numam-dpdk/app/test/test_pmd_perf.c
Stephen Hemminger cb056611a8 eal: rename lcore master and slave
Replace master lcore with main lcore and
replace slave lcore with worker lcore.

Keep the old functions and macros but mark them as deprecated
for this release.

The "--master-lcore" command line option is also deprecated
and any usage will print a warning and use "--main-lcore"
as replacement.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Anatoly Burakov <anatoly.burakov@intel.com>
2020-10-20 13:17:08 +02:00

889 lines
21 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <inttypes.h>
#include <signal.h>
#include <unistd.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>
#include <rte_byteorder.h>
#include <rte_atomic.h>
#include <rte_malloc.h>
#include "packet_burst_generator.h"
#include "test.h"
#define NB_ETHPORTS_USED (1)
#define NB_SOCKETS (2)
#define MEMPOOL_CACHE_SIZE 250
#define MAX_PKT_BURST (32)
#define RTE_TEST_RX_DESC_DEFAULT (1024)
#define RTE_TEST_TX_DESC_DEFAULT (1024)
#define RTE_PORT_ALL (~(uint16_t)0x0)
/* how long test would take at full line rate */
#define RTE_TEST_DURATION (2)
/*
* RX and TX Prefetch, Host, and Write-back threshold values should be
* carefully set for optimal performance. Consult the network
* controller's datasheet and supporting DPDK documentation for guidance
* on how these parameters should be set.
*/
#define RX_PTHRESH 8 /**< Default values of RX prefetch threshold reg. */
#define RX_HTHRESH 8 /**< Default values of RX host threshold reg. */
#define RX_WTHRESH 0 /**< Default values of RX write-back threshold reg. */
/*
* These default values are optimized for use with the Intel(R) 82599 10 GbE
* Controller and the DPDK ixgbe PMD. Consider using other values for other
* network controllers and/or network drivers.
*/
#define TX_PTHRESH 32 /**< Default values of TX prefetch threshold reg. */
#define TX_HTHRESH 0 /**< Default values of TX host threshold reg. */
#define TX_WTHRESH 0 /**< Default values of TX write-back threshold reg. */
#define MAX_TRAFFIC_BURST 2048
#define NB_MBUF RTE_MAX( \
(unsigned)(nb_ports*nb_rx_queue*nb_rxd + \
nb_ports*nb_lcores*MAX_PKT_BURST + \
nb_ports*nb_tx_queue*nb_txd + \
nb_lcores*MEMPOOL_CACHE_SIZE + \
nb_ports*MAX_TRAFFIC_BURST), \
(unsigned)8192)
static struct rte_mempool *mbufpool[NB_SOCKETS];
/* ethernet addresses of ports */
static struct rte_ether_addr ports_eth_addr[RTE_MAX_ETHPORTS];
static struct rte_eth_conf port_conf = {
.rxmode = {
.mq_mode = ETH_MQ_RX_NONE,
.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
.split_hdr_size = 0,
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
.lpbk_mode = 1, /* enable loopback */
};
static struct rte_eth_rxconf rx_conf = {
.rx_thresh = {
.pthresh = RX_PTHRESH,
.hthresh = RX_HTHRESH,
.wthresh = RX_WTHRESH,
},
.rx_free_thresh = 32,
};
static struct rte_eth_txconf tx_conf = {
.tx_thresh = {
.pthresh = TX_PTHRESH,
.hthresh = TX_HTHRESH,
.wthresh = TX_WTHRESH,
},
.tx_free_thresh = 32, /* Use PMD default values */
.tx_rs_thresh = 32, /* Use PMD default values */
};
enum {
LCORE_INVALID = 0,
LCORE_AVAIL,
LCORE_USED,
};
struct lcore_conf {
uint8_t status;
uint8_t socketid;
uint16_t nb_ports;
uint16_t portlist[RTE_MAX_ETHPORTS];
} __rte_cache_aligned;
