numam-dpdk/drivers/net/ixgbe/ixgbe_rxtx_vec_neon.c
Feifei Wang b9c366e029 net/ixgbe: fix UDP zero checksum on Arm
There is an 82599 errata that UDP frames with a zero checksum are
incorrectly marked as checksum invalid by the hardware.  This was
leading to misleading PKT_RX_L4_CKSUM_BAD flag.

To fix it for the NEON path in Arm platform, change the bad UDP checksum to
unknown, and then let software application to recompute the checksum.

NICs: 82599(igb)
Driver: ixgbe(vector)
Architecture: arm64
$:./app/dpdk-testpmd -c 0x3 -w 0002:f9:00.0 -- -i
--port-topology=chained --enable-rx-cksum
test-pmd> set fwd rxonly
test-pmd> set verbose 1
test-pmd> start

1. UDP Test:
Package: (Ether()/IP()/UDP(checksum=0)
ol_flags: PKT_RX_L4_CKSUM_UNKNOWN PKT_RX_IP_CKSUM_GOOD

2. TCP Test:
Package: (Ether()/IP()/TCP(checksum=0)
ol_flags: PKT_RX_L4_CKSUM_BAD PKT_RX_IP_CKSUM_GOOD

Bugzilla ID: 629
Fixes: af75078fec ("first public release")
Cc: stable@dpdk.org

Reported-by: Paolo Valerio <pvalerio@redhat.com>
Signed-off-by: Feifei Wang <feifei.wang2@arm.com>
Reviewed-by: Ruifeng Wang <ruifeng.wang@arm.com>
2021-02-10 21:51:38 +01:00

683 lines
20 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2015 Intel Corporation
*/
#include <stdint.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>
#include <rte_vect.h>
#include "ixgbe_ethdev.h"
#include "ixgbe_rxtx.h"
#include "ixgbe_rxtx_vec_common.h"
#pragma GCC diagnostic ignored "-Wcast-qual"
static inline void
ixgbe_rxq_rearm(struct ixgbe_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union ixgbe_adv_rx_desc *rxdp;
struct ixgbe_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
uint64x2_t dma_addr0, dma_addr1;
uint64x2_t zero = vdupq_n_u64(0);
uint64_t paddr;
uint8x8_t p;
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (unlikely(rte_mempool_get_bulk(rxq->mb_pool,
(void *)rxep,
RTE_IXGBE_RXQ_REARM_THRESH) < 0)) {
if (rxq->rxrearm_nb + RTE_IXGBE_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
for (i = 0; i < RTE_IXGBE_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
vst1q_u64((uint64_t *)&rxdp[i].read,
zero);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
RTE_IXGBE_RXQ_REARM_THRESH;
return;
}
p = vld1_u8((uint8_t *)&rxq->mbuf_initializer);
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < RTE_IXGBE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
/*
* Flush mbuf with pkt template.
* Data to be rearmed is 6 bytes long.
