Bruce Richardson 6723c0fc72 replace snprintf with strlcpy
Do a global replace of snprintf(..."%s",...) with strlcpy, adding in the
rte_string_fns.h header if needed.  The function changes in this patch were
auto-generated via command:

  spatch --sp-file devtools/cocci/strlcpy.cocci --dir . --in-place

and then the files edited using awk to add in the missing header:

  gawk -i inplace '/include <rte_/ && ! seen { \
  	print "#include <rte_string_fns.h>"; seen=1} {print}'

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2019-04-04 22:46:05 +02:00

377 lines
8.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <rte_string_fns.h>
#include <rte_acl.h>
#include "acl.h"
TAILQ_HEAD(rte_acl_list, rte_tailq_entry);
static struct rte_tailq_elem rte_acl_tailq = {
.name = "RTE_ACL",
};
EAL_REGISTER_TAILQ(rte_acl_tailq)
/*
* If the compiler doesn't support AVX2 instructions,
* then the dummy one would be used instead for AVX2 classify method.
*/
__rte_weak int
rte_acl_classify_avx2(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
__rte_weak int
rte_acl_classify_sse(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
__rte_weak int
rte_acl_classify_neon(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
__rte_weak int
rte_acl_classify_altivec(__rte_unused const struct rte_acl_ctx *ctx,
__rte_unused const uint8_t **data,
__rte_unused uint32_t *results,
__rte_unused uint32_t num,
__rte_unused uint32_t categories)
{
return -ENOTSUP;
}
static const rte_acl_classify_t classify_fns[] = {
[RTE_ACL_CLASSIFY_DEFAULT] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SCALAR] = rte_acl_classify_scalar,
[RTE_ACL_CLASSIFY_SSE] = rte_acl_classify_sse,
[RTE_ACL_CLASSIFY_AVX2] = rte_acl_classify_avx2,
[RTE_ACL_CLASSIFY_NEON] = rte_acl_classify_neon,
[RTE_ACL_CLASSIFY_ALTIVEC] = rte_acl_classify_altivec,
};
/* by default, use always available scalar code path. */
static enum rte_acl_classify_alg rte_acl_default_classify =
RTE_ACL_CLASSIFY_SCALAR;
static void
rte_acl_set_default_classify(enum rte_acl_classify_alg alg)
{
rte_acl_default_classify = alg;
}
extern int
rte_acl_set_ctx_classify(struct rte_acl_ctx *ctx, enum rte_acl_classify_alg alg)
{
if (ctx == NULL || (uint32_t)alg >= RTE_DIM(classify_fns))
return -EINVAL;
ctx->alg = alg;
return 0;
}
/*
* Select highest available classify method as default one.
* Note that CLASSIFY_AVX2 should be set as a default only
* if both conditions are met:
* at build time compiler supports AVX2 and target cpu supports AVX2.
*/
RTE_INIT(rte_acl_init)
{
enum rte_acl_classify_alg alg = RTE_ACL_CLASSIFY_DEFAULT;
#if defined(RTE_ARCH_ARM64)
alg = RTE_ACL_CLASSIFY_NEON;
#elif defined(RTE_ARCH_ARM)
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_NEON))
alg = RTE_ACL_CLASSIFY_NEON;
#elif defined(RTE_ARCH_PPC_64)
alg = RTE_ACL_CLASSIFY_ALTIVEC;
#else
#ifdef CC_AVX2_SUPPORT
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2))
alg = RTE_ACL_CLASSIFY_AVX2;
else if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
#else
if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_SSE4_1))
#endif
alg = RTE_ACL_CLASSIFY_SSE;
#endif
rte_acl_set_default_classify(alg);
}
int
rte_acl_classify_alg(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories,
enum rte_acl_classify_alg alg)
{
if (categories != 1 &&
((RTE_ACL_RESULTS_MULTIPLIER - 1) & categories) != 0)
return -EINVAL;
return classify_fns[alg](ctx, data, results, num, categories);
}
int
rte_acl_classify(const struct rte_acl_ctx *ctx, const uint8_t **data,
uint32_t *results, uint32_t num, uint32_t categories)
{
return rte_acl_classify_alg(ctx, data, results, num, categories,
ctx->alg);
}
struct rte_acl_ctx *
rte_acl_find_existing(const char *name)
{
struct rte_acl_ctx *ctx = NULL;
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
TAILQ_FOREACH(te, acl_list, next) {
ctx = (struct rte_acl_ctx *) te->data;
if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
break;
}
rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
if (te == NULL) {
rte_errno = ENOENT;
return NULL;
}
return ctx;
}
void
rte_acl_free(struct rte_acl_ctx *ctx)
{
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
if (ctx == NULL)
return;
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
/* find our tailq entry */
TAILQ_FOREACH(te, acl_list, next) {