struct lcore_conf lcore_conf[RTE_MAX_LCORE];
static uint64_t link_mbps;
enum {
SC_CONTINUOUS = 0,
SC_BURST_POLL_FIRST,
SC_BURST_XMIT_FIRST,
};
static uint32_t sc_flag;
/* Check the link status of all ports in up to 3s, and print them finally */
static void
check_all_ports_link_status(uint16_t port_num, uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 30 /* 3s (30 * 100ms) in total */
uint16_t portid;
uint8_t count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
int ret;
char link_status[RTE_ETH_LINK_MAX_STR_LEN];
printf("Checking link statuses...\n");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
for (portid = 0; portid < port_num; portid++) {
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
ret = rte_eth_link_get_nowait(portid, &link);
if (ret < 0) {
all_ports_up = 0;
if (print_flag == 1)
printf("Port %u link get failed: %s\n",
portid, rte_strerror(-ret));
continue;
}
/* print link status if flag set */
if (print_flag == 1) {
if (link.link_status && link_mbps == 0)
link_mbps = link.link_speed;
rte_eth_link_to_str(link_status,
sizeof(link_status), &link);
printf("Port %d %s\n", portid, link_status);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1))
print_flag = 1;
}
}
static void
print_ethaddr(const char *name, const struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
static int
init_traffic(struct rte_mempool *mp,
struct rte_mbuf **pkts_burst, uint32_t burst_size)
{
struct rte_ether_hdr pkt_eth_hdr;
struct rte_ipv4_hdr pkt_ipv4_hdr;
struct rte_udp_hdr pkt_udp_hdr;
uint32_t pktlen;
static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF };
static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA };
initialize_eth_header(&pkt_eth_hdr,
(struct rte_ether_addr *)src_mac,
(struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0);
pktlen = initialize_ipv4_header(&pkt_ipv4_hdr,
IPV4_ADDR(10, 0, 0, 1),
IPV4_ADDR(10, 0, 0, 2), 26);
printf("IPv4 pktlen %u\n", pktlen);
pktlen = initialize_udp_header(&pkt_udp_hdr, 0, 0, 18);
printf("UDP pktlen %u\n", pktlen);
return generate_packet_burst(mp, pkts_burst, &pkt_eth_hdr,
0, &pkt_ipv4_hdr, 1,
&pkt_udp_hdr, burst_size,
PACKET_BURST_GEN_PKT_LEN, 1);
}
static int
init_lcores(void)
{
unsigned lcore_id;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
lcore_conf[lcore_id].socketid =
rte_lcore_to_socket_id(lcore_id);
if (rte_lcore_is_enabled(lcore_id) == 0) {
lcore_conf[lcore_id].status = LCORE_INVALID;
continue;
} else
lcore_conf[lcore_id].status = LCORE_AVAIL;
}
return 0;
}
static int
init_mbufpool(unsigned nb_mbuf)
{
int socketid;
unsigned lcore_id;
char s[64];
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (rte_lcore_is_enabled(lcore_id) == 0)
continue;
socketid = rte_lcore_to_socket_id(lcore_id);
if (socketid >= NB_SOCKETS) {
rte_exit(EXIT_FAILURE,
"Socket %d of lcore %u is out of range %d\n",
socketid, lcore_id, NB_SOCKETS);
}
if (mbufpool[socketid] == NULL) {
snprintf(s, sizeof(s), "mbuf_pool_%d", socketid);
mbufpool[socketid] =
rte_pktmbuf_pool_create(s, nb_mbuf,
MEMPOOL_CACHE_SIZE, 0,
RTE_MBUF_DEFAULT_BUF_SIZE, socketid);
if (mbufpool[socketid] == NULL)
rte_exit(EXIT_FAILURE,
"Cannot init mbuf pool on socket %d\n",
socketid);
else
printf("Allocated mbuf pool on socket %d\n",
socketid);
}
}
return 0;
}
static uint16_t
