595ea7dc80
- postpone calls to rte_pktmbuf_free() when a mbuf is not used anymore - add some tx statistics Signed-off-by: Intel
1700 lines
44 KiB
C
1700 lines
44 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2013 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <sys/queue.h>
|
|
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <getopt.h>
|
|
#include <signal.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_byteorder.h>
|
|
#include <rte_log.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_prefetch.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_interrupts.h>
|
|
#include <rte_pci.h>
|
|
#include <rte_random.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_string_fns.h>
|
|
#include "main.h"
|
|
|
|
#define APP_LOOKUP_EXACT_MATCH 0
|
|
#define APP_LOOKUP_LPM 1
|
|
#define DO_RFC_1812_CHECKS
|
|
|
|
#ifndef APP_LOOKUP_METHOD
|
|
#define APP_LOOKUP_METHOD APP_LOOKUP_LPM
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
#include <rte_hash.h>
|
|
#elif (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
#include <rte_lpm.h>
|
|
#include <rte_lpm6.h>
|
|
#else
|
|
#error "APP_LOOKUP_METHOD set to incorrect value"
|
|
#endif
|
|
|
|
#define MAX_PKT_BURST 32
|
|
|
|
#include "ipv4_rsmbl.h"
|
|
|
|
#ifndef IPv6_BYTES
|
|
#define IPv6_BYTES_FMT "%02x%02x:%02x%02x:%02x%02x:%02x%02x:"\
|
|
"%02x%02x:%02x%02x:%02x%02x:%02x%02x"
|
|
#define IPv6_BYTES(addr) \
|
|
addr[0], addr[1], addr[2], addr[3], \
|
|
addr[4], addr[5], addr[6], addr[7], \
|
|
addr[8], addr[9], addr[10], addr[11],\
|
|
addr[12], addr[13],addr[14], addr[15]
|
|
#endif
|
|
|
|
|
|
#define RTE_LOGTYPE_L3FWD RTE_LOGTYPE_USER1
|
|
|
|
#define MAX_PORTS RTE_MAX_ETHPORTS
|
|
|
|
#define MAX_JUMBO_PKT_LEN 9600
|
|
|
|
#define IPV6_ADDR_LEN 16
|
|
|
|
#define MEMPOOL_CACHE_SIZE 256
|
|
|
|
#define BUF_SIZE 2048
|
|
#define MBUF_SIZE \
|
|
(BUF_SIZE + sizeof(struct rte_mbuf) + RTE_PKTMBUF_HEADROOM)
|
|
|
|
#define MAX_FLOW_NUM UINT16_MAX
|
|
#define MIN_FLOW_NUM 1
|
|
#define DEF_FLOW_NUM 0x1000
|
|
|
|
/* TTL numbers are in ms. */
|
|
#define MAX_FLOW_TTL (3600 * MS_PER_S)
|
|
#define MIN_FLOW_TTL 1
|
|
#define DEF_FLOW_TTL MS_PER_S
|
|
|
|
#define DEF_MBUF_NUM 0x400
|
|
|
|
/* Should be power of two. */
|
|
#define IPV4_FRAG_TBL_BUCKET_ENTRIES 2
|
|
|
|
static uint32_t max_flow_num = DEF_FLOW_NUM;
|
|
static uint32_t max_flow_ttl = DEF_FLOW_TTL;
|
|
|
|
/*
|
|
* RX and TX Prefetch, Host, and Write-back threshold values should be
|
|
* carefully set for optimal performance. Consult the network
|
|
* controller's datasheet and supporting DPDK documentation for guidance
|
|
* on how these parameters should be set.
|
|
*/
|
|
#define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */
|
|
#define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
|
|
#define RX_WTHRESH 4 /**< Default values of RX write-back threshold reg. */
|
|
|
|
/*
|
|
* These default values are optimized for use with the Intel(R) 82599 10 GbE
|
|
* Controller and the DPDK ixgbe PMD. Consider using other values for other
|
|
* network controllers and/or network drivers.
|
|
*/
|
|
#define TX_PTHRESH 36 /**< Default values of TX prefetch threshold reg. */
|
|
#define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */
|
|
#define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */
|
|
|
|
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
|
|
|
|
#define NB_SOCKETS 8
|
|
|
|
/* Configure how many packets ahead to prefetch, when reading packets */
|
|
#define PREFETCH_OFFSET 3
|
|
|
|
/*
|
|
* Configurable number of RX/TX ring descriptors
|
|
*/
|
|
#define RTE_TEST_RX_DESC_DEFAULT 128
|
|
#define RTE_TEST_TX_DESC_DEFAULT 512
|
|
|
|
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
|
|
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
|
|
|
|
/* ethernet addresses of ports */
|
|
static struct ether_addr ports_eth_addr[MAX_PORTS];
|
|
|
|
/* mask of enabled ports */
|
|
static uint32_t enabled_port_mask = 0;
|
|
static int promiscuous_on = 0; /**< Ports set in promiscuous mode off by default. */
|
|
static int numa_on = 1; /**< NUMA is enabled by default. */
|
|
|
|
struct mbuf_table {
|
|
uint32_t len;
|
|
uint32_t head;
|
|
uint32_t tail;
|
|
struct rte_mbuf *m_table[0];
|
|
};
|
|
|
|
struct lcore_rx_queue {
|
|
uint8_t port_id;
|
|
uint8_t queue_id;
|
|
} __rte_cache_aligned;
|
|
|
|
#define MAX_RX_QUEUE_PER_LCORE 16
|
|
#define MAX_TX_QUEUE_PER_PORT MAX_PORTS
|
|
#define MAX_RX_QUEUE_PER_PORT 128
|
|
|
|
#define MAX_LCORE_PARAMS 1024
|
|
struct lcore_params {
|
|
uint8_t port_id;
|
|
uint8_t queue_id;
|
|
uint8_t lcore_id;
|
|
} __rte_cache_aligned;
|
|
|
|
static struct lcore_params lcore_params_array[MAX_LCORE_PARAMS];
|
|
static struct lcore_params lcore_params_array_default[] = {
|
|
{0, 0, 2},
|
|
{0, 1, 2},
|
|
{0, 2, 2},
|
|
{1, 0, 2},
|
|
{1, 1, 2},
|
|
{1, 2, 2},
|
|
{2, 0, 2},
|
|
{3, 0, 3},
|
|
{3, 1, 3},
|
|
};
|
|
|
|
static struct lcore_params * lcore_params = lcore_params_array_default;
|
|
static uint16_t nb_lcore_params = sizeof(lcore_params_array_default) /
|
|
sizeof(lcore_params_array_default[0]);
|
|
|
|
static struct rte_eth_conf port_conf = {
|
|
.rxmode = {
|
|
.max_rx_pkt_len = ETHER_MAX_LEN,
|
|
.split_hdr_size = 0,
|
|
.header_split = 0, /**< Header Split disabled */
|
|
.hw_ip_checksum = 1, /**< IP checksum offload enabled */
|
|
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
|
|
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
|
|
.hw_strip_crc = 0, /**< CRC stripped by hardware */
