899d8bc9b3
Since the data structures such as rings are shared in their entirety, those TAILQ pointers are shared as well. Meaning that, after a successful rte_ring creation, the tailq_next pointer of the last ring in the TAILQ will be updated with a pointer to a ring which may not be present in the address space of another process (i.e. a ring that may be host-local or guest-local, and not shared over IVSHMEM). Any successive ring create/lookup on the other side of IVSHMEM will result in trying to dereference an invalid pointer. This patchset fixes this problem by creating a default tailq entry that may be used by any data structure that chooses to use TAILQs. This default TAILQ entry will consist of a tailq_next/tailq_prev pointers, and an opaque pointer to arbitrary data. All TAILQ pointers from data structures themselves will be removed and replaced by those generic TAILQ entries, thus fixing the problem of potentially exposing local address space to shared structures. Technically, only rte_ring structure require modification, because IVSHMEM is only using memzones (which aren't in TAILQs) and rings, but for consistency's sake other TAILQ-based data structures were adapted as well. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
893 lines
23 KiB
C
893 lines
23 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <errno.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <errno.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_log.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_common.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_memcpy.h>
|
|
#include <rte_tailq.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_string_fns.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_rwlock.h>
|
|
#include <rte_spinlock.h>
|
|
|
|
#include "rte_lpm6.h"
|
|
|
|
#define RTE_LPM6_TBL24_NUM_ENTRIES (1 << 24)
|
|
#define RTE_LPM6_TBL8_GROUP_NUM_ENTRIES 256
|
|
#define RTE_LPM6_TBL8_MAX_NUM_GROUPS (1 << 21)
|
|
|
|
#define RTE_LPM6_VALID_EXT_ENTRY_BITMASK 0xA0000000
|
|
#define RTE_LPM6_LOOKUP_SUCCESS 0x20000000
|
|
#define RTE_LPM6_TBL8_BITMASK 0x001FFFFF
|
|
|
|
#define ADD_FIRST_BYTE 3
|
|
#define LOOKUP_FIRST_BYTE 4
|
|
#define BYTE_SIZE 8
|
|
#define BYTES2_SIZE 16
|
|
|
|
#define lpm6_tbl8_gindex next_hop
|
|
|
|
/** Flags for setting an entry as valid/invalid. */
|
|
enum valid_flag {
|
|
INVALID = 0,
|
|
VALID
|
|
};
|
|
|
|
TAILQ_HEAD(rte_lpm6_list, rte_tailq_entry);
|
|
|
|
/** Tbl entry structure. It is the same for both tbl24 and tbl8 */
|
|
struct rte_lpm6_tbl_entry {
|
|
uint32_t next_hop: 21; /**< Next hop / next table to be checked. */
|
|
uint32_t depth :8; /**< Rule depth. */
|
|
|
|
/* Flags. */
|
|
uint32_t valid :1; /**< Validation flag. */
|
|
uint32_t valid_group :1; /**< Group validation flag. */
|
|
uint32_t ext_entry :1; /**< External entry. */
|
|
};
|
|
|
|
/** Rules tbl entry structure. */
|
|
struct rte_lpm6_rule {
|
|
uint8_t ip[RTE_LPM6_IPV6_ADDR_SIZE]; /**< Rule IP address. */
|
|
uint8_t next_hop; /**< Rule next hop. */
|
|
uint8_t depth; /**< Rule depth. */
|
|
};
|
|
|
|
/** LPM6 structure. */
|
|
struct rte_lpm6 {
|
|
/* LPM metadata. */
|
|
char name[RTE_LPM6_NAMESIZE]; /**< Name of the lpm. */
|
|
uint32_t max_rules; /**< Max number of rules. */
|
|
uint32_t used_rules; /**< Used rules so far. */
|
|
uint32_t number_tbl8s; /**< Number of tbl8s to allocate. */
|
|
uint32_t next_tbl8; /**< Next tbl8 to be used. */
|
|
|
|
/* LPM Tables. */
|
|
struct rte_lpm6_rule *rules_tbl; /**< LPM rules. */
|
|
struct rte_lpm6_tbl_entry tbl24[RTE_LPM6_TBL24_NUM_ENTRIES]
|
|
__rte_cache_aligned; /**< LPM tbl24 table. */
|
|
struct rte_lpm6_tbl_entry tbl8[0]
|
|
__rte_cache_aligned; /**< LPM tbl8 table. */
|
|
};
|
|
|
|
/*
|
|
* Takes an array of uint8_t (IPv6 address) and masks it using the depth.
