
|
bmp_size, RTE_CACHE_LINE_SIZE, msl->socket_id);
|
|
if (mr == NULL) {
|
|
DRV_LOG(DEBUG, "Unable to allocate memory for a new MR of"
|
|
" address (%p).", (void *)addr);
|
|
rte_errno = ENOMEM;
|
|
goto err_nolock;
|
|
}
|
|
mr->msl = msl;
|
|
/*
|
|
* Save the index of the first memseg and initialize memseg bitmap. To
|
|
* see if a memseg of ms_idx in the memseg-list is still valid, check:
|
|
* rte_bitmap_get(mr->bmp, ms_idx - mr->ms_base_idx)
|
|
*/
|
|
mr->ms_base_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
bmp_mem = RTE_PTR_ALIGN_CEIL(mr + 1, RTE_CACHE_LINE_SIZE);
|
|
mr->ms_bmp = rte_bitmap_init(ms_n, bmp_mem, bmp_size);
|
|
if (mr->ms_bmp == NULL) {
|
|
DRV_LOG(DEBUG, "Unable to initialize bitmap for a new MR of"
|
|
" address (%p).", (void *)addr);
|
|
rte_errno = EINVAL;
|
|
goto err_nolock;
|
|
}
|
|
/*
|
|
* Should recheck whether the extended contiguous chunk is still valid.
|
|
* Because memory_hotplug_lock can't be held if there's any memory
|
|
* related calls in a critical path, resource allocation above can't be
|
|
* locked. If the memory has been changed at this point, try again with
|
|
* just single page. If not, go on with the big chunk atomically from
|
|
* here.
|
|
*/
|
|
rte_mcfg_mem_read_lock();
|
|
data_re = data;
|
|
if (len > msl->page_sz &&
|
|
!rte_memseg_contig_walk(mr_find_contig_memsegs_cb, &data_re)) {
|
|
DRV_LOG(DEBUG,
|
|
"Unable to find virtually contiguous chunk for address "
|
|
"(%p). rte_memseg_contig_walk() failed.", (void *)addr);
|
|
rte_errno = ENXIO;
|
|
goto err_memlock;
|
|
}
|
|
if (data.start != data_re.start || data.end != data_re.end) {
|
|
/*
|
|
* The extended contiguous chunk has been changed. Try again
|
|
* with single memseg instead.
|
|
*/
|
|
data.start = RTE_ALIGN_FLOOR(addr, msl->page_sz);
|
|
data.end = data.start + msl->page_sz;
|
|
rte_mcfg_mem_read_unlock();
|
|
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
|
|
goto alloc_resources;
|
|
}
|
|
MLX5_ASSERT(data.msl == data_re.msl);
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
/*
|
|
* Check the address is really missing. If other thread already created
|
|
* one or it is not found due to overflow, abort and return.
|
|
*/
|
|
if (mlx5_mr_lookup_cache(share_cache, entry, addr) != UINT32_MAX) {
|
|
/*
|
|
* Insert to the global cache table. It may fail due to
|
|
* low-on-memory. Then, this entry will have to be searched
|
|
* here again.
|
|
*/
|
|
mr_btree_insert(&share_cache->cache, entry);
|
|
DRV_LOG(DEBUG, "Found MR for %p on final lookup, abort",
|
|
(void *)addr);
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
rte_mcfg_mem_read_unlock();
|
|
/*
|
|
* Must be unlocked before calling rte_free() because
|
|
* mlx5_mr_mem_event_free_cb() can be called inside.
|
|
*/
|
|
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
|
|
return entry->lkey;
|
|
}
|
|
/*
|
|
* Trim start and end addresses for verbs MR. Set bits for registering
|
|
* memsegs but exclude already registered ones. Bitmap can be
|
|
* fragmented.
|
|
*/
|
|
for (n = 0; n < ms_n; ++n) {
|
|
uintptr_t start;
|
|
struct mr_cache_entry ret;
|
|
|
|
memset(&ret, 0, sizeof(ret));
|
|
start = data_re.start + n * msl->page_sz;
|
|
/* Exclude memsegs already registered by other MRs. */
|
|
if (mlx5_mr_lookup_cache(share_cache, &ret, start) ==
|
|
UINT32_MAX) {
|
|
/*
|
|
* Start from the first unregistered memseg in the
|
|
* extended range.
|
|
*/
|
|
if (ms_idx_shift == -1) {
|
|
mr->ms_base_idx += n;
|
|
data.start = start;
|
|
ms_idx_shift = n;
|
|
}
|
|
data.end = start + msl->page_sz;
|
|
rte_bitmap_set(mr->ms_bmp, n - ms_idx_shift);
|
|
++mr->ms_n;
|
|
}
|
|
}
|
|
len = data.end - data.start;
|
|
mr->ms_bmp_n = len / msl->page_sz;
|
|
MLX5_ASSERT(ms_idx_shift + mr->ms_bmp_n <= ms_n);
|
|
/*
|
|
* Finally create an MR for the memory chunk. Verbs: ibv_reg_mr() can
|
|
* be called with holding the memory lock because it doesn't use
|
|
* mlx5_alloc_buf_extern() which eventually calls rte_malloc_socket()
|
|
* through mlx5_alloc_verbs_buf().
|
|
*/
|
|
share_cache->reg_mr_cb(pd, (void *)data.start, len, &mr->pmd_mr);
|
|
if (mr->pmd_mr.obj == NULL) {
|
|
DRV_LOG(DEBUG, "Fail to create an MR for address (%p)",
|
|
(void *)addr);
|
|
rte_errno = EINVAL;
|
|
goto err_mrlock;
|
|
}
|
|
MLX5_ASSERT((uintptr_t)mr->pmd_mr.addr == data.start);
|
|
MLX5_ASSERT(mr->pmd_mr.len);
|
|
LIST_INSERT_HEAD(&share_cache->mr_list, mr, mr);
|
|
DRV_LOG(DEBUG, "MR CREATED (%p) for %p:\n"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
|
|
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
|
|
(void *)mr, (void *)addr, data.start, data.end,
|
|
rte_cpu_to_be_32(mr->pmd_mr.lkey),
|
|
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
|
|
/* Insert to the global cache table. */
|
|
mlx5_mr_insert_cache(share_cache, mr);
|
|
/* Fill in output data. */
|
|
mlx5_mr_lookup_cache(share_cache, entry, addr);
|
|
/* Lookup can't fail. */
|
|
MLX5_ASSERT(entry->lkey != UINT32_MAX);
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
rte_mcfg_mem_read_unlock();
|
|
return entry->lkey;
|
|
err_mrlock:
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
err_memlock:
|
|
rte_mcfg_mem_read_unlock();
|
|
err_nolock:
|
|
/*
|
|
* In case of error, as this can be called in a datapath, a warning
|
|
* message per an error is preferable instead. Must be unlocked before
|
|
* calling rte_free() because mlx5_mr_mem_event_free_cb() can be called
|
|
* inside.
|
|
*/
|
|
mlx5_mr_free(mr, share_cache->dereg_mr_cb);
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
/**
|
|
* Create a new global Memory Region (MR) for a missing virtual address.
|
|
* This can be called from primary and secondary process.
|
|
*
|
|
* @param cdev
|
|
* Pointer to the mlx5 common device.