|
|
},
|
|
.rx_adv_conf = {
|
|
.rss_conf = {
|
|
.rss_key = NULL,
|
|
.rss_hf = ETH_RSS_IPV4 | ETH_RSS_IPV6,
|
|
},
|
|
},
|
|
.txmode = {
|
|
.mq_mode = ETH_MQ_TX_NONE,
|
|
},
|
|
};
|
|
|
|
static const struct rte_eth_rxconf rx_conf = {
|
|
.rx_thresh = {
|
|
.pthresh = RX_PTHRESH,
|
|
.hthresh = RX_HTHRESH,
|
|
.wthresh = RX_WTHRESH,
|
|
},
|
|
.rx_free_thresh = 32,
|
|
};
|
|
|
|
static const struct rte_eth_txconf tx_conf = {
|
|
.tx_thresh = {
|
|
.pthresh = TX_PTHRESH,
|
|
.hthresh = TX_HTHRESH,
|
|
.wthresh = TX_WTHRESH,
|
|
},
|
|
.tx_free_thresh = 0, /* Use PMD default values */
|
|
.tx_rs_thresh = 0, /* Use PMD default values */
|
|
.txq_flags = 0x0,
|
|
};
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
|
|
#ifdef RTE_MACHINE_CPUFLAG_SSE4_2
|
|
#include <rte_hash_crc.h>
|
|
#define DEFAULT_HASH_FUNC rte_hash_crc
|
|
#else
|
|
#include <rte_jhash.h>
|
|
#define DEFAULT_HASH_FUNC rte_jhash
|
|
#endif
|
|
|
|
struct ipv4_5tuple {
|
|
uint32_t ip_dst;
|
|
uint32_t ip_src;
|
|
uint16_t port_dst;
|
|
uint16_t port_src;
|
|
uint8_t proto;
|
|
} __attribute__((__packed__));
|
|
|
|
struct ipv6_5tuple {
|
|
uint8_t ip_dst[IPV6_ADDR_LEN];
|
|
uint8_t ip_src[IPV6_ADDR_LEN];
|
|
uint16_t port_dst;
|
|
uint16_t port_src;
|
|
uint8_t proto;
|
|
} __attribute__((__packed__));
|
|
|
|
struct ipv4_l3fwd_route {
|
|
struct ipv4_5tuple key;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
struct ipv6_l3fwd_route {
|
|
struct ipv6_5tuple key;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
|
|
{{IPv4(100,10,0,1), IPv4(200,10,0,1), 101, 11, IPPROTO_TCP}, 0},
|
|
{{IPv4(100,20,0,2), IPv4(200,20,0,2), 102, 12, IPPROTO_TCP}, 1},
|
|
{{IPv4(100,30,0,3), IPv4(200,30,0,3), 103, 13, IPPROTO_TCP}, 2},
|
|
{{IPv4(100,40,0,4), IPv4(200,40,0,4), 104, 14, IPPROTO_TCP}, 3},
|
|
};
|
|
|
|
static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
|
|
{
|
|
{
|
|
{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
{0xfe, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x02, 0x1e, 0x67, 0xff, 0xfe, 0x0d, 0xb6, 0x0a},
|
|
1, 10, IPPROTO_UDP
|
|
}, 4
|
|
},
|
|
};
|
|
|
|
typedef struct rte_hash lookup_struct_t;
|
|
static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
|
|
static lookup_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
|
|
|
|
#define L3FWD_HASH_ENTRIES 1024
|
|
|
|
#define IPV4_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
|
|
|
|
#define IPV6_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
|
|
|
|
static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
|
static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
struct ipv4_l3fwd_route {
|
|
uint32_t ip;
|
|
uint8_t depth;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
struct ipv6_l3fwd_route {
|
|
uint8_t ip[16];
|
|
uint8_t depth;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
static struct ipv4_l3fwd_route ipv4_l3fwd_route_array[] = {
|
|
{IPv4(1,1,1,0), 24, 0},
|
|
{IPv4(2,1,1,0), 24, 1},
|
|
{IPv4(3,1,1,0), 24, 2},
|
|
{IPv4(4,1,1,0), 24, 3},
|
|
{IPv4(5,1,1,0), 24, 4},
|
|
{IPv4(6,1,1,0), 24, 5},
|
|
{IPv4(7,1,1,0), 24, 6},
|
|
{IPv4(8,1,1,0), 24, 7},
|
|
};
|
|
|
|
static struct ipv6_l3fwd_route ipv6_l3fwd_route_array[] = {
|
|
{{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 0},
|
|
{{2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 1},
|
|
{{3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 2},
|
|
{{4,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 3},
|
|
{{5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 4},
|
|
{{6,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 5},
|
|
{{7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 6},
|
|
{{8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, 48, 7},
|
|
};
|
|
|
|
#define IPV4_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv4_l3fwd_route_array) / sizeof(ipv4_l3fwd_route_array[0]))
|
|
#define IPV6_L3FWD_NUM_ROUTES \
|
|
(sizeof(ipv6_l3fwd_route_array) / sizeof(ipv6_l3fwd_route_array[0]))
|
|
|
|
#define IPV4_L3FWD_LPM_MAX_RULES 1024
|
|
#define IPV6_L3FWD_LPM_MAX_RULES 1024
|
|
#define IPV6_L3FWD_LPM_NUMBER_TBL8S (1 << 16)
|
|
|
|
typedef struct rte_lpm lookup_struct_t;
|
|
typedef struct rte_lpm6 lookup6_struct_t;
|
|
static lookup_struct_t *ipv4_l3fwd_lookup_struct[NB_SOCKETS];
|
|
static lookup6_struct_t *ipv6_l3fwd_lookup_struct[NB_SOCKETS];
|
|
#endif
|
|
|
|
struct tx_lcore_stat {
|
|
uint64_t call;
|
|
uint64_t drop;
|
|
uint64_t queue;
|
|
uint64_t send;
|
|
};
|
|
|
|
#ifdef IPV4_FRAG_TBL_STAT
|
|
#define TX_LCORE_STAT_UPDATE(s, f, v) ((s)->f += (v))
|
|
#else
|
|
#define TX_LCORE_STAT_UPDATE(s, f, v) do {} while (0)
|
|
#endif /* IPV4_FRAG_TBL_STAT */
|
|
|
|
struct lcore_conf {
|
|
uint16_t n_rx_queue;
|
|
struct lcore_rx_queue rx_queue_list[MAX_RX_QUEUE_PER_LCORE];
|
|
uint16_t tx_queue_id[MAX_PORTS];
|
|
lookup_struct_t * ipv4_lookup_struct;
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
lookup6_struct_t * ipv6_lookup_struct;
|
|
#else
|
|
lookup_struct_t * ipv6_lookup_struct;
|
|
#endif
|
|
struct ipv4_frag_tbl *frag_tbl[MAX_RX_QUEUE_PER_LCORE];
|
|
struct rte_mempool *pool[MAX_RX_QUEUE_PER_LCORE];
|
|
struct ipv4_frag_death_row death_row;
|
|
struct mbuf_table *tx_mbufs[MAX_PORTS];
|
|
struct tx_lcore_stat tx_stat;
|
|
} __rte_cache_aligned;
|
|
|
|
static struct lcore_conf lcore_conf[RTE_MAX_LCORE];
|
|
|
|
/*
|
|
* If number of queued packets reached given threahold, then
|
|
* send burst of packets on an output interface.
