a8f8b672d5
Initialize prev_tsc to cur_tsc. This avoids running the TX queue drain in the first iteration of the packet processing loop. Signed-off-by: Kathleen Capella <kathleen.capella@arm.com> Reviewed-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
967 lines
24 KiB
C
967 lines
24 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2016 Intel Corporation
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/types.h>
|
|
#include <string.h>
|
|
#include <sys/queue.h>
|
|
#include <stdarg.h>
|
|
#include <errno.h>
|
|
#include <getopt.h>
|
|
#include <stdbool.h>
|
|
#include <netinet/in.h>
|
|
|
|
#include <rte_debug.h>
|
|
#include <rte_ether.h>
|
|
#include <rte_ethdev.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_mbuf.h>
|
|
#include <rte_ip.h>
|
|
#include <rte_tcp.h>
|
|
#include <rte_udp.h>
|
|
#include <rte_hash.h>
|
|
|
|
#include "l3fwd.h"
|
|
#include "l3fwd_event.h"
|
|
|
|
#if defined(RTE_ARCH_X86) || defined(__ARM_FEATURE_CRC32)
|
|
#define EM_HASH_CRC 1
|
|
#endif
|
|
|
|
#ifdef EM_HASH_CRC
|
|
#include <rte_hash_crc.h>
|
|
#define DEFAULT_HASH_FUNC rte_hash_crc
|
|
#else
|
|
#include <rte_jhash.h>
|
|
#define DEFAULT_HASH_FUNC rte_jhash
|
|
#endif
|
|
|
|
#define IPV6_ADDR_LEN 16
|
|
|
|
struct ipv4_5tuple {
|
|
uint32_t ip_dst;
|
|
uint32_t ip_src;
|
|
uint16_t port_dst;
|
|
uint16_t port_src;
|
|
uint8_t proto;
|
|
} __rte_packed;
|
|
|
|
union ipv4_5tuple_host {
|
|
struct {
|
|
uint8_t pad0;
|
|
uint8_t proto;
|
|
uint16_t pad1;
|
|
uint32_t ip_src;
|
|
uint32_t ip_dst;
|
|
uint16_t port_src;
|
|
uint16_t port_dst;
|
|
};
|
|
xmm_t xmm;
|
|
};
|
|
|
|
#define XMM_NUM_IN_IPV6_5TUPLE 3
|
|
|
|
struct ipv6_5tuple {
|
|
uint8_t ip_dst[IPV6_ADDR_LEN];
|
|
uint8_t ip_src[IPV6_ADDR_LEN];
|
|
uint16_t port_dst;
|
|
uint16_t port_src;
|
|
uint8_t proto;
|
|
} __rte_packed;
|
|
|
|
union ipv6_5tuple_host {
|
|
struct {
|
|
uint16_t pad0;
|
|
uint8_t proto;
|
|
uint8_t pad1;
|
|
uint8_t ip_src[IPV6_ADDR_LEN];
|
|
uint8_t ip_dst[IPV6_ADDR_LEN];
|
|
uint16_t port_src;
|
|
uint16_t port_dst;
|
|
uint64_t reserve;
|
|
};
|
|
xmm_t xmm[XMM_NUM_IN_IPV6_5TUPLE];
|
|
};
|
|
|
|
|
|
|
|
struct ipv4_l3fwd_em_route {
|
|
struct ipv4_5tuple key;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
struct ipv6_l3fwd_em_route {
|
|
struct ipv6_5tuple key;
|
|
uint8_t if_out;
|
|
};
|
|
|
|
static struct ipv4_l3fwd_em_route ipv4_l3fwd_em_route_array[] = {
|
|
{{RTE_IPV4(101, 0, 0, 0), RTE_IPV4(100, 10, 0, 1), 101, 11, IPPROTO_TCP}, 0},
|
|
{{RTE_IPV4(201, 0, 0, 0), RTE_IPV4(200, 20, 0, 1), 102, 12, IPPROTO_TCP}, 1},
|
|
{{RTE_IPV4(111, 0, 0, 0), RTE_IPV4(100, 30, 0, 1), 101, 11, IPPROTO_TCP}, 2},
|
|
{{RTE_IPV4(211, 0, 0, 0), RTE_IPV4(200, 40, 0, 1), 102, 12, IPPROTO_TCP}, 3},
|
|
};
|
|
|
|
static struct ipv6_l3fwd_em_route ipv6_l3fwd_em_route_array[] = {
|
|
{{
|
|
{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
|