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this will not be updated.
|
|
* @param addr
|
|
* Target virtual address to register.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on failure and rte_errno is set.
|
|
*/
|
|
uint32_t
|
|
mlx5_mr_create(struct mlx5_common_device *cdev,
|
|
struct mlx5_mr_share_cache *share_cache,
|
|
struct mr_cache_entry *entry, uintptr_t addr)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
switch (rte_eal_process_type()) {
|
|
case RTE_PROC_PRIMARY:
|
|
ret = mlx5_mr_create_primary(cdev->pd, share_cache, entry, addr,
|
|
cdev->config.mr_ext_memseg_en);
|
|
break;
|
|
case RTE_PROC_SECONDARY:
|
|
ret = mlx5_mr_create_secondary(cdev, share_cache, entry, addr);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Look up address in the global MR cache table. If not found, create a new MR.
|
|
* Insert the found/created entry to local bottom-half cache table.
|
|
*
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR control structure.
|
|
* @param[out] entry
|
|
* Pointer to returning MR cache entry, found in the global cache or newly
|
|
* created. If failed to create one, this is not written.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
static uint32_t
|
|
mr_lookup_caches(struct mlx5_mr_ctrl *mr_ctrl,
|
|
struct mr_cache_entry *entry, uintptr_t addr)
|
|
{
|
|
struct mlx5_mr_share_cache *share_cache =
|
|
container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
|
|
dev_gen);
|
|
struct mlx5_common_device *cdev =
|
|
container_of(share_cache, struct mlx5_common_device, mr_scache);
|
|
struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
|
|
uint32_t lkey;
|
|
uint16_t idx;
|
|
|
|
/* If local cache table is full, try to double it. */
|
|
if (unlikely(bt->len == bt->size))
|
|
mr_btree_expand(bt, bt->size << 1);
|
|
/* Look up in the global cache. */
|
|
rte_rwlock_read_lock(&share_cache->rwlock);
|
|
lkey = mr_btree_lookup(&share_cache->cache, &idx, addr);
|
|
if (lkey != UINT32_MAX) {
|
|
/* Found. */
|
|
*entry = (*share_cache->cache.table)[idx];
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
/*
|
|
* Update local cache. Even if it fails, return the found entry
|
|
* to update top-half cache. Next time, this entry will be found
|
|
* in the global cache.
|
|
*/
|
|
mr_btree_insert(bt, entry);
|
|
return lkey;
|
|
}
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
/* First time to see the address? Create a new MR. */
|
|
lkey = mlx5_mr_create(cdev, share_cache, entry, addr);
|
|
/*
|
|
* Update the local cache if successfully created a new global MR. Even
|
|
* if failed to create one, there's no action to take in this datapath
|
|
* code. As returning LKey is invalid, this will eventually make HW
|
|
* fail.
|
|
*/
|
|
if (lkey != UINT32_MAX)
|
|
mr_btree_insert(bt, entry);
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Bottom-half of LKey search on datapath. First search in cache_bh[] and if
|
|
* misses, search in the global MR cache table and update the new entry to
|
|
* per-queue local caches.
|
|
*
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR control structure.
|
|
* @param addr
|
|
* Search key.
|
|
*
|
|
* @return
|
|
* Searched LKey on success, UINT32_MAX on no match.
|
|
*/
|
|
static uint32_t
|
|
mlx5_mr_addr2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, uintptr_t addr)
|
|
{
|
|
uint32_t lkey;
|
|
uint16_t bh_idx = 0;
|
|
/* Victim in top-half cache to replace with new entry. */
|
|
struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
|
|
|
|
/* Binary-search MR translation table. */
|
|
lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
|
|
/* Update top-half cache. */
|
|
if (likely(lkey != UINT32_MAX)) {
|
|
*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
|
|
} else {
|
|
/*
|
|
* If missed in local lookup table, search in the global cache
|
|
* and local cache_bh[] will be updated inside if possible.
|
|
* Top-half cache entry will also be updated.
|
|
*/
|
|
lkey = mr_lookup_caches(mr_ctrl, repl, addr);
|
|
if (unlikely(lkey == UINT32_MAX))
|
|
return UINT32_MAX;
|
|
}
|
|
/* Update the most recently used entry. */
|
|
mr_ctrl->mru = mr_ctrl->head;
|
|
/* Point to the next victim, the oldest. */
|
|
mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Release all the created MRs and resources on global MR cache of a device
|
|
* list.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
*/
|
|
void
|
|
mlx5_mr_release_cache(struct mlx5_mr_share_cache *share_cache)
|
|
{
|
|
struct mlx5_mr *mr_next;
|
|
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
/* Detach from MR list and move to free list. */
|
|
mr_next = LIST_FIRST(&share_cache->mr_list);
|
|
while (mr_next != NULL) {
|
|
struct mlx5_mr *mr = mr_next;
|
|
|
|
mr_next = LIST_NEXT(mr, mr);
|
|
LIST_REMOVE(mr, mr);
|
|
LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
|
|
}
|
|
LIST_INIT(&share_cache->mr_list);
|
|
/* Free global cache. */
|
|
mlx5_mr_btree_free(&share_cache->cache);
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
/* Free all remaining MRs. */
|
|
mlx5_mr_garbage_collect(share_cache);
|
|
}
|
|
|
|
/**
|
|
* Initialize global MR cache of a device.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param socket
|
|
* NUMA socket on which memory must be allocated.
|
|
*
|
|
* @return
|
|
* 0 on success, a negative errno value otherwise and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx5_mr_create_cache(struct mlx5_mr_share_cache *share_cache, int socket)
|
|
{
|
|
/* Set the reg_mr and dereg_mr callback functions */
|
|
mlx5_os_set_reg_mr_cb(&share_cache->reg_mr_cb,
|
|
&share_cache->dereg_mr_cb);
|
|
rte_rwlock_init(&share_cache->rwlock);
|
|
rte_rwlock_init(&share_cache->mprwlock);
|
|
share_cache->mp_cb_registered = 0;
|
|
/* Initialize B-tree and allocate memory for global MR cache table. */
|
|
return mlx5_mr_btree_init(&share_cache->cache,
|
|
MLX5_MR_BTREE_CACHE_N * 2, socket);
|
|
}
|
|
|
|
/**
|
|
* Flush all of the local cache entries.