*/
vst1_u8((uint8_t *)&mb0->rearm_data, p);
paddr = mb0->buf_iova + RTE_PKTMBUF_HEADROOM;
dma_addr0 = vsetq_lane_u64(paddr, zero, 0);
/* flush desc with pa dma_addr */
vst1q_u64((uint64_t *)&rxdp++->read, dma_addr0);
vst1_u8((uint8_t *)&mb1->rearm_data, p);
paddr = mb1->buf_iova + RTE_PKTMBUF_HEADROOM;
dma_addr1 = vsetq_lane_u64(paddr, zero, 0);
vst1q_u64((uint64_t *)&rxdp++->read, dma_addr1);
}
rxq->rxrearm_start += RTE_IXGBE_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= RTE_IXGBE_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
IXGBE_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
}
static inline void
desc_to_olflags_v(uint8x16x2_t sterr_tmp1, uint8x16x2_t sterr_tmp2,
uint8x16_t staterr, uint8_t vlan_flags, uint16_t udp_p_flag,
struct rte_mbuf **rx_pkts)
{
uint16_t udp_p_flag_hi;
uint8x16_t ptype, udp_csum_skip;
uint32x4_t temp_udp_csum_skip = {0, 0, 0, 0};
uint8x16_t vtag_lo, vtag_hi, vtag;
uint8x16_t temp_csum;
uint32x4_t csum = {0, 0, 0, 0};
union {
uint16_t e[4];
uint64_t word;
} vol;
const uint8x16_t rsstype_msk = {
0x0F, 0x0F, 0x0F, 0x0F,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};
const uint8x16_t rss_flags = {
0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH,
0, PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH,
PKT_RX_RSS_HASH, 0, 0, 0,
0, 0, 0, PKT_RX_FDIR};
/* mask everything except vlan present and l4/ip csum error */
const uint8x16_t vlan_csum_msk = {
IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
IXGBE_RXD_STAT_VP, IXGBE_RXD_STAT_VP,
0, 0, 0, 0,
0, 0, 0, 0,
(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24,
(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24,
(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24,
(IXGBE_RXDADV_ERR_TCPE | IXGBE_RXDADV_ERR_IPE) >> 24};
/* map vlan present (0x8), IPE (0x2), L4E (0x1) to ol_flags */
const uint8x16_t vlan_csum_map_lo = {
PKT_RX_IP_CKSUM_GOOD,
PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
PKT_RX_IP_CKSUM_BAD,
PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
0, 0, 0, 0,
vlan_flags | PKT_RX_IP_CKSUM_GOOD,
vlan_flags | PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
vlan_flags | PKT_RX_IP_CKSUM_BAD,
vlan_flags | PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
0, 0, 0, 0};
const uint8x16_t vlan_csum_map_hi = {
PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
0, 0, 0, 0,
PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
PKT_RX_L4_CKSUM_GOOD >> sizeof(uint8_t), 0,
0, 0, 0, 0};
/* change mask from 0x200(IXGBE_RXDADV_PKTTYPE_UDP) to 0x2 */
udp_p_flag_hi = udp_p_flag >> 8;
/* mask everything except UDP header present if specified */
const uint8x16_t udp_hdr_p_msk = {
0, 0, 0, 0,
udp_p_flag_hi, udp_p_flag_hi, udp_p_flag_hi, udp_p_flag_hi,
0, 0, 0, 0,
0, 0, 0, 0};
const uint8x16_t udp_csum_bad_shuf = {
0xFF, ~(uint8_t)PKT_RX_L4_CKSUM_BAD, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};
ptype = vzipq_u8(sterr_tmp1.val[0], sterr_tmp2.val[0]).val[0];
/* save the UDP header present information */
udp_csum_skip = vandq_u8(ptype, udp_hdr_p_msk);
/* move UDP header present information to low 32bits */
temp_udp_csum_skip = vcopyq_laneq_u32(temp_udp_csum_skip, 0,
vreinterpretq_u32_u8(udp_csum_skip), 1);
ptype = vandq_u8(ptype, rsstype_msk);
ptype = vqtbl1q_u8(rss_flags, ptype);
/* extract vlan_flags and csum_error from staterr */
vtag = vandq_u8(staterr, vlan_csum_msk);
/* csum bits are in the most significant, to use shuffle we need to
* shift them. Change mask from 0xc0 to 0x03.