|
|
*/
|
|
static inline uint32_t
|
|
send_burst(struct lcore_conf *qconf, uint32_t thresh, uint8_t port)
|
|
{
|
|
uint32_t fill, len, k, n;
|
|
struct mbuf_table *txmb;
|
|
|
|
txmb = qconf->tx_mbufs[port];
|
|
len = txmb->len;
|
|
|
|
if ((int32_t)(fill = txmb->head - txmb->tail) < 0)
|
|
fill += len;
|
|
|
|
if (fill >= thresh) {
|
|
n = RTE_MIN(len - txmb->tail, fill);
|
|
|
|
k = rte_eth_tx_burst(port, qconf->tx_queue_id[port],
|
|
txmb->m_table + txmb->tail, (uint16_t)n);
|
|
|
|
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, call, 1);
|
|
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, send, k);
|
|
|
|
fill -= k;
|
|
if ((txmb->tail += k) == len)
|
|
txmb->tail = 0;
|
|
}
|
|
|
|
return (fill);
|
|
}
|
|
|
|
/* Enqueue a single packet, and send burst if queue is filled */
|
|
static inline int
|
|
send_single_packet(struct rte_mbuf *m, uint8_t port)
|
|
{
|
|
uint32_t fill, lcore_id, len;
|
|
struct lcore_conf *qconf;
|
|
struct mbuf_table *txmb;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
qconf = &lcore_conf[lcore_id];
|
|
|
|
txmb = qconf->tx_mbufs[port];
|
|
len = txmb->len;
|
|
|
|
fill = send_burst(qconf, MAX_PKT_BURST, port);
|
|
|
|
if (fill == len - 1) {
|
|
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, drop, 1);
|
|
rte_pktmbuf_free(txmb->m_table[txmb->tail]);
|
|
if (++txmb->tail == len)
|
|
txmb->tail = 0;
|
|
}
|
|
|
|
TX_LCORE_STAT_UPDATE(&qconf->tx_stat, queue, 1);
|
|
txmb->m_table[txmb->head] = m;
|
|
if(++txmb->head == len)
|
|
txmb->head = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
static inline int
|
|
is_valid_ipv4_pkt(struct ipv4_hdr *pkt, uint32_t link_len)
|
|
{
|
|
/* From http://www.rfc-editor.org/rfc/rfc1812.txt section 5.2.2 */
|
|
/*
|
|
* 1. The packet length reported by the Link Layer must be large
|
|
* enough to hold the minimum length legal IP datagram (20 bytes).
|
|
*/
|
|
if (link_len < sizeof(struct ipv4_hdr))
|
|
return -1;
|
|
|
|
/* 2. The IP checksum must be correct. */
|
|
/* this is checked in H/W */
|
|
|
|
/*
|
|
* 3. The IP version number must be 4. If the version number is not 4
|
|
* then the packet may be another version of IP, such as IPng or
|
|
* ST-II.
|
|
*/
|
|
if (((pkt->version_ihl) >> 4) != 4)
|
|
return -3;
|
|
/*
|
|
* 4. The IP header length field must be large enough to hold the
|
|
* minimum length legal IP datagram (20 bytes = 5 words).
|
|
*/
|
|
if ((pkt->version_ihl & 0xf) < 5)
|
|
return -4;
|
|
|
|
/*
|
|
* 5. The IP total length field must be large enough to hold the IP
|
|
* datagram header, whose length is specified in the IP header length
|
|
* field.
|
|
*/
|
|
if (rte_cpu_to_be_16(pkt->total_length) < sizeof(struct ipv4_hdr))
|
|
return -5;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
static void
|
|
print_ipv4_key(struct ipv4_5tuple key)
|
|
{
|
|
printf("IP dst = %08x, IP src = %08x, port dst = %d, port src = %d, proto = %d\n",
|
|
(unsigned)key.ip_dst, (unsigned)key.ip_src, key.port_dst, key.port_src, key.proto);
|
|
}
|
|
static void
|
|
print_ipv6_key(struct ipv6_5tuple key)
|
|
{
|
|
printf( "IP dst = " IPv6_BYTES_FMT ", IP src = " IPv6_BYTES_FMT ", "
|
|
"port dst = %d, port src = %d, proto = %d\n",
|
|
IPv6_BYTES(key.ip_dst), IPv6_BYTES(key.ip_src),
|
|
key.port_dst, key.port_src, key.proto);
|
|
}
|
|
|
|
static inline uint8_t
|
|
get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
|
|
{
|
|
struct ipv4_5tuple key;
|
|
struct tcp_hdr *tcp;
|
|
struct udp_hdr *udp;
|
|
int ret = 0;
|
|
|
|
key.ip_dst = rte_be_to_cpu_32(ipv4_hdr->dst_addr);
|
|
key.ip_src = rte_be_to_cpu_32(ipv4_hdr->src_addr);
|
|
key.proto = ipv4_hdr->next_proto_id;
|
|
|
|
switch (ipv4_hdr->next_proto_id) {
|
|
case IPPROTO_TCP:
|
|
tcp = (struct tcp_hdr *)((unsigned char *) ipv4_hdr +
|
|
sizeof(struct ipv4_hdr));
|
|
key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
|
|
key.port_src = rte_be_to_cpu_16(tcp->src_port);
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
udp = (struct udp_hdr *)((unsigned char *) ipv4_hdr +
|
|
sizeof(struct ipv4_hdr));
|
|
key.port_dst = rte_be_to_cpu_16(udp->dst_port);
|
|
key.port_src = rte_be_to_cpu_16(udp->src_port);
|
|
break;
|
|
|
|
default:
|
|
key.port_dst = 0;
|
|
key.port_src = 0;
|
|
break;
|
|
}
|
|
|
|
/* Find destination port */
|
|
ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
|
|
return (uint8_t)((ret < 0)? portid : ipv4_l3fwd_out_if[ret]);
|
|
}
|
|
|
|
static inline uint8_t
|
|
get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid, lookup_struct_t * ipv6_l3fwd_lookup_struct)
|
|
{
|
|
struct ipv6_5tuple key;
|
|
struct tcp_hdr *tcp;
|
|
struct udp_hdr *udp;
|
|
int ret = 0;
|
|
|
|
memcpy(key.ip_dst, ipv6_hdr->dst_addr, IPV6_ADDR_LEN);
|
|
memcpy(key.ip_src, ipv6_hdr->src_addr, IPV6_ADDR_LEN);
|
|
|
|
key.proto = ipv6_hdr->proto;
|
|
|
|
switch (ipv6_hdr->proto) {
|
|
case IPPROTO_TCP:
|
|
tcp = (struct tcp_hdr *)((unsigned char *) ipv6_hdr +
|
|
sizeof(struct ipv6_hdr));
|
|
key.port_dst = rte_be_to_cpu_16(tcp->dst_port);
|
|
key.port_src = rte_be_to_cpu_16(tcp->src_port);
|
|
break;
|
|
|
|
case IPPROTO_UDP:
|
|
udp = (struct udp_hdr *)((unsigned char *) ipv6_hdr +
|
|
sizeof(struct ipv6_hdr));
|
|
key.port_dst = rte_be_to_cpu_16(udp->dst_port);
|
|
key.port_src = rte_be_to_cpu_16(udp->src_port);
|
|
break;
|
|
|
|
default:
|
|
key.port_dst = 0;
|
|
key.port_src = 0;
|
|
break;
|
|
}
|
|
|
|
/* Find destination port */
|
|
ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
|
|
return (uint8_t)((ret < 0)? portid : ipv6_l3fwd_out_if[ret]);
|
|
}
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
static inline uint8_t
|
|
get_ipv4_dst_port(struct ipv4_hdr *ipv4_hdr, uint8_t portid, lookup_struct_t * ipv4_l3fwd_lookup_struct)
|
|
{
|
|
uint8_t next_hop;
|
|
|
|
return (uint8_t) ((rte_lpm_lookup(ipv4_l3fwd_lookup_struct,
|
|
rte_be_to_cpu_32(ipv4_hdr->dst_addr), &next_hop) == 0)?
|
|
next_hop : portid);
|
|
}
|
|
|
|
static inline uint8_t
|
|
get_ipv6_dst_port(struct ipv6_hdr *ipv6_hdr, uint8_t portid, lookup6_struct_t * ipv6_l3fwd_lookup_struct)
|
|
{
|
|
uint8_t next_hop;
|
|
|
|
return (uint8_t) ((rte_lpm6_lookup(ipv6_l3fwd_lookup_struct,
|
|
ipv6_hdr->dst_addr, &next_hop) == 0)?