{0xfe, 0x80, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
101, 11, IPPROTO_TCP}, 0},
|
|
|
|
{{
|
|
{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
|
{0xfe, 0x90, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
102, 12, IPPROTO_TCP}, 1},
|
|
|
|
{{
|
|
{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
|
{0xfe, 0xa0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
101, 11, IPPROTO_TCP}, 2},
|
|
|
|
{{
|
|
{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1e, 0x67, 0xff, 0xfe, 0, 0, 0},
|
|
{0xfe, 0xb0, 0, 0, 0, 0, 0, 0, 0x02, 0x1b, 0x21, 0xff, 0xfe, 0x91, 0x38, 0x05},
|
|
102, 12, IPPROTO_TCP}, 3},
|
|
};
|
|
|
|
struct rte_hash *ipv4_l3fwd_em_lookup_struct[NB_SOCKETS];
|
|
struct rte_hash *ipv6_l3fwd_em_lookup_struct[NB_SOCKETS];
|
|
|
|
static inline uint32_t
|
|
ipv4_hash_crc(const void *data, __rte_unused uint32_t data_len,
|
|
uint32_t init_val)
|
|
{
|
|
const union ipv4_5tuple_host *k;
|
|
uint32_t t;
|
|
const uint32_t *p;
|
|
|
|
k = data;
|
|
t = k->proto;
|
|
p = (const uint32_t *)&k->port_src;
|
|
|
|
#ifdef EM_HASH_CRC
|
|
init_val = rte_hash_crc_4byte(t, init_val);
|
|
init_val = rte_hash_crc_4byte(k->ip_src, init_val);
|
|
init_val = rte_hash_crc_4byte(k->ip_dst, init_val);
|
|
init_val = rte_hash_crc_4byte(*p, init_val);
|
|
#else
|
|
init_val = rte_jhash_1word(t, init_val);
|
|
init_val = rte_jhash_1word(k->ip_src, init_val);
|
|
init_val = rte_jhash_1word(k->ip_dst, init_val);
|
|
init_val = rte_jhash_1word(*p, init_val);
|
|
#endif
|
|
|
|
return init_val;
|
|
}
|
|
|
|
static inline uint32_t
|
|
ipv6_hash_crc(const void *data, __rte_unused uint32_t data_len,
|
|
uint32_t init_val)
|
|
{
|
|
const union ipv6_5tuple_host *k;
|
|
uint32_t t;
|
|
const uint32_t *p;
|
|
#ifdef EM_HASH_CRC
|
|
const uint32_t *ip_src0, *ip_src1, *ip_src2, *ip_src3;
|
|
const uint32_t *ip_dst0, *ip_dst1, *ip_dst2, *ip_dst3;
|
|
#endif
|
|
|
|
k = data;
|
|
t = k->proto;
|
|
p = (const uint32_t *)&k->port_src;
|
|
|
|
#ifdef EM_HASH_CRC
|
|
ip_src0 = (const uint32_t *) k->ip_src;
|
|
ip_src1 = (const uint32_t *)(k->ip_src+4);
|
|
ip_src2 = (const uint32_t *)(k->ip_src+8);
|
|
ip_src3 = (const uint32_t *)(k->ip_src+12);
|
|
ip_dst0 = (const uint32_t *) k->ip_dst;
|
|
ip_dst1 = (const uint32_t *)(k->ip_dst+4);
|
|
ip_dst2 = (const uint32_t *)(k->ip_dst+8);
|
|
ip_dst3 = (const uint32_t *)(k->ip_dst+12);
|
|
init_val = rte_hash_crc_4byte(t, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_src0, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_src1, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_src2, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_src3, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_dst0, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_dst1, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_dst2, init_val);
|
|
init_val = rte_hash_crc_4byte(*ip_dst3, init_val);