if (te->data == (void *) ctx)
break;
}
if (te == NULL) {
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
return;
}
TAILQ_REMOVE(acl_list, te, next);
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
rte_free(ctx->mem);
rte_free(ctx);
rte_free(te);
}
struct rte_acl_ctx *
rte_acl_create(const struct rte_acl_param *param)
{
size_t sz;
struct rte_acl_ctx *ctx;
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
char name[sizeof(ctx->name)];
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
/* check that input parameters are valid. */
if (param == NULL || param->name == NULL) {
rte_errno = EINVAL;
return NULL;
}
snprintf(name, sizeof(name), "ACL_%s", param->name);
/* calculate amount of memory required for pattern set. */
sz = sizeof(*ctx) + param->max_rule_num * param->rule_size;
/* get EAL TAILQ lock. */
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
/* if we already have one with that name */
TAILQ_FOREACH(te, acl_list, next) {
ctx = (struct rte_acl_ctx *) te->data;
if (strncmp(param->name, ctx->name, sizeof(ctx->name)) == 0)
break;
}
/* if ACL with such name doesn't exist, then create a new one. */
if (te == NULL) {
ctx = NULL;
te = rte_zmalloc("ACL_TAILQ_ENTRY", sizeof(*te), 0);
if (te == NULL) {
RTE_LOG(ERR, ACL, "Cannot allocate tailq entry!\n");
goto exit;
}
ctx = rte_zmalloc_socket(name, sz, RTE_CACHE_LINE_SIZE, param->socket_id);
if (ctx == NULL) {
RTE_LOG(ERR, ACL,
"allocation of %zu bytes on socket %d for %s failed\n",
sz, param->socket_id, name);
rte_free(te);
goto exit;
}
/* init new allocated context. */
ctx->rules = ctx + 1;
ctx->max_rules = param->max_rule_num;
ctx->rule_sz = param->rule_size;
ctx->socket_id = param->socket_id;
ctx->alg = rte_acl_default_classify;
strlcpy(ctx->name, param->name, sizeof(ctx->name));
te->data = (void *) ctx;
TAILQ_INSERT_TAIL(acl_list, te, next);
}
exit:
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
return ctx;
}
static int
acl_add_rules(struct rte_acl_ctx *ctx, const void *rules, uint32_t num)
{
uint8_t *pos;
if (num + ctx->num_rules > ctx->max_rules)
return -ENOMEM;
pos = ctx->rules;
pos += ctx->rule_sz * ctx->num_rules;
memcpy(pos, rules, num * ctx->rule_sz);
ctx->num_rules += num;
return 0;
}
static int
acl_check_rule(const struct rte_acl_rule_data *rd)
{
if ((RTE_LEN2MASK(RTE_ACL_MAX_CATEGORIES, typeof(rd->category_mask)) &
rd->category_mask) == 0 ||
rd->priority > RTE_ACL_MAX_PRIORITY ||
rd->priority < RTE_ACL_MIN_PRIORITY)
return -EINVAL;
return 0;
}
int
rte_acl_add_rules(struct rte_acl_ctx *ctx, const struct rte_acl_rule *rules,
uint32_t num)
{
const struct rte_acl_rule *rv;
uint32_t i;
int32_t rc;
if (ctx == NULL || rules == NULL || 0 == ctx->rule_sz)
return -EINVAL;
for (i = 0; i != num; i++) {
rv = (const struct rte_acl_rule *)
((uintptr_t)rules + i * ctx->rule_sz);
rc = acl_check_rule(&rv->data);
if (rc != 0) {
RTE_LOG(ERR, ACL, "%s(%s): rule #%u is invalid\n",
__func__, ctx->name, i + 1);
return rc;
}
}
return acl_add_rules(ctx, rules, num);
}
/*
* Reset all rules.
* Note that RT structures are not affected.
*/
void
rte_acl_reset_rules(struct rte_acl_ctx *ctx)
{
if (ctx != NULL)
ctx->num_rules = 0;
}
/*
* Reset all rules and destroys RT structures.
*/
void
rte_acl_reset(struct rte_acl_ctx *ctx)
{
if (ctx != NULL) {
rte_acl_reset_rules(ctx);
rte_acl_build(ctx, &ctx->config);
}
}
/*
* Dump ACL context to the stdout.
*/
void
rte_acl_dump(const struct rte_acl_ctx *ctx)
{
if (!ctx)
return;
printf("acl context <%s>@%p\n", ctx->name, ctx);
printf(" socket_id=%"PRId32"\n", ctx->socket_id);
printf(" alg=%"PRId32"\n", ctx->alg);
printf(" max_rules=%"PRIu32"\n", ctx->max_rules);
printf(" rule_size=%"PRIu32"\n", ctx->rule_sz);
printf(" num_rules=%"PRIu32"\n", ctx->num_rules);
printf(" num_categories=%"PRIu32"\n", ctx->num_categories);
printf(" num_tries=%"PRIu32"\n", ctx->num_tries);
}
/*
* Dump all ACL contexts to the stdout.
*/
void
rte_acl_list_dump(void)
{
struct rte_acl_ctx *ctx;
struct rte_acl_list *acl_list;
struct rte_tailq_entry *te;
acl_list = RTE_TAILQ_CAST(rte_acl_tailq.head, rte_acl_list);
rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
TAILQ_FOREACH(te, acl_list, next) {
ctx = (struct rte_acl_ctx *) te->data;
rte_acl_dump(ctx);
}
rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
}