|
|
* It leaves untouched one bit per unit in the depth variable
|
|
* and set the rest to 0.
|
|
*/
|
|
static inline void
|
|
mask_ip(uint8_t *ip, uint8_t depth)
|
|
{
|
|
int16_t part_depth, mask;
|
|
int i;
|
|
|
|
part_depth = depth;
|
|
|
|
for (i = 0; i < RTE_LPM6_IPV6_ADDR_SIZE; i++) {
|
|
if (part_depth < BYTE_SIZE && part_depth >= 0) {
|
|
mask = (uint16_t)(~(UINT8_MAX >> part_depth));
|
|
ip[i] = (uint8_t)(ip[i] & mask);
|
|
} else if (part_depth < 0) {
|
|
ip[i] = 0;
|
|
}
|
|
part_depth -= BYTE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocates memory for LPM object
|
|
*/
|
|
struct rte_lpm6 *
|
|
rte_lpm6_create(const char *name, int socket_id,
|
|
const struct rte_lpm6_config *config)
|
|
{
|
|
char mem_name[RTE_LPM6_NAMESIZE];
|
|
struct rte_lpm6 *lpm = NULL;
|
|
struct rte_tailq_entry *te;
|
|
uint64_t mem_size, rules_size;
|
|
struct rte_lpm6_list *lpm_list;
|
|
|
|
/* Check that we have an initialised tail queue */
|
|
if ((lpm_list =
|
|
RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_LPM6, rte_lpm6_list)) == NULL) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return NULL;
|
|
}
|
|
|
|
RTE_BUILD_BUG_ON(sizeof(struct rte_lpm6_tbl_entry) != sizeof(uint32_t));
|
|
|
|
/* Check user arguments. */
|
|
if ((name == NULL) || (socket_id < -1) || (config == NULL) ||
|
|
(config->max_rules == 0) ||
|
|
config->number_tbl8s > RTE_LPM6_TBL8_MAX_NUM_GROUPS) {
|
|
rte_errno = EINVAL;
|
|
return NULL;
|
|
}
|
|
|
|
snprintf(mem_name, sizeof(mem_name), "LPM_%s", name);
|
|
|
|
/* Determine the amount of memory to allocate. */
|
|
mem_size = sizeof(*lpm) + (sizeof(lpm->tbl8[0]) *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * config->number_tbl8s);
|
|
rules_size = sizeof(struct rte_lpm6_rule) * config->max_rules;
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
/* Guarantee there's no existing */
|
|
TAILQ_FOREACH(te, lpm_list, next) {
|
|
lpm = (struct rte_lpm6 *) te->data;
|
|
if (strncmp(name, lpm->name, RTE_LPM6_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
if (te != NULL)
|
|
goto exit;
|
|
|
|
/* allocate tailq entry */
|
|
te = rte_zmalloc("LPM6_TAILQ_ENTRY", sizeof(*te), 0);
|
|
if (te == NULL) {
|
|
RTE_LOG(ERR, LPM, "Failed to allocate tailq entry!\n");
|
|
goto exit;
|
|
}
|
|
|
|
/* Allocate memory to store the LPM data structures. */
|
|
lpm = (struct rte_lpm6 *)rte_zmalloc_socket(mem_name, (size_t)mem_size,
|
|
CACHE_LINE_SIZE, socket_id);
|
|
|
|
if (lpm == NULL) {
|
|
RTE_LOG(ERR, LPM, "LPM memory allocation failed\n");
|
|
rte_free(te);
|
|
goto exit;
|
|
}
|
|
|
|
lpm->rules_tbl = (struct rte_lpm6_rule *)rte_zmalloc_socket(NULL,
|
|
(size_t)rules_size, CACHE_LINE_SIZE, socket_id);
|
|
|
|
if (lpm->rules_tbl == NULL) {
|
|
RTE_LOG(ERR, LPM, "LPM memory allocation failed\n");
|
|
rte_free(lpm);
|
|
rte_free(te);
|
|
goto exit;
|
|
}
|
|
|
|
/* Save user arguments. */
|
|
lpm->max_rules = config->max_rules;
|
|
lpm->number_tbl8s = config->number_tbl8s;
|
|
snprintf(lpm->name, sizeof(lpm->name), "%s", name);
|
|
|
|
te->data = (void *) lpm;
|
|
|
|
TAILQ_INSERT_TAIL(lpm_list, te, next);
|
|
|
|
exit:
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
return lpm;
|
|
}
|
|
|
|
/*
|
|
* Find an existing lpm table and return a pointer to it.