|
|
init_val = rte_hash_crc_4byte(*p, init_val);
|
|
#else
|
|
init_val = rte_jhash_1word(t, init_val);
|
|
init_val = rte_jhash(k->ip_src,
|
|
sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
|
|
init_val = rte_jhash(k->ip_dst,
|
|
sizeof(uint8_t) * IPV6_ADDR_LEN, init_val);
|
|
init_val = rte_jhash_1word(*p, init_val);
|
|
#endif
|
|
return init_val;
|
|
}
|
|
|
|
#define IPV4_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv4_l3fwd_em_route_array)
|
|
|
|
#define IPV6_L3FWD_EM_NUM_ROUTES RTE_DIM(ipv6_l3fwd_em_route_array)
|
|
|
|
static uint8_t ipv4_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
|
static uint8_t ipv6_l3fwd_out_if[L3FWD_HASH_ENTRIES] __rte_cache_aligned;
|
|
|
|
static rte_xmm_t mask0;
|
|
static rte_xmm_t mask1;
|
|
static rte_xmm_t mask2;
|
|
|
|
#if defined(__SSE2__)
|
|
static inline xmm_t
|
|
em_mask_key(void *key, xmm_t mask)
|
|
{
|
|
__m128i data = _mm_loadu_si128((__m128i *)(key));
|
|
|
|
return _mm_and_si128(data, mask);
|
|
}
|
|
#elif defined(__ARM_NEON)
|
|
static inline xmm_t
|
|
em_mask_key(void *key, xmm_t mask)
|
|
{
|
|
int32x4_t data = vld1q_s32((int32_t *)key);
|
|
|
|
return vandq_s32(data, mask);
|
|
}
|
|
#elif defined(__ALTIVEC__)
|
|
static inline xmm_t
|
|
em_mask_key(void *key, xmm_t mask)
|
|
{
|
|
xmm_t data = vec_ld(0, (xmm_t *)(key));
|
|
|
|
return vec_and(data, mask);
|
|
}
|
|
#else
|
|
#error No vector engine (SSE, NEON, ALTIVEC) available, check your toolchain
|
|
#endif
|
|
|
|
static inline uint16_t
|
|
em_get_ipv4_dst_port(void *ipv4_hdr, uint16_t portid, void *lookup_struct)
|
|
{
|
|
int ret = 0;
|
|
union ipv4_5tuple_host key;
|
|
struct rte_hash *ipv4_l3fwd_lookup_struct =
|
|
(struct rte_hash *)lookup_struct;
|
|
|
|
ipv4_hdr = (uint8_t *)ipv4_hdr +
|
|
offsetof(struct rte_ipv4_hdr, time_to_live);
|
|
|
|
/*
|
|
* Get 5 tuple: dst port, src port, dst IP address,
|
|
* src IP address and protocol.
|
|
*/
|
|
key.xmm = em_mask_key(ipv4_hdr, mask0.x);
|
|
|
|
/* Find destination port */
|
|
ret = rte_hash_lookup(ipv4_l3fwd_lookup_struct, (const void *)&key);
|
|
return (ret < 0) ? portid : ipv4_l3fwd_out_if[ret];
|
|
}
|
|
|
|
static inline uint16_t
|
|
em_get_ipv6_dst_port(void *ipv6_hdr, uint16_t portid, void *lookup_struct)
|
|
{
|
|
int ret = 0;
|
|
union ipv6_5tuple_host key;
|
|
struct rte_hash *ipv6_l3fwd_lookup_struct =
|
|
(struct rte_hash *)lookup_struct;
|
|
|
|
ipv6_hdr = (uint8_t *)ipv6_hdr +
|
|
offsetof(struct rte_ipv6_hdr, payload_len);
|
|
void *data0 = ipv6_hdr;
|
|
void *data1 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t);
|
|
void *data2 = ((uint8_t *)ipv6_hdr) + sizeof(xmm_t) + sizeof(xmm_t);
|
|
|
|
/* Get part of 5 tuple: src IP address lower 96 bits and protocol */
|
|
key.xmm[0] = em_mask_key(data0, mask1.x);
|
|
|
|
/*
|
|
* Get part of 5 tuple: dst IP address lower 96 bits
|
|
* and src IP address higher 32 bits.