alloc_lcore(uint16_t socketid)
{
unsigned lcore_id;
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
if (LCORE_AVAIL != lcore_conf[lcore_id].status ||
lcore_conf[lcore_id].socketid != socketid ||
lcore_id == rte_get_main_lcore())
continue;
lcore_conf[lcore_id].status = LCORE_USED;
lcore_conf[lcore_id].nb_ports = 0;
return lcore_id;
}
return (uint16_t)-1;
}
static volatile uint64_t stop;
static uint64_t count;
static uint64_t drop;
static uint64_t idle;
static void
reset_count(void)
{
count = 0;
drop = 0;
idle = 0;
}
static void
stats_display(uint16_t port_id)
{
struct rte_eth_stats stats;
rte_eth_stats_get(port_id, &stats);
printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: "
"%-"PRIu64"\n",
stats.ipackets, stats.imissed, stats.ibytes);
printf(" RX-errors: %-10"PRIu64" RX-nombuf: %-10"PRIu64"\n",
stats.ierrors, stats.rx_nombuf);
printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: "
"%-"PRIu64"\n",
stats.opackets, stats.oerrors, stats.obytes);
}
static void
signal_handler(int signum)
{
/* USR1 signal, stop testing */
if (signum == SIGUSR1) {
printf("Force Stop!\n");
stop = 1;
}
/* USR2 signal, print stats */
if (signum == SIGUSR2)
stats_display(0);
}
struct rte_mbuf **tx_burst;
uint64_t (*do_measure)(struct lcore_conf *conf,
struct rte_mbuf *pkts_burst[],
uint64_t total_pkts);
static uint64_t
measure_rxtx(struct lcore_conf *conf,
struct rte_mbuf *pkts_burst[],
uint64_t total_pkts)
{
unsigned i, portid, nb_rx, nb_tx;
uint64_t prev_tsc, cur_tsc;
prev_tsc = rte_rdtsc();
while (likely(!stop)) {
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
nb_rx = rte_eth_rx_burst(portid, 0,
pkts_burst, MAX_PKT_BURST);
if (unlikely(nb_rx == 0)) {
idle++;
continue;
}
count += nb_rx;
nb_tx = rte_eth_tx_burst(portid, 0, pkts_burst, nb_rx);
if (unlikely(nb_tx < nb_rx)) {
drop += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
}
if (unlikely(count >= total_pkts))
break;
}
cur_tsc = rte_rdtsc();
return cur_tsc - prev_tsc;
}
static uint64_t
measure_rxonly(struct lcore_conf *conf,
struct rte_mbuf *pkts_burst[],
uint64_t total_pkts)
{
unsigned i, portid, nb_rx, nb_tx;
uint64_t diff_tsc, cur_tsc;
diff_tsc = 0;
while (likely(!stop)) {
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
cur_tsc = rte_rdtsc();
nb_rx = rte_eth_rx_burst(portid, 0,
pkts_burst, MAX_PKT_BURST);
if (unlikely(nb_rx == 0)) {
idle++;
continue;
}
diff_tsc += rte_rdtsc() - cur_tsc;
count += nb_rx;
nb_tx = rte_eth_tx_burst(portid, 0, pkts_burst, nb_rx);
if (unlikely(nb_tx < nb_rx)) {
drop += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
}
if (unlikely(count >= total_pkts))
break;
}
return diff_tsc;
}
static uint64_t
measure_txonly(struct lcore_conf *conf,
struct rte_mbuf *pkts_burst[],
uint64_t total_pkts)
{
unsigned i, portid, nb_rx, nb_tx;
uint64_t diff_tsc, cur_tsc;
printf("do tx measure\n");
diff_tsc = 0;
while (likely(!stop)) {
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
nb_rx = rte_eth_rx_burst(portid, 0,
pkts_burst, MAX_PKT_BURST);
if (unlikely(nb_rx == 0)) {
idle++;
continue;
}
count += nb_rx;
cur_tsc = rte_rdtsc();
nb_tx = rte_eth_tx_burst(portid, 0, pkts_burst, nb_rx);
if (unlikely(nb_tx < nb_rx)) {
drop += (nb_rx - nb_tx);
do {
rte_pktmbuf_free(pkts_burst[nb_tx]);
} while (++nb_tx < nb_rx);
}