|
|
*/
|
|
struct rte_lpm6 *
|
|
rte_lpm6_find_existing(const char *name)
|
|
{
|
|
struct rte_lpm6 *l = NULL;
|
|
struct rte_tailq_entry *te;
|
|
struct rte_lpm6_list *lpm_list;
|
|
|
|
/* Check that we have an initialised tail queue */
|
|
if ((lpm_list = RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_LPM6,
|
|
rte_lpm6_list)) == NULL) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return NULL;
|
|
}
|
|
|
|
rte_rwlock_read_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
TAILQ_FOREACH(te, lpm_list, next) {
|
|
l = (struct rte_lpm6 *) te->data;
|
|
if (strncmp(name, l->name, RTE_LPM6_NAMESIZE) == 0)
|
|
break;
|
|
}
|
|
rte_rwlock_read_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
if (te == NULL) {
|
|
rte_errno = ENOENT;
|
|
return NULL;
|
|
}
|
|
|
|
return l;
|
|
}
|
|
|
|
/*
|
|
* Deallocates memory for given LPM table.
|
|
*/
|
|
void
|
|
rte_lpm6_free(struct rte_lpm6 *lpm)
|
|
{
|
|
struct rte_lpm6_list *lpm_list;
|
|
struct rte_tailq_entry *te;
|
|
|
|
/* Check user arguments. */
|
|
if (lpm == NULL)
|
|
return;
|
|
|
|
/* check that we have an initialised tail queue */
|
|
if ((lpm_list =
|
|
RTE_TAILQ_LOOKUP_BY_IDX(RTE_TAILQ_LPM, rte_lpm6_list)) == NULL) {
|
|
rte_errno = E_RTE_NO_TAILQ;
|
|
return;
|
|
}
|
|
|
|
rte_rwlock_write_lock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
/* find our tailq entry */
|
|
TAILQ_FOREACH(te, lpm_list, next) {
|
|
if (te->data == (void *) lpm)
|
|
break;
|
|
}
|
|
if (te == NULL) {
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
return;
|
|
}
|
|
|
|
TAILQ_REMOVE(lpm_list, te, next);
|
|
|
|
rte_rwlock_write_unlock(RTE_EAL_TAILQ_RWLOCK);
|
|
|
|
rte_free(lpm);
|
|
rte_free(te);
|
|
}
|
|
|
|
/*
|
|
* Checks if a rule already exists in the rules table and updates
|
|
* the nexthop if so. Otherwise it adds a new rule if enough space is available.
|
|
*/
|
|
static inline int32_t
|
|
rule_add(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t next_hop, uint8_t depth)
|
|
{
|
|
uint32_t rule_index;
|
|
|
|
/* Scan through rule list to see if rule already exists. */
|
|
for (rule_index = 0; rule_index < lpm->used_rules; rule_index++) {
|
|
|
|
/* If rule already exists update its next_hop and return. */
|
|
if ((memcmp (lpm->rules_tbl[rule_index].ip, ip,
|
|
RTE_LPM6_IPV6_ADDR_SIZE) == 0) &&
|
|
lpm->rules_tbl[rule_index].depth == depth) {
|
|
lpm->rules_tbl[rule_index].next_hop = next_hop;
|
|
|
|
return rule_index;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If rule does not exist check if there is space to add a new rule to
|
|
* this rule group. If there is no space return error.