*/
temp_csum = vshrq_n_u8(vtag, 6);
/* 'OR' the most significant 32 bits containing the checksum
* flags with the vlan present flags
* Then bits layout of each lane(8bits) will be 'xxxx,VP,x,IPE,L4E'
*/
csum = vsetq_lane_u32(vgetq_lane_u32(vreinterpretq_u32_u8(temp_csum), 3), csum, 0);
vtag = vorrq_u8(vreinterpretq_u8_u32(csum), vtag);
/* convert L4 checksum correct type to vtag_hi */
vtag_hi = vqtbl1q_u8(vlan_csum_map_hi, vtag);
vtag_hi = vshrq_n_u8(vtag_hi, 7);
/* convert VP, IPE, L4E to vtag_lo */
vtag_lo = vqtbl1q_u8(vlan_csum_map_lo, vtag);
vtag_lo = vorrq_u8(ptype, vtag_lo);
/* convert the UDP header present 0x2 to 0x1 for aligning with each
* PKT_RX_L4_CKSUM_BAD value in low byte of 8 bits word ol_flag in
* vtag_lo (4x8). Then mask out the bad checksum value by shuffle and
* bit-mask.
*/
udp_csum_skip = vshrq_n_u8(vreinterpretq_u8_u32(temp_udp_csum_skip), 1);
udp_csum_skip = vqtbl1q_u8(udp_csum_bad_shuf, udp_csum_skip);
vtag_lo = vandq_u8(vtag_lo, udp_csum_skip);
vtag = vzipq_u8(vtag_lo, vtag_hi).val[0];
vol.word = vgetq_lane_u64(vreinterpretq_u64_u8(vtag), 0);
rx_pkts[0]->ol_flags = vol.e[0];
rx_pkts[1]->ol_flags = vol.e[1];
rx_pkts[2]->ol_flags = vol.e[2];
rx_pkts[3]->ol_flags = vol.e[3];
}
#define IXGBE_VPMD_DESC_EOP_MASK 0x02020202
#define IXGBE_UINT8_BIT (CHAR_BIT * sizeof(uint8_t))
static inline uint32_t
get_packet_type(uint32_t pkt_info,
uint32_t etqf_check,
uint32_t tunnel_check)
{
if (etqf_check)
return RTE_PTYPE_UNKNOWN;
if (tunnel_check) {
pkt_info &= IXGBE_PACKET_TYPE_MASK_TUNNEL;
return ptype_table_tn[pkt_info];
}
pkt_info &= IXGBE_PACKET_TYPE_MASK_82599;
return ptype_table[pkt_info];
}
static inline void
desc_to_ptype_v(uint64x2_t descs[4], uint16_t pkt_type_mask,
struct rte_mbuf **rx_pkts)
{
uint32x4_t etqf_check, tunnel_check;
uint32x4_t etqf_mask = vdupq_n_u32(0x8000);
uint32x4_t tunnel_mask = vdupq_n_u32(0x10000);
uint32x4_t ptype_mask = vdupq_n_u32((uint32_t)pkt_type_mask);
uint32x4_t ptype0 = vzipq_u32(vreinterpretq_u32_u64(descs[0]),
vreinterpretq_u32_u64(descs[2])).val[0];
uint32x4_t ptype1 = vzipq_u32(vreinterpretq_u32_u64(descs[1]),
vreinterpretq_u32_u64(descs[3])).val[0];
/* interleave low 32 bits,
* now we have 4 ptypes in a NEON register
*/
ptype0 = vzipq_u32(ptype0, ptype1).val[0];
/* mask etqf bits */
etqf_check = vandq_u32(ptype0, etqf_mask);
/* mask tunnel bits */
tunnel_check = vandq_u32(ptype0, tunnel_mask);
/* shift right by IXGBE_PACKET_TYPE_SHIFT, and apply ptype mask */
ptype0 = vandq_u32(vshrq_n_u32(ptype0, IXGBE_PACKET_TYPE_SHIFT),
ptype_mask);
rx_pkts[0]->packet_type =
get_packet_type(vgetq_lane_u32(ptype0, 0),
vgetq_lane_u32(etqf_check, 0),
vgetq_lane_u32(tunnel_check, 0));
rx_pkts[1]->packet_type =
get_packet_type(vgetq_lane_u32(ptype0, 1),
vgetq_lane_u32(etqf_check, 1),
vgetq_lane_u32(tunnel_check, 1));
rx_pkts[2]->packet_type =
get_packet_type(vgetq_lane_u32(ptype0, 2),
vgetq_lane_u32(etqf_check, 2),
vgetq_lane_u32(tunnel_check, 2));
rx_pkts[3]->packet_type =
get_packet_type(vgetq_lane_u32(ptype0, 3),
vgetq_lane_u32(etqf_check, 3),
vgetq_lane_u32(tunnel_check, 3));
}
/**