|
|
next_hop : portid);
|
|
}
|
|
#endif
|
|
|
|
static inline void
|
|
l3fwd_simple_forward(struct rte_mbuf *m, uint8_t portid, uint32_t queue,
|
|
struct lcore_conf *qconf, uint64_t tms)
|
|
{
|
|
struct ether_hdr *eth_hdr;
|
|
struct ipv4_hdr *ipv4_hdr;
|
|
void *d_addr_bytes;
|
|
uint8_t dst_port;
|
|
uint16_t flag_offset, ip_flag, ip_ofs;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
|
|
|
|
if (m->ol_flags & PKT_RX_IPV4_HDR) {
|
|
/* Handle IPv4 headers.*/
|
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
|
|
|
#ifdef DO_RFC_1812_CHECKS
|
|
/* Check to make sure the packet is valid (RFC1812) */
|
|
if (is_valid_ipv4_pkt(ipv4_hdr, m->pkt.pkt_len) < 0) {
|
|
rte_pktmbuf_free(m);
|
|
return;
|
|
}
|
|
|
|
/* Update time to live and header checksum */
|
|
--(ipv4_hdr->time_to_live);
|
|
++(ipv4_hdr->hdr_checksum);
|
|
#endif
|
|
|
|
flag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
|
|
ip_ofs = (uint16_t)(flag_offset & IPV4_HDR_OFFSET_MASK);
|
|
ip_flag = (uint16_t)(flag_offset & IPV4_HDR_MF_FLAG);
|
|
|
|
/* if it is a fragmented packet, then try to reassemble. */
|
|
if (ip_flag != 0 || ip_ofs != 0) {
|
|
|
|
struct rte_mbuf *mo;
|
|
struct ipv4_frag_tbl *tbl;
|
|
struct ipv4_frag_death_row *dr;
|
|
|
|
tbl = qconf->frag_tbl[queue];
|
|
dr = &qconf->death_row;
|
|
|
|
/* prepare mbuf: setup l2_len/l3_len. */
|
|
m->pkt.vlan_macip.f.l2_len = sizeof(*eth_hdr);
|
|
m->pkt.vlan_macip.f.l3_len = sizeof(*ipv4_hdr);
|
|
|
|
/* process this fragment. */
|
|
if ((mo = ipv4_frag_mbuf(tbl, dr, m, tms, ipv4_hdr,
|
|
ip_ofs, ip_flag)) == NULL)
|
|
/* no packet to send out. */
|
|
return;
|
|
|
|
/* we have our packet reassembled. */
|
|
if (mo != m) {
|
|
m = mo;
|
|
eth_hdr = rte_pktmbuf_mtod(m,
|
|
struct ether_hdr *);
|
|
ipv4_hdr = (struct ipv4_hdr *)(eth_hdr + 1);
|
|
}
|
|
}
|
|
|
|
dst_port = get_ipv4_dst_port(ipv4_hdr, portid,
|
|
qconf->ipv4_lookup_struct);
|
|
if (dst_port >= MAX_PORTS ||
|
|
(enabled_port_mask & 1 << dst_port) == 0)
|
|
dst_port = portid;
|
|
|
|
/* 02:00:00:00:00:xx */
|
|
d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
|
|
*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
|
|
|
|
/* src addr */
|
|
ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
|
|
|
|
send_single_packet(m, dst_port);
|
|
}
|
|
else {
|
|
/* Handle IPv6 headers.*/
|
|
struct ipv6_hdr *ipv6_hdr;
|
|
|
|
ipv6_hdr = (struct ipv6_hdr *)(rte_pktmbuf_mtod(m, unsigned char *) +
|
|
sizeof(struct ether_hdr));
|
|
|
|
dst_port = get_ipv6_dst_port(ipv6_hdr, portid, qconf->ipv6_lookup_struct);
|
|
|
|
if (dst_port >= MAX_PORTS || (enabled_port_mask & 1 << dst_port) == 0)
|
|
dst_port = portid;
|
|
|
|
/* 02:00:00:00:00:xx */
|
|
d_addr_bytes = ð_hdr->d_addr.addr_bytes[0];
|
|
*((uint64_t *)d_addr_bytes) = 0x000000000002 + ((uint64_t)dst_port << 40);
|
|
|
|
/* src addr */
|
|
ether_addr_copy(&ports_eth_addr[dst_port], ð_hdr->s_addr);
|
|
|
|
send_single_packet(m, dst_port);
|
|
}
|
|
|
|
}
|
|
|
|
/* main processing loop */
|
|
static int
|
|
main_loop(__attribute__((unused)) void *dummy)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
unsigned lcore_id;
|
|
uint64_t diff_tsc, cur_tsc, prev_tsc;
|
|
int i, j, nb_rx;
|
|
uint8_t portid, queueid;
|
|
struct lcore_conf *qconf;
|
|
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) / US_PER_S * BURST_TX_DRAIN_US;
|
|
|
|
prev_tsc = 0;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
qconf = &lcore_conf[lcore_id];
|
|
|
|
if (qconf->n_rx_queue == 0) {
|
|
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
|
|
return 0;
|
|
}
|
|
|
|
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
|
|
|
|
for (i = 0; i < qconf->n_rx_queue; i++) {
|
|
|
|
portid = qconf->rx_queue_list[i].port_id;
|
|
queueid = qconf->rx_queue_list[i].queue_id;
|
|
RTE_LOG(INFO, L3FWD, " -- lcoreid=%u portid=%hhu rxqueueid=%hhu\n", lcore_id,
|
|
portid, queueid);
|
|
}
|
|
|
|
while (1) {
|
|
|
|
cur_tsc = rte_rdtsc();
|
|
|
|
/*
|
|
* TX burst queue drain
|
|
*/
|
|
diff_tsc = cur_tsc - prev_tsc;
|
|
if (unlikely(diff_tsc > drain_tsc)) {
|
|
|
|
/*
|
|
* This could be optimized (use queueid instead of
|
|
* portid), but it is not called so often
|
|
*/
|
|
for (portid = 0; portid < MAX_PORTS; portid++) {
|
|
if ((enabled_port_mask & (1 << portid)) != 0)
|
|
send_burst(qconf, 1, portid);
|
|
}
|
|
|
|
prev_tsc = cur_tsc;
|
|
}
|
|
|
|
/*
|
|
* Read packet from RX queues
|
|
*/
|
|
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
|
|
|
portid = qconf->rx_queue_list[i].port_id;
|
|
queueid = qconf->rx_queue_list[i].queue_id;
|
|
|
|
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
|
|
MAX_PKT_BURST);
|
|
|
|
/* Prefetch first packets */
|
|
for (j = 0; j < PREFETCH_OFFSET && j < nb_rx; j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(
|
|
pkts_burst[j], void *));
|
|
}
|
|
|
|
/* Prefetch and forward already prefetched packets */
|
|
for (j = 0; j < (nb_rx - PREFETCH_OFFSET); j++) {
|
|
rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[
|
|
j + PREFETCH_OFFSET], void *));
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
i, qconf, cur_tsc);
|
|
}
|
|
|
|
/* Forward remaining prefetched packets */
|
|
for (; j < nb_rx; j++) {
|
|
l3fwd_simple_forward(pkts_burst[j], portid,
|
|
i, qconf, cur_tsc);
|
|
}
|
|
|
|
ipv4_frag_free_death_row(&qconf->death_row,
|
|
PREFETCH_OFFSET);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
check_lcore_params(void)
|
|
{
|
|
uint8_t queue, lcore;
|
|
uint16_t i;
|
|
int socketid;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
queue = lcore_params[i].queue_id;
|
|
if (queue >= MAX_RX_QUEUE_PER_PORT) {
|
|