|
|
*/
|
|
if (lpm->used_rules == lpm->max_rules) {
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/* If there is space for the new rule add it. */
|
|
rte_memcpy(lpm->rules_tbl[rule_index].ip, ip, RTE_LPM6_IPV6_ADDR_SIZE);
|
|
lpm->rules_tbl[rule_index].next_hop = next_hop;
|
|
lpm->rules_tbl[rule_index].depth = depth;
|
|
|
|
/* Increment the used rules counter for this rule group. */
|
|
lpm->used_rules++;
|
|
|
|
return rule_index;
|
|
}
|
|
|
|
/*
|
|
* Function that expands a rule across the data structure when a less-generic
|
|
* one has been added before. It assures that every possible combination of bits
|
|
* in the IP address returns a match.
|
|
*/
|
|
static void
|
|
expand_rule(struct rte_lpm6 *lpm, uint32_t tbl8_gindex, uint8_t depth,
|
|
uint8_t next_hop)
|
|
{
|
|
uint32_t tbl8_group_end, tbl8_gindex_next, j;
|
|
|
|
tbl8_group_end = tbl8_gindex + RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
|
|
struct rte_lpm6_tbl_entry new_tbl8_entry = {
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.depth = depth,
|
|
.next_hop = next_hop,
|
|
.ext_entry = 0,
|
|
};
|
|
|
|
for (j = tbl8_gindex; j < tbl8_group_end; j++) {
|
|
if (!lpm->tbl8[j].valid || (lpm->tbl8[j].ext_entry == 0
|
|
&& lpm->tbl8[j].depth <= depth)) {
|
|
|
|
lpm->tbl8[j] = new_tbl8_entry;
|
|
|
|
} else if (lpm->tbl8[j].ext_entry == 1) {
|
|
|
|
tbl8_gindex_next = lpm->tbl8[j].lpm6_tbl8_gindex
|
|
* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
expand_rule(lpm, tbl8_gindex_next, depth, next_hop);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Partially adds a new route to the data structure (tbl24+tbl8s).
|
|
* It returns 0 on success, a negative number on failure, or 1 if
|
|
* the process needs to be continued by calling the function again.
|
|
*/
|
|
static inline int
|
|
add_step(struct rte_lpm6 *lpm, struct rte_lpm6_tbl_entry *tbl,
|
|
struct rte_lpm6_tbl_entry **tbl_next, uint8_t *ip, uint8_t bytes,
|
|
uint8_t first_byte, uint8_t depth, uint8_t next_hop)
|
|
{
|
|
uint32_t tbl_index, tbl_range, tbl8_group_start, tbl8_group_end, i;
|
|
int32_t tbl8_gindex;
|
|
int8_t bitshift;
|
|
uint8_t bits_covered;
|
|
|
|
/*
|
|
* Calculate index to the table based on the number and position
|
|
* of the bytes being inspected in this step.
|
|
*/
|
|
tbl_index = 0;
|
|
for (i = first_byte; i < (uint32_t)(first_byte + bytes); i++) {
|
|
bitshift = (int8_t)((bytes - i)*BYTE_SIZE);
|
|
|
|
if (bitshift < 0) bitshift = 0;
|
|
tbl_index = tbl_index | ip[i-1] << bitshift;
|
|
}
|
|
|
|
/* Number of bits covered in this step */
|
|
bits_covered = (uint8_t)((bytes+first_byte-1)*BYTE_SIZE);
|
|
|
|
/*
|
|
* If depth if smaller than this number (ie this is the last step)
|
|
* expand the rule across the relevant positions in the table.
|
|
*/
|
|
if (depth <= bits_covered) {
|
|
tbl_range = 1 << (bits_covered - depth);
|
|
|
|
for (i = tbl_index; i < (tbl_index + tbl_range); i++) {
|
|
if (!tbl[i].valid || (tbl[i].ext_entry == 0 &&
|
|
tbl[i].depth <= depth)) {
|
|
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.next_hop = next_hop,
|
|
.depth = depth,
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.ext_entry = 0,
|
|
};
|
|
|
|
tbl[i] = new_tbl_entry;
|
|
|
|
} else if (tbl[i].ext_entry == 1) {
|
|
|
|
/*
|
|
* If tbl entry is valid and extended calculate the index
|
|
* into next tbl8 and expand the rule across the data structure.