|
|
*/
|
|
#if defined RTE_ARCH_X86
|
|
key.xmm[1] = _mm_loadu_si128(data1);
|
|
#else
|
|
key.xmm[1] = *(xmm_t *)data1;
|
|
#endif
|
|
|
|
/*
|
|
* Get part of 5 tuple: dst port and src port
|
|
* and dst IP address higher 32 bits.
|
|
*/
|
|
key.xmm[2] = em_mask_key(data2, mask2.x);
|
|
|
|
/* Find destination port */
|
|
ret = rte_hash_lookup(ipv6_l3fwd_lookup_struct, (const void *)&key);
|
|
return (ret < 0) ? portid : ipv6_l3fwd_out_if[ret];
|
|
}
|
|
|
|
#if defined RTE_ARCH_X86 || defined __ARM_NEON
|
|
#if defined(NO_HASH_MULTI_LOOKUP)
|
|
#include "l3fwd_em_sequential.h"
|
|
#else
|
|
#include "l3fwd_em_hlm.h"
|
|
#endif
|
|
#else
|
|
#include "l3fwd_em.h"
|
|
#endif
|
|
|
|
static void
|
|
convert_ipv4_5tuple(struct ipv4_5tuple *key1,
|
|
union ipv4_5tuple_host *key2)
|
|
{
|
|
key2->ip_dst = rte_cpu_to_be_32(key1->ip_dst);
|
|
key2->ip_src = rte_cpu_to_be_32(key1->ip_src);
|
|
key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
|
|
key2->port_src = rte_cpu_to_be_16(key1->port_src);
|
|
key2->proto = key1->proto;
|
|
key2->pad0 = 0;
|
|
key2->pad1 = 0;
|
|
}
|
|
|
|
static void
|
|
convert_ipv6_5tuple(struct ipv6_5tuple *key1,
|
|
union ipv6_5tuple_host *key2)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
key2->ip_dst[i] = key1->ip_dst[i];
|
|
key2->ip_src[i] = key1->ip_src[i];
|
|
}
|
|
key2->port_dst = rte_cpu_to_be_16(key1->port_dst);
|
|
key2->port_src = rte_cpu_to_be_16(key1->port_src);
|
|
key2->proto = key1->proto;
|
|
key2->pad0 = 0;
|
|
key2->pad1 = 0;
|
|
key2->reserve = 0;
|
|
}
|
|
|
|
#define BYTE_VALUE_MAX 256
|
|
#define ALL_32_BITS 0xffffffff
|
|
#define BIT_8_TO_15 0x0000ff00
|
|
|
|
static inline void
|
|
populate_ipv4_few_flow_into_table(const struct rte_hash *h)
|
|
{
|
|
uint32_t i;
|
|
int32_t ret;
|
|
|
|
mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
|
|
ALL_32_BITS, ALL_32_BITS} };
|
|
|
|
for (i = 0; i < IPV4_L3FWD_EM_NUM_ROUTES; i++) {
|
|
struct ipv4_l3fwd_em_route entry;
|
|
union ipv4_5tuple_host newkey;
|
|
|
|
entry = ipv4_l3fwd_em_route_array[i];
|
|
convert_ipv4_5tuple(&entry.key, &newkey);
|
|
ret = rte_hash_add_key(h, (void *) &newkey);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
|
|
" to the l3fwd hash.\n", i);
|
|
}
|
|
ipv4_l3fwd_out_if[ret] = entry.if_out;
|
|
}
|
|
printf("Hash: Adding 0x%" PRIx64 " keys\n",
|
|
(uint64_t)IPV4_L3FWD_EM_NUM_ROUTES);
|
|
}
|
|
|
|
#define BIT_16_TO_23 0x00ff0000
|
|
static inline void
|
|
populate_ipv6_few_flow_into_table(const struct rte_hash *h)
|
|
{
|
|
uint32_t i;
|
|
int32_t ret;
|
|
|
|
mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
|
|
ALL_32_BITS, ALL_32_BITS} };
|
|
|
|
mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
|
|
|
|
for (i = 0; i < IPV6_L3FWD_EM_NUM_ROUTES; i++) {
|
|