printf("invalid queue number: %hhu\n", queue);
|
|
return -1;
|
|
}
|
|
lcore = lcore_params[i].lcore_id;
|
|
if (!rte_lcore_is_enabled(lcore)) {
|
|
printf("error: lcore %hhu is not enabled in lcore mask\n", lcore);
|
|
return -1;
|
|
}
|
|
if ((socketid = rte_lcore_to_socket_id(lcore) != 0) &&
|
|
(numa_on == 0)) {
|
|
printf("warning: lcore %hhu is on socket %d with numa off \n",
|
|
lcore, socketid);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
check_port_config(const unsigned nb_ports)
|
|
{
|
|
unsigned portid;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
portid = lcore_params[i].port_id;
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
printf("port %u is not enabled in port mask\n", portid);
|
|
return -1;
|
|
}
|
|
if (portid >= nb_ports) {
|
|
printf("port %u is not present on the board\n", portid);
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t
|
|
get_port_n_rx_queues(const uint8_t port)
|
|
{
|
|
int queue = -1;
|
|
uint16_t i;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
if (lcore_params[i].port_id == port && lcore_params[i].queue_id > queue)
|
|
queue = lcore_params[i].queue_id;
|
|
}
|
|
return (uint8_t)(++queue);
|
|
}
|
|
|
|
static int
|
|
init_lcore_rx_queues(void)
|
|
{
|
|
uint16_t i, nb_rx_queue;
|
|
uint8_t lcore;
|
|
|
|
for (i = 0; i < nb_lcore_params; ++i) {
|
|
lcore = lcore_params[i].lcore_id;
|
|
nb_rx_queue = lcore_conf[lcore].n_rx_queue;
|
|
if (nb_rx_queue >= MAX_RX_QUEUE_PER_LCORE) {
|
|
printf("error: too many queues (%u) for lcore: %u\n",
|
|
(unsigned)nb_rx_queue + 1, (unsigned)lcore);
|
|
return -1;
|
|
} else {
|
|
lcore_conf[lcore].rx_queue_list[nb_rx_queue].port_id =
|
|
lcore_params[i].port_id;
|
|
lcore_conf[lcore].rx_queue_list[nb_rx_queue].queue_id =
|
|
lcore_params[i].queue_id;
|
|
lcore_conf[lcore].n_rx_queue++;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* display usage */
|
|
static void
|
|
print_usage(const char *prgname)
|
|
{
|
|
printf ("%s [EAL options] -- -p PORTMASK -P"
|
|
" [--config (port,queue,lcore)[,(port,queue,lcore]]"
|
|
" [--enable-jumbo [--max-pkt-len PKTLEN]]"
|
|
" [--maxflows=<flows>] [--flowttl=<ttl>[(s|ms)]]\n"
|
|
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
|
|
" -P : enable promiscuous mode\n"
|
|
" --config (port,queue,lcore): rx queues configuration\n"
|
|
" --no-numa: optional, disable numa awareness\n"
|
|
" --enable-jumbo: enable jumbo frame"
|
|
" which max packet len is PKTLEN in decimal (64-9600)\n"
|
|
" --maxflows=<flows>: optional, maximum number of flows "
|
|
"supported\n"
|
|
" --flowttl=<ttl>[(s|ms)]: optional, maximum TTL for each "
|
|
"flow\n",
|
|
prgname);
|
|
}
|
|
|
|
static uint32_t
|
|
parse_flow_num(const char *str, uint32_t min, uint32_t max, uint32_t *val)
|
|
{
|
|
char *end;
|
|
uint64_t v;
|
|
|
|
/* parse decimal string */
|
|
errno = 0;
|
|
v = strtoul(str, &end, 10);
|
|
if (errno != 0 || *end != '\0')
|
|
return (-EINVAL);
|
|
|
|
if (v < min || v > max)
|
|
return (-EINVAL);
|
|
|
|
*val = (uint32_t)v;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
parse_flow_ttl(const char *str, uint32_t min, uint32_t max, uint32_t *val)
|
|
{
|
|
char *end;
|
|
uint64_t v;
|
|
|
|
static const char frmt_sec[] = "s";
|
|
static const char frmt_msec[] = "ms";
|
|
|
|
/* parse decimal string */
|
|
errno = 0;
|
|
v = strtoul(str, &end, 10);
|
|
if (errno != 0)
|
|
return (-EINVAL);
|
|
|
|
if (*end != '\0') {
|
|
if (strncmp(frmt_sec, end, sizeof(frmt_sec)) == 0)
|
|
v *= MS_PER_S;
|
|
else if (strncmp(frmt_msec, end, sizeof (frmt_msec)) != 0)
|
|
return (-EINVAL);
|
|
}
|
|
|
|
if (v < min || v > max)
|
|
return (-EINVAL);
|
|
|
|
*val = (uint32_t)v;
|
|
return (0);
|
|
}
|
|
|
|
|
|
static int parse_max_pkt_len(const char *pktlen)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long len;
|
|
|
|
/* parse decimal string */
|
|
len = strtoul(pktlen, &end, 10);
|
|
if ((pktlen[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
return -1;
|
|
|
|
if (len == 0)
|
|
return -1;
|
|
|
|
return len;
|
|
}
|
|
|
|
static int
|
|
parse_portmask(const char *portmask)
|
|
{
|
|
char *end = NULL;
|
|
unsigned long pm;
|
|
|
|
/* parse hexadecimal string */
|
|
pm = strtoul(portmask, &end, 16);
|
|
if ((portmask[0] == '\0') || (end == NULL) || (*end != '\0'))
|
|
return -1;
|
|
|
|
if (pm == 0)
|
|
return -1;
|
|
|
|
return pm;
|
|
}
|
|
|
|
static int
|
|
parse_config(const char *q_arg)
|
|
{
|
|
char s[256];
|
|
const char *p, *p0 = q_arg;
|
|
char *end;
|
|
enum fieldnames {
|
|
FLD_PORT = 0,
|
|
FLD_QUEUE,
|
|
FLD_LCORE,
|
|
_NUM_FLD
|
|
};
|
|
unsigned long int_fld[_NUM_FLD];
|
|
char *str_fld[_NUM_FLD];
|
|
int i;
|
|
unsigned size;
|
|
|
|
nb_lcore_params = 0;
|
|
|
|
while ((p = strchr(p0,'(')) != NULL) {
|
|
++p;
|
|
if((p0 = strchr(p,')')) == NULL)
|
|
return -1;
|
|
|
|
size = p0 - p;
|
|
if(size >= sizeof(s))
|
|
return -1;
|
|
|
|
rte_snprintf(s, sizeof(s), "%.*s", size, p);
|
|
if (rte_strsplit(s, sizeof(s), str_fld, _NUM_FLD, ',') != _NUM_FLD)
|
|
return -1;
|
|
for (i = 0; i < _NUM_FLD; i++){
|
|
errno = 0;
|
|
int_fld[i] = strtoul(str_fld[i], &end, 0);
|
|
if (errno != 0 || end == str_fld[i] || int_fld[i] > 255)
|
|
return -1;
|
|
}
|
|
if (nb_lcore_params >= MAX_LCORE_PARAMS) {
|
|
printf("exceeded max number of lcore params: %hu\n",
|
|
nb_lcore_params);
|
|
return -1;
|
|
}
|
|
lcore_params_array[nb_lcore_params].port_id = (uint8_t)int_fld[FLD_PORT];
|
|
lcore_params_array[nb_lcore_params].queue_id = (uint8_t)int_fld[FLD_QUEUE];
|
|
lcore_params_array[nb_lcore_params].lcore_id = (uint8_t)int_fld[FLD_LCORE];
|
|
++nb_lcore_params;
|
|
}
|
|
lcore_params = lcore_params_array;