diff_tsc += rte_rdtsc() - cur_tsc;
}
if (unlikely(count >= total_pkts))
break;
}
return diff_tsc;
}
/* main processing loop */
static int
main_loop(__rte_unused void *args)
{
#define PACKET_SIZE 64
#define FRAME_GAP 12
#define MAC_PREAMBLE 8
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
unsigned lcore_id;
unsigned i, portid, nb_rx = 0, nb_tx = 0;
struct lcore_conf *conf;
int pkt_per_port;
uint64_t diff_tsc;
uint64_t packets_per_second, total_packets;
lcore_id = rte_lcore_id();
conf = &lcore_conf[lcore_id];
if (conf->status != LCORE_USED)
return 0;
pkt_per_port = MAX_TRAFFIC_BURST;
int idx = 0;
for (i = 0; i < conf->nb_ports; i++) {
int num = pkt_per_port;
portid = conf->portlist[i];
printf("inject %d packet to port %d\n", num, portid);
while (num) {
nb_tx = RTE_MIN(MAX_PKT_BURST, num);
nb_tx = rte_eth_tx_burst(portid, 0,
&tx_burst[idx], nb_tx);
num -= nb_tx;
idx += nb_tx;
}
}
printf("Total packets inject to prime ports = %u\n", idx);
packets_per_second = (link_mbps * 1000 * 1000) /
((PACKET_SIZE + FRAME_GAP + MAC_PREAMBLE) * CHAR_BIT);
printf("Each port will do %"PRIu64" packets per second\n",
packets_per_second);
total_packets = RTE_TEST_DURATION * conf->nb_ports * packets_per_second;
printf("Test will stop after at least %"PRIu64" packets received\n",
+ total_packets);
diff_tsc = do_measure(conf, pkts_burst, total_packets);
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
int nb_free = 0;
uint64_t timeout = 10000;
do { /* dry out */
nb_rx = rte_eth_rx_burst(portid, 0,
pkts_burst, MAX_PKT_BURST);
nb_tx = 0;
while (nb_tx < nb_rx)
rte_pktmbuf_free(pkts_burst[nb_tx++]);
nb_free += nb_rx;
if (unlikely(nb_rx == 0))
timeout--;
} while (nb_free != pkt_per_port && timeout != 0);
printf("free %d (expected %d) mbuf left in port %u\n", nb_free,
pkt_per_port, portid);
}
if (count == 0)
return -1;
printf("%"PRIu64" packet, %"PRIu64" drop, %"PRIu64" idle\n",
count, drop, idle);
printf("Result: %"PRIu64" cycles per packet\n", diff_tsc / count);
return 0;
}
static rte_atomic64_t start;
static inline int
poll_burst(void *args)
{
#define MAX_IDLE (10000)
unsigned lcore_id;
struct rte_mbuf **pkts_burst;
uint64_t diff_tsc, cur_tsc;
uint16_t next[RTE_MAX_ETHPORTS];
struct lcore_conf *conf;
uint32_t pkt_per_port = *((uint32_t *)args);
unsigned i, portid, nb_rx = 0;
uint64_t total;
uint64_t timeout = MAX_IDLE;
int num[RTE_MAX_ETHPORTS];
lcore_id = rte_lcore_id();
conf = &lcore_conf[lcore_id];
if (conf->status != LCORE_USED)
return 0;
total = pkt_per_port * conf->nb_ports;
printf("start to receive total expect %"PRIu64"\n", total);
pkts_burst = (struct rte_mbuf **)
rte_calloc_socket("poll_burst",
total, sizeof(void *),
RTE_CACHE_LINE_SIZE, conf->socketid);
if (!pkts_burst)
return -1;
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
next[portid] = i * pkt_per_port;
num[portid] = pkt_per_port;
}
while (!rte_atomic64_read(&start))
;
cur_tsc = rte_rdtsc();
while (total) {
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
nb_rx = rte_eth_rx_burst(portid, 0,
&pkts_burst[next[portid]],
RTE_MIN(MAX_PKT_BURST, num[portid]));
if (unlikely(nb_rx == 0)) {
timeout--;
if (unlikely(timeout == 0))
goto timeout;
continue;
}
next[portid] += nb_rx;
num[portid] -= nb_rx;
total -= nb_rx;
}
}
timeout:
diff_tsc = rte_rdtsc() - cur_tsc;
printf("%"PRIu64" packets lost, IDLE %"PRIu64" times\n",
total, MAX_IDLE - timeout);
/* clean up */
total = pkt_per_port * conf->nb_ports - total;
for (i = 0; i < total; i++)
rte_pktmbuf_free(pkts_burst[i]);
rte_free(pkts_burst);
if (total > 0)
return diff_tsc / total;
else
return -1;
}
static int
exec_burst(uint32_t flags, int lcore)
{
unsigned i, portid, nb_tx = 0;
struct lcore_conf *conf;
uint32_t pkt_per_port;
int num, idx = 0;
int diff_tsc;
conf = &lcore_conf[lcore];
pkt_per_port = MAX_TRAFFIC_BURST;
num = pkt_per_port * conf->nb_ports;
rte_atomic64_init(&start);
/* start polling thread, but not actually poll yet */
rte_eal_remote_launch(poll_burst,
(void *)&pkt_per_port, lcore);
/* Only when polling first */
if (flags == SC_BURST_POLL_FIRST)
rte_atomic64_set(&start, 1);
/* start xmit */
while (num) {
nb_tx = RTE_MIN(MAX_PKT_BURST, num);
for (i = 0; i < conf->nb_ports; i++) {
portid = conf->portlist[i];
nb_tx = rte_eth_tx_burst(portid, 0,
&tx_burst[idx], nb_tx);
idx += nb_tx;
num -= nb_tx;
}
}
sleep(5);
/* only when polling second */
if (flags == SC_BURST_XMIT_FIRST)
rte_atomic64_set(&start, 1);
/* wait for polling finished */
diff_tsc = rte_eal_wait_lcore(lcore);
if (diff_tsc < 0) {
printf("exec_burst: Failed to measure cycles per packet\n");
return -1;
}
printf("Result: %d cycles per packet\n", diff_tsc);
return 0;
}
static int
test_pmd_perf(void)
{
uint16_t nb_ports, num, nb_lcores, worker_id = (uint16_t)-1;
uint16_t nb_rxd = MAX_TRAFFIC_BURST;
uint16_t nb_txd = MAX_TRAFFIC_BURST;
uint16_t portid;
uint16_t nb_rx_queue = 1, nb_tx_queue = 1;
int socketid = -1;
int ret;
printf("Start PMD RXTX cycles cost test.\n");
signal(SIGUSR1, signal_handler);
signal(SIGUSR2, signal_handler);
nb_ports = rte_eth_dev_count_avail();
if (nb_ports < NB_ETHPORTS_USED) {
printf("At least %u port(s) used for perf. test\n",
NB_ETHPORTS_USED);
return -1;
}
nb_lcores = rte_lcore_count();
memset(lcore_conf, 0, sizeof(lcore_conf));
init_lcores();
init_mbufpool(NB_MBUF);
if (sc_flag == SC_CONTINUOUS) {
nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
nb_txd = RTE_TEST_TX_DESC_DEFAULT;
}
printf("CONFIG RXD=%d TXD=%d\n", nb_rxd, nb_txd);
reset_count();
num = 0;
RTE_ETH_FOREACH_DEV(portid) {
if (socketid == -1) {
socketid = rte_eth_dev_socket_id(portid);
worker_id = alloc_lcore(socketid);
if (worker_id == (uint16_t)-1) {
printf("No avail lcore to run test\n");
return -1;
}
printf("Performance test runs on lcore %u socket %u\n",
worker_id, socketid);
}
if (socketid != rte_eth_dev_socket_id(portid)) {
printf("Skip port %d\n", portid);
continue;
}
/* port configure */
ret = rte_eth_dev_configure(portid, nb_rx_queue,
nb_tx_queue, &port_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot configure device: err=%d, port=%d\n",
ret, portid);
ret = rte_eth_macaddr_get(portid, &ports_eth_addr[portid]);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"Cannot get mac address: err=%d, port=%d\n",
ret, portid);
printf("Port %u ", portid);
print_ethaddr("Address:", &ports_eth_addr[portid]);
printf("\n");
/* tx queue setup */
ret = rte_eth_tx_queue_setup(portid, 0, nb_txd,
socketid, &tx_conf);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_tx_queue_setup: err=%d, "
"port=%d\n", ret, portid);