|
|
*/
|
|
tbl8_gindex = tbl[i].lpm6_tbl8_gindex *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
expand_rule(lpm, tbl8_gindex, depth, next_hop);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
/*
|
|
* If this is not the last step just fill one position
|
|
* and calculate the index to the next table.
|
|
*/
|
|
else {
|
|
/* If it's invalid a new tbl8 is needed */
|
|
if (!tbl[tbl_index].valid) {
|
|
if (lpm->next_tbl8 < lpm->number_tbl8s)
|
|
tbl8_gindex = (lpm->next_tbl8)++;
|
|
else
|
|
return -ENOSPC;
|
|
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.lpm6_tbl8_gindex = tbl8_gindex,
|
|
.depth = 0,
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.ext_entry = 1,
|
|
};
|
|
|
|
tbl[tbl_index] = new_tbl_entry;
|
|
}
|
|
/*
|
|
* If it's valid but not extended the rule that was stored *
|
|
* here needs to be moved to the next table.
|
|
*/
|
|
else if (tbl[tbl_index].ext_entry == 0) {
|
|
/* Search for free tbl8 group. */
|
|
if (lpm->next_tbl8 < lpm->number_tbl8s)
|
|
tbl8_gindex = (lpm->next_tbl8)++;
|
|
else
|
|
return -ENOSPC;
|
|
|
|
tbl8_group_start = tbl8_gindex *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
tbl8_group_end = tbl8_group_start +
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES;
|
|
|
|
/* Populate new tbl8 with tbl value. */
|
|
for (i = tbl8_group_start; i < tbl8_group_end; i++) {
|
|
lpm->tbl8[i].valid = VALID;
|
|
lpm->tbl8[i].depth = tbl[tbl_index].depth;
|
|
lpm->tbl8[i].next_hop = tbl[tbl_index].next_hop;
|
|
lpm->tbl8[i].ext_entry = 0;
|
|
}
|
|
|
|
/*
|
|
* Update tbl entry to point to new tbl8 entry. Note: The
|
|
* ext_flag and tbl8_index need to be updated simultaneously,
|
|
* so assign whole structure in one go.
|
|
*/
|
|
struct rte_lpm6_tbl_entry new_tbl_entry = {
|
|
.lpm6_tbl8_gindex = tbl8_gindex,
|
|
.depth = 0,
|
|
.valid = VALID,
|
|
.valid_group = VALID,
|
|
.ext_entry = 1,
|
|
};
|
|
|
|
tbl[tbl_index] = new_tbl_entry;
|
|
}
|
|
|
|
*tbl_next = &(lpm->tbl8[tbl[tbl_index].lpm6_tbl8_gindex *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES]);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Add a route
|
|
*/
|
|
int
|
|
rte_lpm6_add(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth,
|
|
uint8_t next_hop)
|
|
{
|
|
struct rte_lpm6_tbl_entry *tbl;
|
|
struct rte_lpm6_tbl_entry *tbl_next;
|
|
int32_t rule_index;
|
|
int status;
|
|
uint8_t masked_ip[RTE_LPM6_IPV6_ADDR_SIZE];
|
|
int i;
|
|
|
|
/* Check user arguments. */
|
|
if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH))
|
|
return -EINVAL;
|
|
|
|
/* Copy the IP and mask it to avoid modifying user's input data. */
|
|
memcpy(masked_ip, ip, RTE_LPM6_IPV6_ADDR_SIZE);
|
|
mask_ip(masked_ip, depth);
|
|
|
|
/* Add the rule to the rule table. */
|
|
rule_index = rule_add(lpm, masked_ip, next_hop, depth);
|
|
|
|
/* If there is no space available for new rule return error. */
|
|
if (rule_index < 0) {
|
|
return rule_index;
|
|
}
|
|
|
|
/* Inspect the first three bytes through tbl24 on the first step. */
|
|
tbl = lpm->tbl24;
|
|
status = add_step (lpm, tbl, &tbl_next, masked_ip, ADD_FIRST_BYTE, 1,
|
|
depth, next_hop);
|
|
if (status < 0) {
|
|
rte_lpm6_delete(lpm, masked_ip, depth);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Inspect one by one the rest of the bytes until
|
|
* the process is completed.