|
|
return 0;
|
|
}
|
|
|
|
/* Parse the argument given in the command line of the application */
|
|
static int
|
|
parse_args(int argc, char **argv)
|
|
{
|
|
int opt, ret;
|
|
char **argvopt;
|
|
int option_index;
|
|
char *prgname = argv[0];
|
|
static struct option lgopts[] = {
|
|
{"config", 1, 0, 0},
|
|
{"no-numa", 0, 0, 0},
|
|
{"enable-jumbo", 0, 0, 0},
|
|
{"maxflows", 1, 0, 0},
|
|
{"flowttl", 1, 0, 0},
|
|
{NULL, 0, 0, 0}
|
|
};
|
|
|
|
argvopt = argv;
|
|
|
|
while ((opt = getopt_long(argc, argvopt, "p:P",
|
|
lgopts, &option_index)) != EOF) {
|
|
|
|
switch (opt) {
|
|
/* portmask */
|
|
case 'p':
|
|
enabled_port_mask = parse_portmask(optarg);
|
|
if (enabled_port_mask == 0) {
|
|
printf("invalid portmask\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
break;
|
|
case 'P':
|
|
printf("Promiscuous mode selected\n");
|
|
promiscuous_on = 1;
|
|
break;
|
|
|
|
/* long options */
|
|
case 0:
|
|
if (!strncmp(lgopts[option_index].name, "config", 6)) {
|
|
ret = parse_config(optarg);
|
|
if (ret) {
|
|
printf("invalid config\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name, "no-numa", 7)) {
|
|
printf("numa is disabled \n");
|
|
numa_on = 0;
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name,
|
|
"maxflows", 8)) {
|
|
if ((ret = parse_flow_num(optarg, MIN_FLOW_NUM,
|
|
MAX_FLOW_NUM,
|
|
&max_flow_num)) != 0) {
|
|
printf("invalid value: \"%s\" for "
|
|
"parameter %s\n",
|
|
optarg,
|
|
lgopts[option_index].name);
|
|
print_usage(prgname);
|
|
return (ret);
|
|
}
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name, "flowttl", 7)) {
|
|
if ((ret = parse_flow_ttl(optarg, MIN_FLOW_TTL,
|
|
MAX_FLOW_TTL,
|
|
&max_flow_ttl)) != 0) {
|
|
printf("invalid value: \"%s\" for "
|
|
"parameter %s\n",
|
|
optarg,
|
|
lgopts[option_index].name);
|
|
print_usage(prgname);
|
|
return (ret);
|
|
}
|
|
}
|
|
|
|
if (!strncmp(lgopts[option_index].name, "enable-jumbo", 12)) {
|
|
struct option lenopts = {"max-pkt-len", required_argument, 0, 0};
|
|
|
|
printf("jumbo frame is enabled \n");
|
|
port_conf.rxmode.jumbo_frame = 1;
|
|
|
|
/* if no max-pkt-len set, use the default value ETHER_MAX_LEN */
|
|
if (0 == getopt_long(argc, argvopt, "", &lenopts, &option_index)) {
|
|
ret = parse_max_pkt_len(optarg);
|
|
if ((ret < 64) || (ret > MAX_JUMBO_PKT_LEN)){
|
|
printf("invalid packet length\n");
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
port_conf.rxmode.max_rx_pkt_len = ret;
|
|
}
|
|
printf("set jumbo frame max packet length to %u\n",
|
|
(unsigned int)port_conf.rxmode.max_rx_pkt_len);
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
print_usage(prgname);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (optind >= 0)
|
|
argv[optind-1] = prgname;
|
|
|
|
ret = optind-1;
|
|
optind = 0; /* reset getopt lib */
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
print_ethaddr(const char *name, const struct ether_addr *eth_addr)
|
|
{
|
|
printf ("%s%02X:%02X:%02X:%02X:%02X:%02X", name,
|
|
eth_addr->addr_bytes[0],
|
|
eth_addr->addr_bytes[1],
|
|
eth_addr->addr_bytes[2],
|
|
eth_addr->addr_bytes[3],
|
|
eth_addr->addr_bytes[4],
|
|
eth_addr->addr_bytes[5]);
|
|
}
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_EXACT_MATCH)
|
|
static void
|
|
setup_hash(int socketid)
|
|
{
|
|
struct rte_hash_parameters ipv4_l3fwd_hash_params = {
|
|
.name = NULL,
|
|
.entries = L3FWD_HASH_ENTRIES,
|
|
.bucket_entries = 4,
|
|
.key_len = sizeof(struct ipv4_5tuple),
|
|
.hash_func = DEFAULT_HASH_FUNC,
|
|
.hash_func_init_val = 0,
|
|
};
|
|
|
|
struct rte_hash_parameters ipv6_l3fwd_hash_params = {
|
|
.name = NULL,
|
|
.entries = L3FWD_HASH_ENTRIES,
|
|
.bucket_entries = 4,
|
|
.key_len = sizeof(struct ipv6_5tuple),
|
|
.hash_func = DEFAULT_HASH_FUNC,
|
|
.hash_func_init_val = 0,
|
|
};
|
|
|
|
unsigned i;
|
|
int ret;
|
|
char s[64];
|
|
|
|
/* create ipv4 hash */
|
|
rte_snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
|
|
ipv4_l3fwd_hash_params.name = s;
|
|
ipv4_l3fwd_hash_params.socket_id = socketid;
|
|
ipv4_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv4_l3fwd_hash_params);
|
|
if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
|
|
"socket %d\n", socketid);
|
|
|
|
/* create ipv6 hash */
|
|
rte_snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
|
|
ipv6_l3fwd_hash_params.name = s;
|
|
ipv6_l3fwd_hash_params.socket_id = socketid;
|
|
ipv6_l3fwd_lookup_struct[socketid] = rte_hash_create(&ipv6_l3fwd_hash_params);
|
|
if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd hash on "
|
|
"socket %d\n", socketid);
|
|
|
|
|
|
/* populate the ipv4 hash */
|
|
for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
|
|
ret = rte_hash_add_key (ipv4_l3fwd_lookup_struct[socketid],
|
|
(void *) &ipv4_l3fwd_route_array[i].key);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
|
|
"l3fwd hash on socket %d\n", i, socketid);
|
|
}
|
|
ipv4_l3fwd_out_if[ret] = ipv4_l3fwd_route_array[i].if_out;
|
|
printf("Hash: Adding key\n");
|
|
print_ipv4_key(ipv4_l3fwd_route_array[i].key);
|
|
}
|
|
|
|
/* populate the ipv6 hash */
|
|
for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
|
|
ret = rte_hash_add_key (ipv6_l3fwd_lookup_struct[socketid],
|
|
(void *) &ipv6_l3fwd_route_array[i].key);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the"
|
|
"l3fwd hash on socket %d\n", i, socketid);
|
|
}
|
|
ipv6_l3fwd_out_if[ret] = ipv6_l3fwd_route_array[i].if_out;
|
|
printf("Hash: Adding key\n");
|
|
print_ipv6_key(ipv6_l3fwd_route_array[i].key);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
static void
|
|
setup_lpm(int socketid)
|
|
{
|
|
struct rte_lpm6_config config;
|