* vPMD raw receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
*
* Notice:
* - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
*/
static inline uint16_t
_recv_raw_pkts_vec(struct ixgbe_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
volatile union ixgbe_adv_rx_desc *rxdp;
struct ixgbe_rx_entry *sw_ring;
uint16_t nb_pkts_recd;
int pos;
uint8x16_t shuf_msk = {
0xFF, 0xFF,
0xFF, 0xFF, /* skip 32 bits pkt_type */
12, 13, /* octet 12~13, low 16 bits pkt_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
12, 13, /* octet 12~13, 16 bits data_len */
14, 15, /* octet 14~15, low 16 bits vlan_macip */
4, 5, 6, 7 /* octet 4~7, 32bits rss */
};
uint16x8_t crc_adjust = {0, 0, rxq->crc_len, 0,
rxq->crc_len, 0, 0, 0};
uint8_t vlan_flags;
uint16_t udp_p_flag = 0; /* Rx Descriptor UDP header present */
/* nb_pkts has to be floor-aligned to RTE_IXGBE_DESCS_PER_LOOP */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_IXGBE_DESCS_PER_LOOP);
/* Just the act of getting into the function from the application is
* going to cost about 7 cycles
*/
rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch_non_temporal(rxdp);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > RTE_IXGBE_RXQ_REARM_THRESH)
ixgbe_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.upper.status_error &
rte_cpu_to_le_32(IXGBE_RXDADV_STAT_DD)))
return 0;
if (rxq->rx_udp_csum_zero_err)
udp_p_flag = IXGBE_RXDADV_PKTTYPE_UDP;
/* Cache is empty -> need to scan the buffer rings, but first move
* the next 'n' mbufs into the cache
*/
sw_ring = &rxq->sw_ring[rxq->rx_tail];
/* ensure these 2 flags are in the lower 8 bits */
RTE_BUILD_BUG_ON((PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED) > UINT8_MAX);
vlan_flags = rxq->vlan_flags & UINT8_MAX;
/* A. load 4 packet in one loop
* B. copy 4 mbuf point from swring to rx_pkts
* C. calc the number of DD bits among the 4 packets
* [C*. extract the end-of-packet bit, if requested]
* D. fill info. from desc to mbuf
*/
for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
pos += RTE_IXGBE_DESCS_PER_LOOP,
rxdp += RTE_IXGBE_DESCS_PER_LOOP) {
uint64x2_t descs[RTE_IXGBE_DESCS_PER_LOOP];
uint8x16_t pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
uint8x16x2_t sterr_tmp1, sterr_tmp2;
uint64x2_t mbp1, mbp2;
uint8x16_t staterr;
uint16x8_t tmp;
uint32_t stat;
/* B.1 load 2 mbuf point */
mbp1 = vld1q_u64((uint64_t *)&sw_ring[pos]);
/* B.2 copy 2 mbuf point into rx_pkts */
vst1q_u64((uint64_t *)&rx_pkts[pos], mbp1);
/* B.1 load 2 mbuf point */
mbp2 = vld1q_u64((uint64_t *)&sw_ring[pos + 2]);
/* A. load 4 pkts descs */
descs[0] = vld1q_u64((uint64_t *)(rxdp));
descs[1] = vld1q_u64((uint64_t *)(rxdp + 1));
descs[2] = vld1q_u64((uint64_t *)(rxdp + 2));
descs[3] = vld1q_u64((uint64_t *)(rxdp + 3));
/* B.2 copy 2 mbuf point into rx_pkts */
vst1q_u64((uint64_t *)&rx_pkts[pos + 2], mbp2);
if (split_packet) {
rte_mbuf_prefetch_part2(rx_pkts[pos]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
}
/* D.1 pkt 3,4 convert format from desc to pktmbuf */
pkt_mb4 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[3]), shuf_msk);
pkt_mb3 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[2]), shuf_msk);