|
|
*
|
|
* @param mr_ctrl
|
|
* Pointer to per-queue MR local cache.
|
|
*/
|
|
void
|
|
mlx5_mr_flush_local_cache(struct mlx5_mr_ctrl *mr_ctrl)
|
|
{
|
|
/* Reset the most-recently-used index. */
|
|
mr_ctrl->mru = 0;
|
|
/* Reset the linear search array. */
|
|
mr_ctrl->head = 0;
|
|
memset(mr_ctrl->cache, 0, sizeof(mr_ctrl->cache));
|
|
/* Reset the B-tree table. */
|
|
mr_ctrl->cache_bh.len = 1;
|
|
mr_ctrl->cache_bh.overflow = 0;
|
|
/* Update the generation number. */
|
|
mr_ctrl->cur_gen = *mr_ctrl->dev_gen_ptr;
|
|
DRV_LOG(DEBUG, "mr_ctrl(%p): flushed, cur_gen=%d",
|
|
(void *)mr_ctrl, mr_ctrl->cur_gen);
|
|
}
|
|
|
|
/**
|
|
* Creates a memory region for external memory, that is memory which is not
|
|
* part of the DPDK memory segments.
|
|
*
|
|
* @param pd
|
|
* Pointer to pd of a device (net, regex, vdpa,...).
|
|
* @param addr
|
|
* Starting virtual address of memory.
|
|
* @param len
|
|
* Length of memory segment being mapped.
|
|
* @param socked_id
|
|
* Socket to allocate heap memory for the control structures.
|
|
*
|
|
* @return
|
|
* Pointer to MR structure on success, NULL otherwise.
|
|
*/
|
|
struct mlx5_mr *
|
|
mlx5_create_mr_ext(void *pd, uintptr_t addr, size_t len, int socket_id,
|
|
mlx5_reg_mr_t reg_mr_cb)
|
|
{
|
|
struct mlx5_mr *mr = NULL;
|
|
|
|
mr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
RTE_ALIGN_CEIL(sizeof(*mr), RTE_CACHE_LINE_SIZE),
|
|
RTE_CACHE_LINE_SIZE, socket_id);
|
|
if (mr == NULL)
|
|
return NULL;
|
|
reg_mr_cb(pd, (void *)addr, len, &mr->pmd_mr);
|
|
if (mr->pmd_mr.obj == NULL) {
|
|
DRV_LOG(WARNING,
|
|
"Fail to create MR for address (%p)",
|
|
(void *)addr);
|
|
mlx5_free(mr);
|
|
return NULL;
|
|
}
|
|
mr->msl = NULL; /* Mark it is external memory. */
|
|
mr->ms_bmp = NULL;
|
|
mr->ms_n = 1;
|
|
mr->ms_bmp_n = 1;
|
|
DRV_LOG(DEBUG,
|
|
"MR CREATED (%p) for external memory %p:\n"
|
|
" [0x%" PRIxPTR ", 0x%" PRIxPTR "),"
|
|
" lkey=0x%x base_idx=%u ms_n=%u, ms_bmp_n=%u",
|
|
(void *)mr, (void *)addr,
|
|
addr, addr + len, rte_cpu_to_be_32(mr->pmd_mr.lkey),
|
|
mr->ms_base_idx, mr->ms_n, mr->ms_bmp_n);
|
|
return mr;
|
|
}
|
|
|
|
/**
|
|
* Callback for memory free event. Iterate freed memsegs and check whether it
|
|
* belongs to an existing MR. If found, clear the bit from bitmap of MR. As a
|
|
* result, the MR would be fragmented. If it becomes empty, the MR will be freed
|
|
* later by mlx5_mr_garbage_collect(). Even if this callback is called from a
|
|
* secondary process, the garbage collector will be called in primary process
|
|
* as the secondary process can't call mlx5_mr_create().
|
|
*
|
|
* The global cache must be rebuilt if there's any change and this event has to
|
|
* be propagated to dataplane threads to flush the local caches.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
* @param ibdev_name
|
|
* Name of ibv device.
|
|
* @param addr
|
|
* Address of freed memory.
|
|
* @param len
|
|
* Size of freed memory.
|
|
*/
|
|
void
|
|
mlx5_free_mr_by_addr(struct mlx5_mr_share_cache *share_cache,
|
|
const char *ibdev_name, const void *addr, size_t len)
|
|
{
|
|
const struct rte_memseg_list *msl;
|
|
struct mlx5_mr *mr;
|
|
int ms_n;
|
|
int i;
|
|
int rebuild = 0;
|
|
|
|
DRV_LOG(DEBUG, "device %s free callback: addr=%p, len=%zu",
|
|
ibdev_name, addr, len);
|
|
msl = rte_mem_virt2memseg_list(addr);
|
|
/* addr and len must be page-aligned. */
|
|
MLX5_ASSERT((uintptr_t)addr ==
|
|
RTE_ALIGN((uintptr_t)addr, msl->page_sz));
|
|
MLX5_ASSERT(len == RTE_ALIGN(len, msl->page_sz));
|
|
ms_n = len / msl->page_sz;
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
/* Clear bits of freed memsegs from MR. */
|
|
for (i = 0; i < ms_n; ++i) {
|
|
const struct rte_memseg *ms;
|
|
struct mr_cache_entry entry;
|
|
uintptr_t start;
|
|
int ms_idx;
|
|
uint32_t pos;
|
|
|
|
/* Find MR having this memseg. */
|
|
start = (uintptr_t)addr + i * msl->page_sz;
|
|
mr = mlx5_mr_lookup_list(share_cache, &entry, start);
|
|
if (mr == NULL)
|
|
continue;
|
|
MLX5_ASSERT(mr->msl); /* Can't be external memory. */
|
|
ms = rte_mem_virt2memseg((void *)start, msl);
|
|
MLX5_ASSERT(ms != NULL);
|
|
MLX5_ASSERT(msl->page_sz == ms->hugepage_sz);
|
|
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
pos = ms_idx - mr->ms_base_idx;
|
|
MLX5_ASSERT(rte_bitmap_get(mr->ms_bmp, pos));
|
|
MLX5_ASSERT(pos < mr->ms_bmp_n);
|
|
DRV_LOG(DEBUG, "device %s MR(%p): clear bitmap[%u] for addr %p",
|
|
ibdev_name, (void *)mr, pos, (void *)start);
|
|
rte_bitmap_clear(mr->ms_bmp, pos);
|
|
if (--mr->ms_n == 0) {
|
|
LIST_REMOVE(mr, mr);
|
|
LIST_INSERT_HEAD(&share_cache->mr_free_list, mr, mr);
|
|
DRV_LOG(DEBUG, "device %s remove MR(%p) from list",
|
|
ibdev_name, (void *)mr);
|
|
}
|
|
/*
|
|
* MR is fragmented or will be freed. the global cache must be
|
|
* rebuilt.