|
unsigned i;
|
|
int ret;
|
|
char s[64];
|
|
|
|
/* create the LPM table */
|
|
rte_snprintf(s, sizeof(s), "IPV4_L3FWD_LPM_%d", socketid);
|
|
ipv4_l3fwd_lookup_struct[socketid] = rte_lpm_create(s, socketid,
|
|
IPV4_L3FWD_LPM_MAX_RULES, 0);
|
|
if (ipv4_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
|
|
" on socket %d\n", socketid);
|
|
|
|
/* populate the LPM table */
|
|
for (i = 0; i < IPV4_L3FWD_NUM_ROUTES; i++) {
|
|
ret = rte_lpm_add(ipv4_l3fwd_lookup_struct[socketid],
|
|
ipv4_l3fwd_route_array[i].ip,
|
|
ipv4_l3fwd_route_array[i].depth,
|
|
ipv4_l3fwd_route_array[i].if_out);
|
|
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
|
|
"l3fwd LPM table on socket %d\n",
|
|
i, socketid);
|
|
}
|
|
|
|
printf("LPM: Adding route 0x%08x / %d (%d)\n",
|
|
(unsigned)ipv4_l3fwd_route_array[i].ip,
|
|
ipv4_l3fwd_route_array[i].depth,
|
|
ipv4_l3fwd_route_array[i].if_out);
|
|
}
|
|
|
|
/* create the LPM6 table */
|
|
rte_snprintf(s, sizeof(s), "IPV6_L3FWD_LPM_%d", socketid);
|
|
|
|
config.max_rules = IPV6_L3FWD_LPM_MAX_RULES;
|
|
config.number_tbl8s = IPV6_L3FWD_LPM_NUMBER_TBL8S;
|
|
config.flags = 0;
|
|
ipv6_l3fwd_lookup_struct[socketid] = rte_lpm6_create(s, socketid,
|
|
&config);
|
|
if (ipv6_l3fwd_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE, "Unable to create the l3fwd LPM table"
|
|
" on socket %d\n", socketid);
|
|
|
|
/* populate the LPM table */
|
|
for (i = 0; i < IPV6_L3FWD_NUM_ROUTES; i++) {
|
|
ret = rte_lpm6_add(ipv6_l3fwd_lookup_struct[socketid],
|
|
ipv6_l3fwd_route_array[i].ip,
|
|
ipv6_l3fwd_route_array[i].depth,
|
|
ipv6_l3fwd_route_array[i].if_out);
|
|
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u to the "
|
|
"l3fwd LPM table on socket %d\n",
|
|
i, socketid);
|
|
}
|
|
|
|
printf("LPM: Adding route %s / %d (%d)\n",
|
|
"IPV6",
|
|
ipv6_l3fwd_route_array[i].depth,
|
|
ipv6_l3fwd_route_array[i].if_out);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
init_mem(void)
|
|
{
|
|
struct lcore_conf *qconf;
|
|
int socketid;
|
|
unsigned lcore_id;
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
|
|
if (numa_on)
|
|
socketid = rte_lcore_to_socket_id(lcore_id);
|
|
else
|
|
socketid = 0;
|
|
|
|
if (socketid >= NB_SOCKETS) {
|
|
rte_exit(EXIT_FAILURE,
|
|
"Socket %d of lcore %u is out of range %d\n",
|
|
socketid, lcore_id, NB_SOCKETS);
|
|
}
|
|
|
|
#if (APP_LOOKUP_METHOD == APP_LOOKUP_LPM)
|
|
setup_lpm(socketid);
|
|
#else
|
|
setup_hash(socketid);
|
|
#endif
|
|
qconf = &lcore_conf[lcore_id];
|
|
qconf->ipv4_lookup_struct = ipv4_l3fwd_lookup_struct[socketid];
|
|
qconf->ipv6_lookup_struct = ipv6_l3fwd_lookup_struct[socketid];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Check the link status of all ports in up to 9s, and print them finally */
|
|
static void
|
|
check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
|
|
{
|
|
#define CHECK_INTERVAL 100 /* 100ms */
|
|
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
|
|
uint8_t portid, count, all_ports_up, print_flag = 0;
|
|
struct rte_eth_link link;
|
|
|
|
printf("\nChecking link status");
|
|
fflush(stdout);
|
|
for (count = 0; count <= MAX_CHECK_TIME; count++) {
|
|
all_ports_up = 1;
|
|
for (portid = 0; portid < port_num; portid++) {
|
|
if ((port_mask & (1 << portid)) == 0)
|
|
continue;
|
|
memset(&link, 0, sizeof(link));
|
|
rte_eth_link_get_nowait(portid, &link);
|
|
/* print link status if flag set */
|
|
if (print_flag == 1) {
|
|
if (link.link_status)
|
|
printf("Port %d Link Up - speed %u "
|
|
"Mbps - %s\n", (uint8_t)portid,
|
|
(unsigned)link.link_speed,
|
|
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
|
|
("full-duplex") : ("half-duplex\n"));
|
|
else
|
|
printf("Port %d Link Down\n",
|
|
(uint8_t)portid);
|
|
continue;
|
|
}
|
|
/* clear all_ports_up flag if any link down */
|
|
if (link.link_status == 0) {
|
|
all_ports_up = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* after finally printing all link status, get out */
|
|
if (print_flag == 1)
|
|
break;
|
|
|
|
if (all_ports_up == 0) {
|
|
printf(".");
|
|
fflush(stdout);
|
|
rte_delay_ms(CHECK_INTERVAL);
|
|
}
|
|
|
|
/* set the print_flag if all ports up or timeout */
|
|
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
|
|
print_flag = 1;
|
|
printf("done\n");
|
|
}
|
|
}
|
|
}
|
|
static void
|
|
setup_port_tbl(struct lcore_conf *qconf, uint32_t lcore, int socket,
|
|
uint32_t port)
|
|
{
|
|
struct mbuf_table *mtb;
|
|
uint32_t n;
|
|
size_t sz;
|
|
|
|
n = RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST);
|
|
sz = sizeof (*mtb) + sizeof (mtb->m_table[0]) * n;
|
|
|
|
if ((mtb = rte_zmalloc_socket(__func__, sz, CACHE_LINE_SIZE,
|
|
socket)) == NULL)
|
|
rte_exit(EXIT_FAILURE, "%s() for lcore: %u, port: %u "
|
|
"failed to allocate %zu bytes\n",
|
|
__func__, lcore, port, sz);
|
|
|
|
mtb->len = n;
|
|
qconf->tx_mbufs[port] = mtb;
|
|
}
|
|
|
|
static void
|
|
setup_queue_tbl(struct lcore_conf *qconf, uint32_t lcore, int socket,
|
|
uint32_t queue)
|
|
{
|
|
uint32_t nb_mbuf;
|
|
uint64_t frag_cycles;
|
|
char buf[RTE_MEMPOOL_NAMESIZE];
|
|
|
|
frag_cycles = (rte_get_tsc_hz() + MS_PER_S - 1) / MS_PER_S *
|
|
max_flow_ttl;
|
|
|
|
if ((qconf->frag_tbl[queue] = ipv4_frag_tbl_create(max_flow_num,
|
|
IPV4_FRAG_TBL_BUCKET_ENTRIES, max_flow_num, frag_cycles,
|
|
socket)) == NULL)
|
|
rte_exit(EXIT_FAILURE, "ipv4_frag_tbl_create(%u) on "
|
|
"lcore: %u for queue: %u failed\n",
|
|
max_flow_num, lcore, queue);
|
|
|
|
/*
|
|
* At any given moment up to <max_flow_num * (MAX_FRAG_NUM - 1)>
|
|
* mbufs could be stored int the fragment table.
|
|
* Plus, each TX queue can hold up to <max_flow_num> packets.