/* rx queue steup */
ret = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
socketid, &rx_conf,
mbufpool[socketid]);
if (ret < 0)
rte_exit(EXIT_FAILURE, "rte_eth_rx_queue_setup: err=%d,"
"port=%d\n", ret, portid);
/* Start device */
stop = 0;
ret = rte_eth_dev_start(portid);
if (ret < 0)
rte_exit(EXIT_FAILURE,
"rte_eth_dev_start: err=%d, port=%d\n",
ret, portid);
/* always eanble promiscuous */
ret = rte_eth_promiscuous_enable(portid);
if (ret != 0)
rte_exit(EXIT_FAILURE,
"rte_eth_promiscuous_enable: err=%s, port=%d\n",
rte_strerror(-ret), portid);
lcore_conf[worker_id].portlist[num++] = portid;
lcore_conf[worker_id].nb_ports++;
}
check_all_ports_link_status(nb_ports, RTE_PORT_ALL);
if (tx_burst == NULL) {
tx_burst = (struct rte_mbuf **)
rte_calloc_socket("tx_buff",
MAX_TRAFFIC_BURST * nb_ports,
sizeof(void *),
RTE_CACHE_LINE_SIZE, socketid);
if (!tx_burst)
return -1;
}
init_traffic(mbufpool[socketid],
tx_burst, MAX_TRAFFIC_BURST * nb_ports);
printf("Generate %d packets @socket %d\n",
MAX_TRAFFIC_BURST * nb_ports, socketid);
if (sc_flag == SC_CONTINUOUS) {
/* do both rxtx by default */
if (NULL == do_measure)
do_measure = measure_rxtx;
rte_eal_remote_launch(main_loop, NULL, worker_id);
if (rte_eal_wait_lcore(worker_id) < 0)
return -1;
} else if (sc_flag == SC_BURST_POLL_FIRST ||
sc_flag == SC_BURST_XMIT_FIRST)
if (exec_burst(sc_flag, worker_id) < 0)
return -1;
/* port tear down */
RTE_ETH_FOREACH_DEV(portid) {
if (socketid != rte_eth_dev_socket_id(portid))
continue;
ret = rte_eth_dev_stop(portid);
if (ret != 0)
printf("rte_eth_dev_stop: err=%s, port=%u\n",
rte_strerror(-ret), portid);
}
return 0;
}
int
test_set_rxtx_conf(cmdline_fixed_string_t mode)
{
printf("mode switch to %s\n", mode);
if (!strcmp(mode, "vector")) {
/* vector rx, tx */
tx_conf.tx_rs_thresh = 32;
tx_conf.tx_free_thresh = 32;
return 0;
} else if (!strcmp(mode, "scalar")) {
/* bulk alloc rx, full-featured tx */
tx_conf.tx_rs_thresh = 32;
tx_conf.tx_free_thresh = 32;
port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_CHECKSUM;
return 0;
} else if (!strcmp(mode, "hybrid")) {
/* bulk alloc rx, vector tx
* when vec macro not define,
* using the same rx/tx as scalar
*/
tx_conf.tx_rs_thresh = 32;
tx_conf.tx_free_thresh = 32;
port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_CHECKSUM;
return 0;
} else if (!strcmp(mode, "full")) {
/* full feature rx,tx pair */
tx_conf.tx_rs_thresh = 32;
tx_conf.tx_free_thresh = 32;
port_conf.rxmode.offloads |= DEV_RX_OFFLOAD_SCATTER;
return 0;
}
return -1;
}
int
test_set_rxtx_anchor(cmdline_fixed_string_t type)
{
printf("type switch to %s\n", type);
if (!strcmp(type, "rxtx")) {
do_measure = measure_rxtx;
return 0;
} else if (!strcmp(type, "rxonly")) {
do_measure = measure_rxonly;
return 0;
} else if (!strcmp(type, "txonly")) {
do_measure = measure_txonly;
return 0;
}
return -1;
}
int
test_set_rxtx_sc(cmdline_fixed_string_t type)
{
printf("stream control switch to %s\n", type);
if (!strcmp(type, "continuous")) {
sc_flag = SC_CONTINUOUS;
return 0;
} else if (!strcmp(type, "poll_before_xmit")) {
sc_flag = SC_BURST_POLL_FIRST;
return 0;
} else if (!strcmp(type, "poll_after_xmit")) {
sc_flag = SC_BURST_XMIT_FIRST;
return 0;
}
return -1;
}
REGISTER_TEST_COMMAND(pmd_perf_autotest, test_pmd_perf);