|
|
*/
|
|
rebuild = 1;
|
|
}
|
|
if (rebuild) {
|
|
mlx5_mr_rebuild_cache(share_cache);
|
|
/*
|
|
* No explicit wmb is needed after updating dev_gen due to
|
|
* store-release ordering in unlock that provides the
|
|
* implicit barrier at the software visible level.
|
|
*/
|
|
++share_cache->dev_gen;
|
|
DRV_LOG(DEBUG, "broadcasting local cache flush, gen=%d",
|
|
share_cache->dev_gen);
|
|
}
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
}
|
|
|
|
/**
|
|
* Dump all the created MRs and the global cache entries.
|
|
*
|
|
* @param share_cache
|
|
* Pointer to a global shared MR cache.
|
|
*/
|
|
void
|
|
mlx5_mr_dump_cache(struct mlx5_mr_share_cache *share_cache __rte_unused)
|
|
{
|
|
#ifdef RTE_LIBRTE_MLX5_DEBUG
|
|
struct mlx5_mr *mr;
|
|
int mr_n = 0;
|
|
int chunk_n = 0;
|
|
|
|
rte_rwlock_read_lock(&share_cache->rwlock);
|
|
/* Iterate all the existing MRs. */
|
|
LIST_FOREACH(mr, &share_cache->mr_list, mr) {
|
|
unsigned int n;
|
|
|
|
DRV_LOG(DEBUG, "MR[%u], LKey = 0x%x, ms_n = %u, ms_bmp_n = %u",
|
|
mr_n++, rte_cpu_to_be_32(mr->pmd_mr.lkey),
|
|
mr->ms_n, mr->ms_bmp_n);
|
|
if (mr->ms_n == 0)
|
|
continue;
|
|
for (n = 0; n < mr->ms_bmp_n; ) {
|
|
struct mr_cache_entry ret = { 0, };
|
|
|
|
n = mr_find_next_chunk(mr, &ret, n);
|
|
if (!ret.end)
|
|
break;
|
|
DRV_LOG(DEBUG,
|
|
" chunk[%u], [0x%" PRIxPTR ", 0x%" PRIxPTR ")",
|
|
chunk_n++, ret.start, ret.end);
|
|
}
|
|
}
|
|
DRV_LOG(DEBUG, "Dumping global cache %p", (void *)share_cache);
|
|
mlx5_mr_btree_dump(&share_cache->cache);
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
mlx5_range_compare_start(const void *lhs, const void *rhs)
|
|
{
|
|
const struct mlx5_range *r1 = lhs, *r2 = rhs;
|
|
|
|
if (r1->start > r2->start)
|
|
return 1;
|
|
else if (r1->start < r2->start)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
mlx5_range_from_mempool_chunk(struct rte_mempool *mp, void *opaque,
|
|
struct rte_mempool_memhdr *memhdr,
|
|
unsigned int idx)
|
|
{
|
|
struct mlx5_range *ranges = opaque, *range = &ranges[idx];
|
|
uint64_t page_size = rte_mem_page_size();
|
|
|
|
RTE_SET_USED(mp);
|
|
range->start = RTE_ALIGN_FLOOR((uintptr_t)memhdr->addr, page_size);
|
|
range->end = RTE_ALIGN_CEIL(range->start + memhdr->len, page_size);
|
|
}
|
|
|
|
/**
|
|
* Collect page-aligned memory ranges of the mempool.
|
|
*/
|
|
static int
|
|
mlx5_mempool_get_chunks(struct rte_mempool *mp, struct mlx5_range **out,
|
|
unsigned int *out_n)
|
|
{
|
|
unsigned int n;
|
|
|
|
DRV_LOG(DEBUG, "Collecting chunks of regular mempool %s", mp->name);
|
|
n = mp->nb_mem_chunks;
|
|
*out = calloc(sizeof(**out), n);
|
|
if (*out == NULL)
|
|
return -1;
|
|
rte_mempool_mem_iter(mp, mlx5_range_from_mempool_chunk, *out);
|
|
*out_n = n;
|
|
return 0;
|
|
}
|
|
|
|
struct mlx5_mempool_get_extmem_data {
|
|
struct mlx5_range *heap;
|
|
unsigned int heap_size;
|
|
int ret;
|
|
};
|
|
|
|
static void
|
|
mlx5_mempool_get_extmem_cb(struct rte_mempool *mp, void *opaque,
|
|
void *obj, unsigned int obj_idx)
|
|
{
|
|
struct mlx5_mempool_get_extmem_data *data = opaque;
|
|
struct rte_mbuf *mbuf = obj;
|
|
uintptr_t addr = (uintptr_t)mbuf->buf_addr;
|
|
struct mlx5_range *seg, *heap;
|
|
struct rte_memseg_list *msl;
|
|
size_t page_size;
|
|
uintptr_t page_start;
|
|
unsigned int pos = 0, len = data->heap_size, delta;
|
|
|
|
RTE_SET_USED(mp);
|
|
RTE_SET_USED(obj_idx);
|
|
if (data->ret < 0)
|
|
return;
|
|
/* Binary search for an already visited page. */
|
|
while (len > 1) {
|
|
delta = len / 2;
|
|
if (addr < data->heap[pos + delta].start) {
|
|
len = delta;
|
|
} else {
|
|
pos += delta;
|
|
len -= delta;
|
|
}
|
|
}
|
|
if (data->heap != NULL) {
|
|
seg = &data->heap[pos];
|
|
if (seg->start <= addr && addr < seg->end)
|
|
return;
|
|
}
|
|
/* Determine the page boundaries and remember them. */
|
|
heap = realloc(data->heap, sizeof(heap[0]) * (data->heap_size + 1));
|
|
if (heap == NULL) {
|
|
free(data->heap);
|
|
data->heap = NULL;
|
|
data->ret = -1;
|
|
return;
|
|
}
|
|
data->heap = heap;
|
|
data->heap_size++;
|
|
seg = &heap[data->heap_size - 1];
|
|
msl = rte_mem_virt2memseg_list((void *)addr);
|
|
page_size = msl != NULL ? msl->page_sz : rte_mem_page_size();
|
|
page_start = RTE_PTR_ALIGN_FLOOR(addr, page_size);
|
|
seg->start = page_start;
|
|
seg->end = page_start + page_size;
|
|
/* Maintain the heap order. */
|
|
qsort(data->heap, data->heap_size, sizeof(heap[0]),
|
|
mlx5_range_compare_start);
|
|
}
|
|
|
|
/**
|
|
* Recover pages of external memory as close as possible
|
|
* for a mempool with RTE_PKTMBUF_POOL_PINNED_EXT_BUF.