|
|
*/
|
|
|
|
nb_mbuf = 2 * RTE_MAX(max_flow_num, 2UL * MAX_PKT_BURST) * MAX_FRAG_NUM;
|
|
nb_mbuf *= (port_conf.rxmode.max_rx_pkt_len + BUF_SIZE - 1) / BUF_SIZE;
|
|
nb_mbuf += RTE_TEST_RX_DESC_DEFAULT + RTE_TEST_TX_DESC_DEFAULT;
|
|
|
|
nb_mbuf = RTE_MAX(nb_mbuf, (uint32_t)DEF_MBUF_NUM);
|
|
|
|
rte_snprintf(buf, sizeof(buf), "mbuf_pool_%u_%u", lcore, queue);
|
|
|
|
if ((qconf->pool[queue] = rte_mempool_create(buf, nb_mbuf, MBUF_SIZE, 0,
|
|
sizeof(struct rte_pktmbuf_pool_private),
|
|
rte_pktmbuf_pool_init, NULL, rte_pktmbuf_init, NULL,
|
|
socket, MEMPOOL_F_SP_PUT | MEMPOOL_F_SC_GET)) == NULL)
|
|
rte_exit(EXIT_FAILURE, "mempool_create(%s) failed", buf);
|
|
}
|
|
|
|
static void
|
|
queue_dump_stat(void)
|
|
{
|
|
uint32_t i, lcore;
|
|
const struct lcore_conf *qconf;
|
|
|
|
for (lcore = 0; lcore < RTE_MAX_LCORE; lcore++) {
|
|
if (rte_lcore_is_enabled(lcore) == 0)
|
|
continue;
|
|
|
|
qconf = lcore_conf + lcore;
|
|
for (i = 0; i < qconf->n_rx_queue; i++) {
|
|
|
|
fprintf(stdout, " -- lcoreid=%u portid=%hhu "
|
|
"rxqueueid=%hhu frag tbl stat:\n",
|
|
lcore, qconf->rx_queue_list[i].port_id,
|
|
qconf->rx_queue_list[i].queue_id);
|
|
ipv4_frag_tbl_dump_stat(stdout, qconf->frag_tbl[i]);
|
|
fprintf(stdout, "TX bursts:\t%" PRIu64 "\n"
|
|
"TX packets _queued:\t%" PRIu64 "\n"
|
|
"TX packets dropped:\t%" PRIu64 "\n"
|
|
"TX packets send:\t%" PRIu64 "\n",
|
|
qconf->tx_stat.call,
|
|
qconf->tx_stat.queue,
|
|
qconf->tx_stat.drop,
|
|
qconf->tx_stat.send);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
signal_handler(int signum)
|
|
{
|
|
queue_dump_stat();
|
|
if (signum != SIGUSR1)
|
|
rte_exit(0, "received signal: %d, exiting\n", signum);
|
|
}
|
|
|
|
int
|
|
MAIN(int argc, char **argv)
|
|
{
|
|
struct lcore_conf *qconf;
|
|
int ret;
|
|
unsigned nb_ports;
|
|
uint16_t queueid;
|
|
unsigned lcore_id;
|
|
uint32_t n_tx_queue, nb_lcores;
|
|
uint8_t portid, nb_rx_queue, queue, socketid;
|
|
|
|
/* init EAL */
|
|
ret = rte_eal_init(argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid EAL parameters\n");
|
|
argc -= ret;
|
|
argv += ret;
|
|
|
|
/* parse application arguments (after the EAL ones) */
|
|
ret = parse_args(argc, argv);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Invalid L3FWD parameters\n");
|
|
|
|
if (check_lcore_params() < 0)
|
|
rte_exit(EXIT_FAILURE, "check_lcore_params failed\n");
|
|
|
|
ret = init_lcore_rx_queues();
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "init_lcore_rx_queues failed\n");
|
|
|
|
|
|
/* init driver(s) */
|
|
if (rte_pmd_init_all() < 0)
|
|
rte_exit(EXIT_FAILURE, "Cannot init pmd\n");
|
|
|
|
if (rte_eal_pci_probe() < 0)
|
|
rte_exit(EXIT_FAILURE, "Cannot probe PCI\n");
|
|
|
|
nb_ports = rte_eth_dev_count();
|
|
if (nb_ports > MAX_PORTS)
|
|
nb_ports = MAX_PORTS;
|
|
|
|
if (check_port_config(nb_ports) < 0)
|
|
rte_exit(EXIT_FAILURE, "check_port_config failed\n");
|
|
|
|
nb_lcores = rte_lcore_count();
|
|
|
|
/* initialize all ports */
|
|
for (portid = 0; portid < nb_ports; portid++) {
|
|
/* skip ports that are not enabled */
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
printf("\nSkipping disabled port %d\n", portid);
|
|
continue;
|
|
}
|
|
|
|
/* init port */
|
|
printf("Initializing port %d ... ", portid );
|
|
fflush(stdout);
|
|
|
|
nb_rx_queue = get_port_n_rx_queues(portid);
|
|
n_tx_queue = nb_lcores;
|
|
if (n_tx_queue > MAX_TX_QUEUE_PER_PORT)
|
|
n_tx_queue = MAX_TX_QUEUE_PER_PORT;
|
|
printf("Creating queues: nb_rxq=%d nb_txq=%u... ",
|
|
nb_rx_queue, (unsigned)n_tx_queue );
|
|
ret = rte_eth_dev_configure(portid, nb_rx_queue,
|
|
(uint16_t)n_tx_queue, &port_conf);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Cannot configure device: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
|
|
print_ethaddr(" Address:", &ports_eth_addr[portid]);
|
|
printf(", ");
|
|
|
|
/* init memory */
|
|
ret = init_mem();
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "init_mem failed\n");
|
|
|
|
/* init one TX queue per couple (lcore,port) */
|
|
queueid = 0;
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
|
|
if (numa_on)
|
|
socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
|
|
else
|
|
socketid = 0;
|
|
|
|
printf("txq=%u,%d,%d ", lcore_id, queueid, socketid);
|
|
fflush(stdout);
|
|
ret = rte_eth_tx_queue_setup(portid, queueid, nb_txd,
|
|
socketid, &tx_conf);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "rte_eth_tx_queue_setup: err=%d, "
|
|
"port=%d\n", ret, portid);
|
|
|
|
qconf = &lcore_conf[lcore_id];
|
|
qconf->tx_queue_id[portid] = queueid;
|
|
setup_port_tbl(qconf, lcore_id, socketid, portid);
|
|
queueid++;
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
if (rte_lcore_is_enabled(lcore_id) == 0)
|
|
continue;
|
|
qconf = &lcore_conf[lcore_id];
|
|
printf("\nInitializing rx queues on lcore %u ... ", lcore_id );
|
|
fflush(stdout);
|
|
/* init RX queues */
|
|
for(queue = 0; queue < qconf->n_rx_queue; ++queue) {
|
|
portid = qconf->rx_queue_list[queue].port_id;
|
|
queueid = qconf->rx_queue_list[queue].queue_id;
|
|
|
|
if (numa_on)
|
|
socketid = (uint8_t)rte_lcore_to_socket_id(lcore_id);
|
|
else
|
|
socketid = 0;
|
|
|
|
printf("rxq=%d,%d,%d ", portid, queueid, socketid);
|
|
fflush(stdout);
|
|
|
|
setup_queue_tbl(qconf, lcore_id, socketid, queue);
|
|
|
|
ret = rte_eth_rx_queue_setup(portid, queueid, nb_rxd,
|
|
socketid, &rx_conf, qconf->pool[queue]);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE,
|
|
"rte_eth_rx_queue_setup: err=%d,"
|
|
"port=%d\n", ret, portid);
|
|
}
|
|
}
|
|
|
|
printf("\n");
|
|
|
|
/* start ports */
|
|
for (portid = 0; portid < nb_ports; portid++) {
|
|
if ((enabled_port_mask & (1 << portid)) == 0) {
|
|
continue;
|
|
}
|
|
/* Start device */
|
|
ret = rte_eth_dev_start(portid);
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "rte_eth_dev_start: err=%d, port=%d\n",
|
|
ret, portid);
|
|
|
|
/*
|
|
* If enabled, put device in promiscuous mode.
|
|
* This allows IO forwarding mode to forward packets
|
|
* to itself through 2 cross-connected ports of the
|
|
* target machine.
|
|
*/
|
|
if (promiscuous_on)
|
|
rte_eth_promiscuous_enable(portid);
|
|
}
|
|
|
|
check_all_ports_link_status((uint8_t)nb_ports, enabled_port_mask);
|
|
|
|
signal(SIGUSR1, signal_handler);
|
|
signal(SIGTERM, signal_handler);
|
|
signal(SIGINT, signal_handler);
|
|
|
|
/* launch per-lcore init on every lcore */
|
|
rte_eal_mp_remote_launch(main_loop, NULL, CALL_MASTER);
|
|
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
|
|
if (rte_eal_wait_lcore(lcore_id) < 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|