|
|
*/
|
|
for (i = ADD_FIRST_BYTE; i < RTE_LPM6_IPV6_ADDR_SIZE && status == 1; i++) {
|
|
tbl = tbl_next;
|
|
status = add_step (lpm, tbl, &tbl_next, masked_ip, 1, (uint8_t)(i+1),
|
|
depth, next_hop);
|
|
if (status < 0) {
|
|
rte_lpm6_delete(lpm, masked_ip, depth);
|
|
|
|
return status;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Takes a pointer to a table entry and inspect one level.
|
|
* The function returns 0 on lookup success, ENOENT if no match was found
|
|
* or 1 if the process needs to be continued by calling the function again.
|
|
*/
|
|
static inline int
|
|
lookup_step(const struct rte_lpm6 *lpm, const struct rte_lpm6_tbl_entry *tbl,
|
|
const struct rte_lpm6_tbl_entry **tbl_next, uint8_t *ip,
|
|
uint8_t first_byte, uint8_t *next_hop)
|
|
{
|
|
uint32_t tbl8_index, tbl_entry;
|
|
|
|
/* Take the integer value from the pointer. */
|
|
tbl_entry = *(const uint32_t *)tbl;
|
|
|
|
/* If it is valid and extended we calculate the new pointer to return. */
|
|
if ((tbl_entry & RTE_LPM6_VALID_EXT_ENTRY_BITMASK) ==
|
|
RTE_LPM6_VALID_EXT_ENTRY_BITMASK) {
|
|
|
|
tbl8_index = ip[first_byte-1] +
|
|
((tbl_entry & RTE_LPM6_TBL8_BITMASK) *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES);
|
|
|
|
*tbl_next = &lpm->tbl8[tbl8_index];
|
|
|
|
return 1;
|
|
} else {
|
|
/* If not extended then we can have a match. */
|
|
*next_hop = (uint8_t)tbl_entry;
|
|
return (tbl_entry & RTE_LPM6_LOOKUP_SUCCESS) ? 0 : -ENOENT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Looks up an IP
|
|
*/
|
|
int
|
|
rte_lpm6_lookup(const struct rte_lpm6 *lpm, uint8_t *ip, uint8_t *next_hop)
|
|
{
|
|
const struct rte_lpm6_tbl_entry *tbl;
|
|
const struct rte_lpm6_tbl_entry *tbl_next;
|
|
int status;
|
|
uint8_t first_byte;
|
|
uint32_t tbl24_index;
|
|
|
|
/* DEBUG: Check user input arguments. */
|
|
if ((lpm == NULL) || (ip == NULL) || (next_hop == NULL)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
first_byte = LOOKUP_FIRST_BYTE;
|
|
tbl24_index = (ip[0] << BYTES2_SIZE) | (ip[1] << BYTE_SIZE) | ip[2];
|
|
|
|
/* Calculate pointer to the first entry to be inspected */
|
|
tbl = &lpm->tbl24[tbl24_index];
|
|
|
|
do {
|
|
/* Continue inspecting following levels until success or failure */
|
|
status = lookup_step(lpm, tbl, &tbl_next, ip, first_byte++, next_hop);
|
|
tbl = tbl_next;
|
|
} while (status == 1);
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Looks up a group of IP addresses
|
|
*/
|
|
int
|
|
rte_lpm6_lookup_bulk_func(const struct rte_lpm6 *lpm,
|
|
uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE],
|
|
int16_t * next_hops, unsigned n)
|
|
{
|
|
unsigned i;
|
|
const struct rte_lpm6_tbl_entry *tbl;
|
|
const struct rte_lpm6_tbl_entry *tbl_next;
|
|
uint32_t tbl24_index;
|
|
uint8_t first_byte, next_hop;
|
|
int status;
|
|
|
|
/* DEBUG: Check user input arguments. */
|
|
if ((lpm == NULL) || (ips == NULL) || (next_hops == NULL)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
first_byte = LOOKUP_FIRST_BYTE;
|
|
tbl24_index = (ips[i][0] << BYTES2_SIZE) |
|
|
(ips[i][1] << BYTE_SIZE) | ips[i][2];
|
|
|
|
/* Calculate pointer to the first entry to be inspected */
|
|
tbl = &lpm->tbl24[tbl24_index];
|
|
|
|
do {
|
|
/* Continue inspecting following levels until success or failure */
|
|
status = lookup_step(lpm, tbl, &tbl_next, ips[i], first_byte++,
|
|
&next_hop);
|
|
tbl = tbl_next;
|
|
} while (status == 1);
|
|
|
|
if (status < 0)
|
|
next_hops[i] = -1;
|
|
else
|
|
next_hops[i] = next_hop;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Finds a rule in rule table.