|
|
* Pages are stored in a heap for efficient search, for mbufs are many.
|
|
*/
|
|
static int
|
|
mlx5_mempool_get_extmem(struct rte_mempool *mp, struct mlx5_range **out,
|
|
unsigned int *out_n)
|
|
{
|
|
struct mlx5_mempool_get_extmem_data data;
|
|
|
|
DRV_LOG(DEBUG, "Recovering external pinned pages of mempool %s",
|
|
mp->name);
|
|
memset(&data, 0, sizeof(data));
|
|
rte_mempool_obj_iter(mp, mlx5_mempool_get_extmem_cb, &data);
|
|
*out = data.heap;
|
|
*out_n = data.heap_size;
|
|
return data.ret;
|
|
}
|
|
|
|
/**
|
|
* Get VA-contiguous ranges of the mempool memory.
|
|
* Each range start and end is aligned to the system page size.
|
|
*
|
|
* @param[in] mp
|
|
* Analyzed mempool.
|
|
* @param[in] is_extmem
|
|
* Whether the pool is contains only external pinned buffers.
|
|
* @param[out] out
|
|
* Receives the ranges, caller must release it with free().
|
|
* @param[out] out_n
|
|
* Receives the number of @p out elements.
|
|
*
|
|
* @return
|
|
* 0 on success, (-1) on failure.
|
|
*/
|
|
static int
|
|
mlx5_get_mempool_ranges(struct rte_mempool *mp, bool is_extmem,
|
|
struct mlx5_range **out, unsigned int *out_n)
|
|
{
|
|
struct mlx5_range *chunks;
|
|
unsigned int chunks_n, contig_n, i;
|
|
int ret;
|
|
|
|
/* Collect the pool underlying memory. */
|
|
ret = is_extmem ? mlx5_mempool_get_extmem(mp, &chunks, &chunks_n) :
|
|
mlx5_mempool_get_chunks(mp, &chunks, &chunks_n);
|
|
if (ret < 0)
|
|
return ret;
|
|
/* Merge adjacent chunks and place them at the beginning. */
|
|
qsort(chunks, chunks_n, sizeof(chunks[0]), mlx5_range_compare_start);
|
|
contig_n = 1;
|
|
for (i = 1; i < chunks_n; i++)
|
|
if (chunks[i - 1].end != chunks[i].start) {
|
|
chunks[contig_n - 1].end = chunks[i - 1].end;
|
|
chunks[contig_n] = chunks[i];
|
|
contig_n++;
|
|
}
|
|
/* Extend the last contiguous chunk to the end of the mempool. */
|
|
chunks[contig_n - 1].end = chunks[i - 1].end;
|
|
*out = chunks;
|
|
*out_n = contig_n;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Analyze mempool memory to select memory ranges to register.
|
|
*
|
|
* @param[in] mp
|
|
* Mempool to analyze.
|
|
* @param[in] is_extmem
|
|
* Whether the pool is contains only external pinned buffers.
|
|
* @param[out] out
|
|
* Receives memory ranges to register, aligned to the system page size.
|
|
* The caller must release them with free().
|
|
* @param[out] out_n
|
|
* Receives the number of @p out items.
|
|
* @param[out] share_hugepage
|
|
* Receives True if the entire pool resides within a single hugepage.
|
|
*
|
|
* @return
|
|
* 0 on success, (-1) on failure.
|
|
*/
|
|
static int
|
|
mlx5_mempool_reg_analyze(struct rte_mempool *mp, bool is_extmem,
|
|
struct mlx5_range **out, unsigned int *out_n,
|
|
bool *share_hugepage)
|
|
{
|
|
struct mlx5_range *ranges = NULL;
|
|
unsigned int i, ranges_n = 0;
|
|
struct rte_memseg_list *msl;
|
|
|
|
if (mlx5_get_mempool_ranges(mp, is_extmem, &ranges, &ranges_n) < 0) {
|
|
DRV_LOG(ERR, "Cannot get address ranges for mempool %s",
|
|
mp->name);
|
|
return -1;
|
|
}
|
|
/* Check if the hugepage of the pool can be shared. */
|
|
*share_hugepage = false;
|
|
msl = rte_mem_virt2memseg_list((void *)ranges[0].start);
|
|
if (msl != NULL) {
|
|
uint64_t hugepage_sz = 0;
|
|
|
|
/* Check that all ranges are on pages of the same size. */
|
|
for (i = 0; i < ranges_n; i++) {
|
|
if (hugepage_sz != 0 && hugepage_sz != msl->page_sz)
|
|
break;
|
|
hugepage_sz = msl->page_sz;
|
|
}
|
|
if (i == ranges_n) {
|
|
/*
|
|
* If the entire pool is within one hugepage,
|
|
* combine all ranges into one of the hugepage size.
|
|
*/
|
|
uintptr_t reg_start = ranges[0].start;
|
|
uintptr_t reg_end = ranges[ranges_n - 1].end;
|
|
uintptr_t hugepage_start =
|
|
RTE_ALIGN_FLOOR(reg_start, hugepage_sz);
|
|
uintptr_t hugepage_end = hugepage_start + hugepage_sz;
|
|
if (reg_end < hugepage_end) {
|
|
ranges[0].start = hugepage_start;
|
|
ranges[0].end = hugepage_end;
|
|
ranges_n = 1;
|
|
*share_hugepage = true;
|
|
}
|
|
}
|
|
}
|
|
*out = ranges;
|
|
*out_n = ranges_n;
|
|
return 0;
|
|
}
|
|
|
|
/** Create a registration object for the mempool. */
|
|
static struct mlx5_mempool_reg *
|
|
mlx5_mempool_reg_create(struct rte_mempool *mp, unsigned int mrs_n,
|
|
bool is_extmem)
|
|
{
|
|
struct mlx5_mempool_reg *mpr = NULL;
|
|
|
|
mpr = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
sizeof(struct mlx5_mempool_reg),
|
|
RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
|
|
if (mpr == NULL) {
|
|
DRV_LOG(ERR, "Cannot allocate mempool %s registration object",
|
|
mp->name);
|
|
return NULL;
|
|
}
|
|
mpr->mrs = mlx5_malloc(MLX5_MEM_RTE | MLX5_MEM_ZERO,
|
|
mrs_n * sizeof(struct mlx5_mempool_mr),
|
|
RTE_CACHE_LINE_SIZE, SOCKET_ID_ANY);
|
|
if (!mpr->mrs) {
|
|
DRV_LOG(ERR, "Cannot allocate mempool %s registration MRs",
|
|
mp->name);
|
|
mlx5_free(mpr);
|
|
return NULL;
|
|
}
|
|
mpr->mp = mp;
|
|
mpr->mrs_n = mrs_n;
|
|
mpr->is_extmem = is_extmem;
|
|
return mpr;
|
|
}
|
|
|
|
/**
|
|
* Destroy a mempool registration object.