/* D.1 pkt 1,2 convert format from desc to pktmbuf */
pkt_mb2 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[1]), shuf_msk);
pkt_mb1 = vqtbl1q_u8(vreinterpretq_u8_u64(descs[0]), shuf_msk);
/* C.1 4=>2 filter staterr info only */
sterr_tmp2 = vzipq_u8(vreinterpretq_u8_u64(descs[1]),
vreinterpretq_u8_u64(descs[3]));
/* C.1 4=>2 filter staterr info only */
sterr_tmp1 = vzipq_u8(vreinterpretq_u8_u64(descs[0]),
vreinterpretq_u8_u64(descs[2]));
/* C.2 get 4 pkts staterr value */
staterr = vzipq_u8(sterr_tmp1.val[1], sterr_tmp2.val[1]).val[0];
/* set ol_flags with vlan packet type */
desc_to_olflags_v(sterr_tmp1, sterr_tmp2, staterr, vlan_flags,
udp_p_flag, &rx_pkts[pos]);
/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb4), crc_adjust);
pkt_mb4 = vreinterpretq_u8_u16(tmp);
tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb3), crc_adjust);
pkt_mb3 = vreinterpretq_u8_u16(tmp);
/* D.3 copy final 3,4 data to rx_pkts */
vst1q_u8((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
pkt_mb4);
vst1q_u8((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
pkt_mb3);
/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb2), crc_adjust);
pkt_mb2 = vreinterpretq_u8_u16(tmp);
tmp = vsubq_u16(vreinterpretq_u16_u8(pkt_mb1), crc_adjust);
pkt_mb1 = vreinterpretq_u8_u16(tmp);
/* C* extract and record EOP bit */
if (split_packet) {
stat = vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
/* and with mask to extract bits, flipping 1-0 */
*(int *)split_packet = ~stat & IXGBE_VPMD_DESC_EOP_MASK;
split_packet += RTE_IXGBE_DESCS_PER_LOOP;
}
/* C.4 expand DD bit to saturate UINT8 */
staterr = vshlq_n_u8(staterr, IXGBE_UINT8_BIT - 1);
staterr = vreinterpretq_u8_s8
(vshrq_n_s8(vreinterpretq_s8_u8(staterr),
IXGBE_UINT8_BIT - 1));
stat = ~vgetq_lane_u32(vreinterpretq_u32_u8(staterr), 0);
rte_prefetch_non_temporal(rxdp + RTE_IXGBE_DESCS_PER_LOOP);
/* D.3 copy final 1,2 data to rx_pkts */
vst1q_u8((uint8_t *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
pkt_mb2);
vst1q_u8((uint8_t *)&rx_pkts[pos]->rx_descriptor_fields1,
pkt_mb1);
desc_to_ptype_v(descs, rxq->pkt_type_mask, &rx_pkts[pos]);
/* C.5 calc available number of desc */
if (unlikely(stat == 0)) {
nb_pkts_recd += RTE_IXGBE_DESCS_PER_LOOP;
} else {
nb_pkts_recd += __builtin_ctz(stat) / IXGBE_UINT8_BIT;
break;
}
}
/* Update our internal tail pointer */
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
return nb_pkts_recd;
}
/**
* vPMD receive routine, only accept(nb_pkts >= RTE_IXGBE_DESCS_PER_LOOP)
*
* Notice:
* - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
*/
uint16_t
ixgbe_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}
/**
* vPMD receive routine that reassembles scattered packets
*
* Notice:
* - nb_pkts < RTE_IXGBE_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a RTE_IXGBE_DESC_PER_LOOP power-of-two
*/
static uint16_t
ixgbe_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct ixgbe_rx_queue *rxq = rx_queue;
uint8_t split_flags[RTE_IXGBE_MAX_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (rxq->pkt_first_seg == NULL &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (rxq->pkt_first_seg == NULL) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