|
|
* NOTE: Valid range for depth parameter is 1 .. 128 inclusive.
|
|
*/
|
|
static inline int32_t
|
|
rule_find(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth)
|
|
{
|
|
uint32_t rule_index;
|
|
|
|
/* Scan used rules at given depth to find rule. */
|
|
for (rule_index = 0; rule_index < lpm->used_rules; rule_index++) {
|
|
/* If rule is found return the rule index. */
|
|
if ((memcmp (lpm->rules_tbl[rule_index].ip, ip,
|
|
RTE_LPM6_IPV6_ADDR_SIZE) == 0) &&
|
|
lpm->rules_tbl[rule_index].depth == depth) {
|
|
|
|
return rule_index;
|
|
}
|
|
}
|
|
|
|
/* If rule is not found return -ENOENT. */
|
|
return -ENOENT;
|
|
}
|
|
|
|
/*
|
|
* Look for a rule in the high-level rules table
|
|
*/
|
|
int
|
|
rte_lpm6_is_rule_present(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth,
|
|
uint8_t *next_hop)
|
|
{
|
|
uint8_t ip_masked[RTE_LPM6_IPV6_ADDR_SIZE];
|
|
int32_t rule_index;
|
|
|
|
/* Check user arguments. */
|
|
if ((lpm == NULL) || next_hop == NULL || ip == NULL ||
|
|
(depth < 1) || (depth > RTE_LPM6_MAX_DEPTH))
|
|
return -EINVAL;
|
|
|
|
/* Copy the IP and mask it to avoid modifying user's input data. */
|
|
memcpy(ip_masked, ip, RTE_LPM6_IPV6_ADDR_SIZE);
|
|
mask_ip(ip_masked, depth);
|
|
|
|
/* Look for the rule using rule_find. */
|
|
rule_index = rule_find(lpm, ip_masked, depth);
|
|
|
|
if (rule_index >= 0) {
|
|
*next_hop = lpm->rules_tbl[rule_index].next_hop;
|
|
return 1;
|
|
}
|
|
|
|
/* If rule is not found return 0. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Delete a rule from the rule table.
|
|
* NOTE: Valid range for depth parameter is 1 .. 128 inclusive.
|
|
*/
|
|
static inline void
|
|
rule_delete(struct rte_lpm6 *lpm, int32_t rule_index)
|
|
{
|
|
/*
|
|
* Overwrite redundant rule with last rule in group and decrement rule
|
|
* counter.
|
|
*/
|
|
lpm->rules_tbl[rule_index] = lpm->rules_tbl[lpm->used_rules-1];
|
|
lpm->used_rules--;
|
|
}
|
|
|
|
/*
|
|
* Deletes a rule
|
|
*/
|
|
int
|
|
rte_lpm6_delete(struct rte_lpm6 *lpm, uint8_t *ip, uint8_t depth)
|
|
{
|
|
int32_t rule_to_delete_index;
|
|
uint8_t ip_masked[RTE_LPM6_IPV6_ADDR_SIZE];
|
|
unsigned i;
|
|
|
|
/*
|
|
* Check input arguments.
|
|
*/
|
|
if ((lpm == NULL) || (depth < 1) || (depth > RTE_LPM6_MAX_DEPTH)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Copy the IP and mask it to avoid modifying user's input data. */
|
|
memcpy(ip_masked, ip, RTE_LPM6_IPV6_ADDR_SIZE);
|
|
mask_ip(ip_masked, depth);
|
|
|
|
/*
|
|
* Find the index of the input rule, that needs to be deleted, in the
|
|
* rule table.