|
|
*
|
|
* @param standalone
|
|
* Whether @p mpr owns its MRs exclusively, i.e. they are not shared.
|
|
*/
|
|
static void
|
|
mlx5_mempool_reg_destroy(struct mlx5_mr_share_cache *share_cache,
|
|
struct mlx5_mempool_reg *mpr, bool standalone)
|
|
{
|
|
if (standalone) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < mpr->mrs_n; i++)
|
|
share_cache->dereg_mr_cb(&mpr->mrs[i].pmd_mr);
|
|
mlx5_free(mpr->mrs);
|
|
}
|
|
mlx5_free(mpr);
|
|
}
|
|
|
|
/** Find registration object of a mempool. */
|
|
static struct mlx5_mempool_reg *
|
|
mlx5_mempool_reg_lookup(struct mlx5_mr_share_cache *share_cache,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct mlx5_mempool_reg *mpr;
|
|
|
|
LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
|
|
if (mpr->mp == mp)
|
|
break;
|
|
return mpr;
|
|
}
|
|
|
|
/** Increment reference counters of MRs used in the registration. */
|
|
static void
|
|
mlx5_mempool_reg_attach(struct mlx5_mempool_reg *mpr)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < mpr->mrs_n; i++)
|
|
__atomic_add_fetch(&mpr->mrs[i].refcnt, 1, __ATOMIC_RELAXED);
|
|
}
|
|
|
|
/**
|
|
* Decrement reference counters of MRs used in the registration.
|
|
*
|
|
* @return True if no more references to @p mpr MRs exist, False otherwise.
|
|
*/
|
|
static bool
|
|
mlx5_mempool_reg_detach(struct mlx5_mempool_reg *mpr)
|
|
{
|
|
unsigned int i;
|
|
bool ret = false;
|
|
|
|
for (i = 0; i < mpr->mrs_n; i++)
|
|
ret |= __atomic_sub_fetch(&mpr->mrs[i].refcnt, 1,
|
|
__ATOMIC_RELAXED) == 0;
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
mlx5_mr_mempool_register_primary(struct mlx5_mr_share_cache *share_cache,
|
|
void *pd, struct rte_mempool *mp,
|
|
bool is_extmem)
|
|
{
|
|
struct mlx5_range *ranges = NULL;
|
|
struct mlx5_mempool_reg *mpr, *old_mpr, *new_mpr;
|
|
unsigned int i, ranges_n;
|
|
bool share_hugepage, standalone = false;
|
|
int ret = -1;
|
|
|
|
/* Early check to avoid unnecessary creation of MRs. */
|
|
rte_rwlock_read_lock(&share_cache->rwlock);
|
|
old_mpr = mlx5_mempool_reg_lookup(share_cache, mp);
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
if (old_mpr != NULL && (!is_extmem || old_mpr->is_extmem)) {
|
|
DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
|
|
mp->name, pd);
|
|
rte_errno = EEXIST;
|
|
goto exit;
|
|
}
|
|
if (mlx5_mempool_reg_analyze(mp, is_extmem, &ranges, &ranges_n,
|
|
&share_hugepage) < 0) {
|
|
DRV_LOG(ERR, "Cannot get mempool %s memory ranges", mp->name);
|
|
rte_errno = ENOMEM;
|
|
goto exit;
|
|
}
|
|
new_mpr = mlx5_mempool_reg_create(mp, ranges_n, is_extmem);
|
|
if (new_mpr == NULL) {
|
|
DRV_LOG(ERR,
|
|
"Cannot create a registration object for mempool %s in PD %p",
|
|
mp->name, pd);
|
|
rte_errno = ENOMEM;
|
|
goto exit;
|
|
}
|
|
/*
|
|
* If the entire mempool fits in a single hugepage, the MR for this
|
|
* hugepage can be shared across mempools that also fit in it.
|
|
*/
|
|
if (share_hugepage) {
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next) {
|
|
if (mpr->mrs[0].pmd_mr.addr == (void *)ranges[0].start)
|
|
break;
|
|
}
|
|
if (mpr != NULL) {
|
|
new_mpr->mrs = mpr->mrs;
|
|
mlx5_mempool_reg_attach(new_mpr);
|
|
LIST_INSERT_HEAD(&share_cache->mempool_reg_list,
|
|
new_mpr, next);
|
|
}
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
if (mpr != NULL) {
|
|
DRV_LOG(DEBUG, "Shared MR %#x in PD %p for mempool %s with mempool %s",
|
|
mpr->mrs[0].pmd_mr.lkey, pd, mp->name,
|
|
mpr->mp->name);
|
|
ret = 0;
|
|
goto exit;
|
|
}
|
|
}
|
|
for (i = 0; i < ranges_n; i++) {
|
|
struct mlx5_mempool_mr *mr = &new_mpr->mrs[i];
|
|
const struct mlx5_range *range = &ranges[i];
|
|
size_t len = range->end - range->start;
|
|
|
|
if (share_cache->reg_mr_cb(pd, (void *)range->start, len,
|
|
&mr->pmd_mr) < 0) {
|
|
DRV_LOG(ERR,
|
|
"Failed to create an MR in PD %p for address range "
|
|
"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
|
|
pd, range->start, range->end, len, mp->name);
|
|
break;
|
|
}
|
|
DRV_LOG(DEBUG,
|
|
"Created a new MR %#x in PD %p for address range "
|
|
"[0x%" PRIxPTR ", 0x%" PRIxPTR "] (%zu bytes) for mempool %s",
|
|
mr->pmd_mr.lkey, pd, range->start, range->end, len,
|
|
mp->name);
|
|
}
|
|
if (i != ranges_n) {
|
|
mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
|
|
rte_errno = EINVAL;
|
|
goto exit;
|
|
}
|
|
/* Concurrent registration is not supposed to happen. */
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
mpr = mlx5_mempool_reg_lookup(share_cache, mp);
|
|
if (mpr == old_mpr && old_mpr != NULL) {
|
|
LIST_REMOVE(old_mpr, next);
|
|
standalone = mlx5_mempool_reg_detach(mpr);
|
|
/* No need to flush the cache: old MRs cannot be in use. */
|
|
mpr = NULL;
|
|
}
|
|
if (mpr == NULL) {
|
|
mlx5_mempool_reg_attach(new_mpr);
|
|
LIST_INSERT_HEAD(&share_cache->mempool_reg_list, new_mpr, next);
|
|
ret = 0;
|
|
}
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
if (mpr != NULL) {
|
|
DRV_LOG(DEBUG, "Mempool %s is already registered for PD %p",
|
|
mp->name, pd);
|
|
mlx5_mempool_reg_destroy(share_cache, new_mpr, true);
|
|
rte_errno = EEXIST;
|
|
goto exit;
|
|
} else if (old_mpr != NULL) {
|
|
DRV_LOG(DEBUG, "Mempool %s registration for PD %p updated for external memory",
|
|
mp->name, pd);
|
|
mlx5_mempool_reg_destroy(share_cache, old_mpr, standalone);
|
|
}
|
|
exit:
|
|
free(ranges);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
mlx5_mr_mempool_register_secondary(struct mlx5_common_device *cdev,
|
|
struct rte_mempool *mp, bool is_extmem)
|
|
{
|
|
return mlx5_mp_req_mempool_reg(cdev, mp, true, is_extmem);
|
|
}
|
|
|
|
/**
|
|
* Register the memory of a mempool in the protection domain.