rxq->pkt_first_seg = rx_pkts[i];
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
*/
uint16_t
ixgbe_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t retval = 0;
while (nb_pkts > RTE_IXGBE_MAX_RX_BURST) {
uint16_t burst;
burst = ixgbe_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
RTE_IXGBE_MAX_RX_BURST);
retval += burst;
nb_pkts -= burst;
if (burst < RTE_IXGBE_MAX_RX_BURST)
return retval;
}
return retval + ixgbe_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
nb_pkts);
}
static inline void
vtx1(volatile union ixgbe_adv_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64x2_t descriptor = {
pkt->buf_iova + pkt->data_off,
(uint64_t)pkt->pkt_len << 46 | flags | pkt->data_len};
vst1q_u64((uint64_t *)&txdp->read, descriptor);
}
static inline void
vtx(volatile union ixgbe_adv_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
int i;
for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
vtx1(txdp, *pkt, flags);
}
uint16_t
ixgbe_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct ixgbe_tx_queue *txq = (struct ixgbe_tx_queue *)tx_queue;
volatile union ixgbe_adv_tx_desc *txdp;
struct ixgbe_tx_entry_v *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = DCMD_DTYP_FLAGS;
uint64_t rs = IXGBE_ADVTXD_DCMD_RS | DCMD_DTYP_FLAGS;
int i;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
ixgbe_tx_free_bufs(txq);
nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring_v[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry(txep, tx_pkts, n);
for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
vtx1(txdp, *tx_pkts, flags);
vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring_v[tx_id];
}
tx_backlog_entry(txep, tx_pkts, nb_commit);
vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].read.cmd_type_len |=
rte_cpu_to_le_32(IXGBE_ADVTXD_DCMD_RS);
txq->tx_next_rs = (uint16_t)(txq->tx_next_rs +
txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
IXGBE_PCI_REG_WRITE(txq->tdt_reg_addr, txq->tx_tail);
return nb_pkts;
}
static void __rte_cold
ixgbe_tx_queue_release_mbufs_vec(struct ixgbe_tx_queue *txq)
{
_ixgbe_tx_queue_release_mbufs_vec(txq);
}
void __rte_cold
ixgbe_rx_queue_release_mbufs_vec(struct ixgbe_rx_queue *rxq)
{
_ixgbe_rx_queue_release_mbufs_vec(rxq);
}
static void __rte_cold
ixgbe_tx_free_swring(struct ixgbe_tx_queue *txq)
{
_ixgbe_tx_free_swring_vec(txq);
}
static void __rte_cold
ixgbe_reset_tx_queue(struct ixgbe_tx_queue *txq)
{
_ixgbe_reset_tx_queue_vec(txq);
}
static const struct ixgbe_txq_ops vec_txq_ops = {
.release_mbufs = ixgbe_tx_queue_release_mbufs_vec,
.free_swring = ixgbe_tx_free_swring,
.reset = ixgbe_reset_tx_queue,
};
int __rte_cold
ixgbe_rxq_vec_setup(struct ixgbe_rx_queue *rxq)
{
return ixgbe_rxq_vec_setup_default(rxq);
}
int __rte_cold
ixgbe_txq_vec_setup(struct ixgbe_tx_queue *txq)
{
return ixgbe_txq_vec_setup_default(txq, &vec_txq_ops);
}
int __rte_cold
ixgbe_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
{
return ixgbe_rx_vec_dev_conf_condition_check_default(dev);
}