|
|
*/
|
|
rule_to_delete_index = rule_find(lpm, ip_masked, depth);
|
|
|
|
/*
|
|
* Check if rule_to_delete_index was found. If no rule was found the
|
|
* function rule_find returns -ENOENT.
|
|
*/
|
|
if (rule_to_delete_index < 0)
|
|
return rule_to_delete_index;
|
|
|
|
/* Delete the rule from the rule table. */
|
|
rule_delete(lpm, rule_to_delete_index);
|
|
|
|
/*
|
|
* Set all the table entries to 0 (ie delete every rule
|
|
* from the data structure.
|
|
*/
|
|
lpm->next_tbl8 = 0;
|
|
memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
|
|
memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0])
|
|
* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
|
|
|
|
/*
|
|
* Add every rule again (except for the one that was removed from
|
|
* the rules table).
|
|
*/
|
|
for (i = 0; i < lpm->used_rules; i++) {
|
|
rte_lpm6_add(lpm, lpm->rules_tbl[i].ip, lpm->rules_tbl[i].depth,
|
|
lpm->rules_tbl[i].next_hop);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deletes a group of rules
|
|
*/
|
|
int
|
|
rte_lpm6_delete_bulk_func(struct rte_lpm6 *lpm,
|
|
uint8_t ips[][RTE_LPM6_IPV6_ADDR_SIZE], uint8_t *depths, unsigned n)
|
|
{
|
|
int32_t rule_to_delete_index;
|
|
uint8_t ip_masked[RTE_LPM6_IPV6_ADDR_SIZE];
|
|
unsigned i;
|
|
|
|
/*
|
|
* Check input arguments.
|
|
*/
|
|
if ((lpm == NULL) || (ips == NULL) || (depths == NULL)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
/* Copy the IP and mask it to avoid modifying user's input data. */
|
|
memcpy(ip_masked, ips[i], RTE_LPM6_IPV6_ADDR_SIZE);
|
|
mask_ip(ip_masked, depths[i]);
|
|
|
|
/*
|
|
* Find the index of the input rule, that needs to be deleted, in the
|
|
* rule table.
|
|
*/
|
|
rule_to_delete_index = rule_find(lpm, ip_masked, depths[i]);
|
|
|
|
/*
|
|
* Check if rule_to_delete_index was found. If no rule was found the
|
|
* function rule_find returns -ENOENT.
|
|
*/
|
|
if (rule_to_delete_index < 0)
|
|
continue;
|
|
|
|
/* Delete the rule from the rule table. */
|
|
rule_delete(lpm, rule_to_delete_index);
|
|
}
|
|
|
|
/*
|
|
* Set all the table entries to 0 (ie delete every rule
|
|
* from the data structure.
|
|
*/
|
|
lpm->next_tbl8 = 0;
|
|
memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
|
|
memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0])
|
|
* RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
|
|
|
|
/*
|
|
* Add every rule again (except for the ones that were removed from
|
|
* the rules table).
|
|
*/
|
|
for (i = 0; i < lpm->used_rules; i++) {
|
|
rte_lpm6_add(lpm, lpm->rules_tbl[i].ip, lpm->rules_tbl[i].depth,
|
|
lpm->rules_tbl[i].next_hop);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Delete all rules from the LPM table.
|
|
*/
|
|
void
|
|
rte_lpm6_delete_all(struct rte_lpm6 *lpm)
|
|
{
|
|
/* Zero used rules counter. */
|
|
lpm->used_rules = 0;
|
|
|
|
/* Zero next tbl8 index. */
|
|
lpm->next_tbl8 = 0;
|
|
|
|
/* Zero tbl24. */
|
|
memset(lpm->tbl24, 0, sizeof(lpm->tbl24));
|
|
|
|
/* Zero tbl8. */
|
|
memset(lpm->tbl8, 0, sizeof(lpm->tbl8[0]) *
|
|
RTE_LPM6_TBL8_GROUP_NUM_ENTRIES * lpm->number_tbl8s);
|
|
|
|
/* Delete all rules form the rules table. */
|
|
memset(lpm->rules_tbl, 0, sizeof(struct rte_lpm6_rule) * lpm->max_rules);
|
|
}
|