|
|
*
|
|
* @param cdev
|
|
* Pointer to the mlx5 common device.
|
|
* @param mp
|
|
* Mempool to register.
|
|
*
|
|
* @return
|
|
* 0 on success, (-1) on failure and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx5_mr_mempool_register(struct mlx5_common_device *cdev,
|
|
struct rte_mempool *mp, bool is_extmem)
|
|
{
|
|
if (mp->flags & RTE_MEMPOOL_F_NON_IO)
|
|
return 0;
|
|
switch (rte_eal_process_type()) {
|
|
case RTE_PROC_PRIMARY:
|
|
return mlx5_mr_mempool_register_primary(&cdev->mr_scache,
|
|
cdev->pd, mp,
|
|
is_extmem);
|
|
case RTE_PROC_SECONDARY:
|
|
return mlx5_mr_mempool_register_secondary(cdev, mp, is_extmem);
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static int
|
|
mlx5_mr_mempool_unregister_primary(struct mlx5_mr_share_cache *share_cache,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct mlx5_mempool_reg *mpr;
|
|
bool standalone = false;
|
|
|
|
rte_rwlock_write_lock(&share_cache->rwlock);
|
|
LIST_FOREACH(mpr, &share_cache->mempool_reg_list, next)
|
|
if (mpr->mp == mp) {
|
|
LIST_REMOVE(mpr, next);
|
|
standalone = mlx5_mempool_reg_detach(mpr);
|
|
if (standalone)
|
|
/*
|
|
* The unlock operation below provides a memory
|
|
* barrier due to its store-release semantics.
|
|
*/
|
|
++share_cache->dev_gen;
|
|
break;
|
|
}
|
|
rte_rwlock_write_unlock(&share_cache->rwlock);
|
|
if (mpr == NULL) {
|
|
rte_errno = ENOENT;
|
|
return -1;
|
|
}
|
|
mlx5_mempool_reg_destroy(share_cache, mpr, standalone);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mlx5_mr_mempool_unregister_secondary(struct mlx5_common_device *cdev,
|
|
struct rte_mempool *mp)
|
|
{
|
|
return mlx5_mp_req_mempool_reg(cdev, mp, false, false /* is_extmem */);
|
|
}
|
|
|
|
/**
|
|
* Unregister the memory of a mempool from the protection domain.
|
|
*
|
|
* @param cdev
|
|
* Pointer to the mlx5 common device.
|
|
* @param mp
|
|
* Mempool to unregister.
|
|
*
|
|
* @return
|
|
* 0 on success, (-1) on failure and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx5_mr_mempool_unregister(struct mlx5_common_device *cdev,
|
|
struct rte_mempool *mp)
|
|
{
|
|
if (mp->flags & RTE_MEMPOOL_F_NON_IO)
|
|
return 0;
|
|
switch (rte_eal_process_type()) {
|
|
case RTE_PROC_PRIMARY:
|
|
return mlx5_mr_mempool_unregister_primary(&cdev->mr_scache, mp);
|
|
case RTE_PROC_SECONDARY:
|
|
return mlx5_mr_mempool_unregister_secondary(cdev, mp);
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Lookup a MR key by and address in a registered mempool.
|
|
*
|
|
* @param mpr
|
|
* Mempool registration object.
|
|
* @param addr
|
|
* Address within the mempool.
|
|
* @param entry
|
|
* Bottom-half cache entry to fill.
|
|
*
|
|
* @return
|
|
* MR key or UINT32_MAX on failure, which can only happen
|
|
* if the address is not from within the mempool.
|
|
*/
|
|
static uint32_t
|
|
mlx5_mempool_reg_addr2mr(struct mlx5_mempool_reg *mpr, uintptr_t addr,
|
|
struct mr_cache_entry *entry)
|
|
{
|
|
uint32_t lkey = UINT32_MAX;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < mpr->mrs_n; i++) {
|
|
const struct mlx5_pmd_mr *mr = &mpr->mrs[i].pmd_mr;
|
|
uintptr_t mr_start = (uintptr_t)mr->addr;
|
|
uintptr_t mr_end = mr_start + mr->len;
|
|
|
|
if (mr_start <= addr && addr < mr_end) {
|
|
lkey = rte_cpu_to_be_32(mr->lkey);
|
|
entry->start = mr_start;
|
|
entry->end = mr_end;
|
|
entry->lkey = lkey;
|
|
break;
|
|
}
|
|
}
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Update bottom-half cache from the list of mempool registrations.
|
|
*
|
|
* @param mr_ctrl
|
|
* Per-queue MR control handle.
|
|
* @param entry
|
|
* Pointer to an entry in the bottom-half cache to update
|
|
* with the MR lkey looked up.
|
|
* @param mp
|
|
* Mempool containing the address.
|
|
* @param addr
|
|
* Address to lookup.
|
|
* @return
|
|
* MR lkey on success, UINT32_MAX on failure.
|
|
*/
|
|
static uint32_t
|
|
mlx5_lookup_mempool_regs(struct mlx5_mr_ctrl *mr_ctrl,
|
|
struct mr_cache_entry *entry,
|
|
struct rte_mempool *mp, uintptr_t addr)
|
|
{
|
|
struct mlx5_mr_share_cache *share_cache =
|
|
container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
|
|
dev_gen);
|
|
struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
|
|
struct mlx5_mempool_reg *mpr;
|
|
uint32_t lkey = UINT32_MAX;
|
|
|
|
/* If local cache table is full, try to double it. */
|
|
if (unlikely(bt->len == bt->size))
|
|
mr_btree_expand(bt, bt->size << 1);
|
|
/* Look up in mempool registrations. */
|
|
rte_rwlock_read_lock(&share_cache->rwlock);
|
|
mpr = mlx5_mempool_reg_lookup(share_cache, mp);
|
|
if (mpr != NULL)
|
|
lkey = mlx5_mempool_reg_addr2mr(mpr, addr, entry);
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
/*
|
|
* Update local cache. Even if it fails, return the found entry
|
|
* to update top-half cache. Next time, this entry will be found
|
|
* in the global cache.
|
|
*/
|
|
if (lkey != UINT32_MAX)
|
|
mr_btree_insert(bt, entry);
|
|
return lkey;
|
|
}
|
|
|
|
/**
|
|
* Populate cache with LKeys of all MRs used by the mempool.
|
|
* It is intended to be used to register Rx mempools in advance.
|
|
*
|
|
* @param mr_ctrl
|
|
* Per-queue MR control handle.
|
|
* @param mp
|
|
* Registered memory pool.
|
|
*
|
|
* @return
|
|
* 0 on success, (-1) on failure and rte_errno is set.
|
|
*/
|
|
int
|
|
mlx5_mr_mempool_populate_cache(struct mlx5_mr_ctrl *mr_ctrl,
|
|
struct rte_mempool *mp)
|
|
{
|
|
struct mlx5_mr_share_cache *share_cache =
|
|
container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
|
|
dev_gen);
|
|
struct mlx5_mr_btree *bt = &mr_ctrl->cache_bh;
|
|
struct mlx5_mempool_reg *mpr;
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Registration is valid after the lock is released,
|
|
* because the function is called after the mempool is registered.
|
|
*/
|
|
rte_rwlock_read_lock(&share_cache->rwlock);
|
|
mpr = mlx5_mempool_reg_lookup(share_cache, mp);
|
|
rte_rwlock_read_unlock(&share_cache->rwlock);
|
|
if (mpr == NULL) {
|
|
DRV_LOG(ERR, "Mempool %s is not registered", mp->name);
|
|
rte_errno = ENOENT;
|
|
return -1;
|
|
}
|
|
for (i = 0; i < mpr->mrs_n; i++) {
|
|
struct mlx5_mempool_mr *mr = &mpr->mrs[i];
|
|
struct mr_cache_entry entry;
|
|
uint32_t lkey;
|
|
uint16_t idx;
|
|
|
|
lkey = mr_btree_lookup(bt, &idx, (uintptr_t)mr->pmd_mr.addr);
|
|
if (lkey != UINT32_MAX)
|
|
continue;
|
|
if (bt->len == bt->size)
|
|
mr_btree_expand(bt, bt->size << 1);
|
|
entry.start = (uintptr_t)mr->pmd_mr.addr;
|
|
entry.end = entry.start + mr->pmd_mr.len;
|
|
entry.lkey = rte_cpu_to_be_32(mr->pmd_mr.lkey);
|
|
if (mr_btree_insert(bt, &entry) < 0) {
|
|
DRV_LOG(ERR, "Cannot insert cache entry for mempool %s MR %08x",
|
|
mp->name, entry.lkey);
|
|
rte_errno = EINVAL;
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Bottom-half lookup for the address from the mempool.
|
|
*
|
|
* @param mr_ctrl
|
|
* Per-queue MR control handle.
|
|
* @param mp
|
|
* Mempool containing the address.
|
|
* @param addr
|
|
* Address to lookup.
|
|
* @return
|
|
* MR lkey on success, UINT32_MAX on failure.
|
|
*/
|
|
uint32_t
|
|
mlx5_mr_mempool2mr_bh(struct mlx5_mr_ctrl *mr_ctrl,
|
|
struct rte_mempool *mp, uintptr_t addr)
|
|
{
|
|
struct mr_cache_entry *repl = &mr_ctrl->cache[mr_ctrl->head];
|
|
uint32_t lkey;
|
|
uint16_t bh_idx = 0;
|
|
|
|
/* Binary-search MR translation table. */
|
|
lkey = mr_btree_lookup(&mr_ctrl->cache_bh, &bh_idx, addr);
|
|
/* Update top-half cache. */
|
|
if (likely(lkey != UINT32_MAX)) {
|
|
*repl = (*mr_ctrl->cache_bh.table)[bh_idx];
|
|
} else {
|
|
lkey = mlx5_lookup_mempool_regs(mr_ctrl, repl, mp, addr);
|
|
/* Can only fail if the address is not from the mempool. */
|
|
if (unlikely(lkey == UINT32_MAX))
|
|
return UINT32_MAX;
|
|
}
|
|
/* Update the most recently used entry. */
|
|
mr_ctrl->mru = mr_ctrl->head;
|
|
/* Point to the next victim, the oldest. */
|
|
mr_ctrl->head = (mr_ctrl->head + 1) % MLX5_MR_CACHE_N;
|
|
return lkey;
|
|
}
|
|
|
|
uint32_t
|
|
mlx5_mr_mb2mr_bh(struct mlx5_mr_ctrl *mr_ctrl, struct rte_mbuf *mb)
|
|
{
|
|
struct rte_mempool *mp;
|
|
struct mlx5_mprq_buf *buf;
|
|
uint32_t lkey;
|
|
uintptr_t addr = (uintptr_t)mb->buf_addr;
|
|
struct mlx5_mr_share_cache *share_cache =
|
|
container_of(mr_ctrl->dev_gen_ptr, struct mlx5_mr_share_cache,
|
|
dev_gen);
|
|
struct mlx5_common_device *cdev =
|
|
container_of(share_cache, struct mlx5_common_device, mr_scache);
|
|
bool external, mprq, pinned = false;
|
|
|
|
/* Recover MPRQ mempool. */
|
|
external = RTE_MBUF_HAS_EXTBUF(mb);
|
|
if (external && mb->shinfo->free_cb == mlx5_mprq_buf_free_cb) {
|
|
mprq = true;
|
|
buf = mb->shinfo->fcb_opaque;
|
|
mp = buf->mp;
|
|
} else {
|
|
mprq = false;
|
|
mp = mlx5_mb2mp(mb);
|
|
pinned = rte_pktmbuf_priv_flags(mp) &
|
|
RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF;
|
|
}
|
|
if (!external || mprq || pinned) {
|
|
lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
|
|
if (lkey != UINT32_MAX)
|
|
return lkey;
|
|
/* MPRQ is always registered. */
|
|
MLX5_ASSERT(!mprq);
|
|
}
|
|
/* Register pinned external memory if the mempool is not used for Rx. */
|
|
if (cdev->config.mr_mempool_reg_en && pinned) {
|
|
if (mlx5_mr_mempool_register(cdev, mp, true) < 0)
|
|
return UINT32_MAX;
|
|
lkey = mlx5_mr_mempool2mr_bh(mr_ctrl, mp, addr);
|
|
MLX5_ASSERT(lkey != UINT32_MAX);
|
|
return lkey;
|
|
}
|
|
/* Fallback to generic mechanism in corner cases. */
|
|
return mlx5_mr_addr2mr_bh(mr_ctrl, addr);
|
|
}
|