struct ipv6_l3fwd_em_route entry;
|
|
union ipv6_5tuple_host newkey;
|
|
|
|
entry = ipv6_l3fwd_em_route_array[i];
|
|
convert_ipv6_5tuple(&entry.key, &newkey);
|
|
ret = rte_hash_add_key(h, (void *) &newkey);
|
|
if (ret < 0) {
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %" PRIu32
|
|
" to the l3fwd hash.\n", i);
|
|
}
|
|
ipv6_l3fwd_out_if[ret] = entry.if_out;
|
|
}
|
|
printf("Hash: Adding 0x%" PRIx64 "keys\n",
|
|
(uint64_t)IPV6_L3FWD_EM_NUM_ROUTES);
|
|
}
|
|
|
|
#define NUMBER_PORT_USED 4
|
|
static inline void
|
|
populate_ipv4_many_flow_into_table(const struct rte_hash *h,
|
|
unsigned int nr_flow)
|
|
{
|
|
unsigned i;
|
|
|
|
mask0 = (rte_xmm_t){.u32 = {BIT_8_TO_15, ALL_32_BITS,
|
|
ALL_32_BITS, ALL_32_BITS} };
|
|
|
|
for (i = 0; i < nr_flow; i++) {
|
|
struct ipv4_l3fwd_em_route entry;
|
|
union ipv4_5tuple_host newkey;
|
|
|
|
uint8_t a = (uint8_t)
|
|
((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
|
|
uint8_t b = (uint8_t)
|
|
(((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
|
|
uint8_t c = (uint8_t)
|
|
((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
|
|
|
|
/* Create the ipv4 exact match flow */
|
|
memset(&entry, 0, sizeof(entry));
|
|
switch (i & (NUMBER_PORT_USED - 1)) {
|
|
case 0:
|
|
entry = ipv4_l3fwd_em_route_array[0];
|
|
entry.key.ip_dst = RTE_IPV4(101, c, b, a);
|
|
break;
|
|
case 1:
|
|
entry = ipv4_l3fwd_em_route_array[1];
|
|
entry.key.ip_dst = RTE_IPV4(201, c, b, a);
|
|
break;
|
|
case 2:
|
|
entry = ipv4_l3fwd_em_route_array[2];
|
|
entry.key.ip_dst = RTE_IPV4(111, c, b, a);
|
|
break;
|
|
case 3:
|
|
entry = ipv4_l3fwd_em_route_array[3];
|
|
entry.key.ip_dst = RTE_IPV4(211, c, b, a);
|
|
break;
|
|
};
|
|
convert_ipv4_5tuple(&entry.key, &newkey);
|
|
int32_t ret = rte_hash_add_key(h, (void *) &newkey);
|
|
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
|
|
|
|
ipv4_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
|
|
|
|
}
|
|
printf("Hash: Adding 0x%x keys\n", nr_flow);
|
|
}
|
|
|
|
static inline void
|
|
populate_ipv6_many_flow_into_table(const struct rte_hash *h,
|
|
unsigned int nr_flow)
|
|
{
|
|
unsigned i;
|
|
|
|
mask1 = (rte_xmm_t){.u32 = {BIT_16_TO_23, ALL_32_BITS,
|
|
ALL_32_BITS, ALL_32_BITS} };
|
|
mask2 = (rte_xmm_t){.u32 = {ALL_32_BITS, ALL_32_BITS, 0, 0} };
|
|
|
|
for (i = 0; i < nr_flow; i++) {
|
|
struct ipv6_l3fwd_em_route entry;
|
|
union ipv6_5tuple_host newkey;
|
|
|
|
uint8_t a = (uint8_t)
|
|
((i/NUMBER_PORT_USED)%BYTE_VALUE_MAX);
|
|
uint8_t b = (uint8_t)
|
|
(((i/NUMBER_PORT_USED)/BYTE_VALUE_MAX)%BYTE_VALUE_MAX);
|
|
uint8_t c = (uint8_t)
|
|
((i/NUMBER_PORT_USED)/(BYTE_VALUE_MAX*BYTE_VALUE_MAX));
|
|
|
|
/* Create the ipv6 exact match flow */
|
|
memset(&entry, 0, sizeof(entry));
|
|
switch (i & (NUMBER_PORT_USED - 1)) {
|
|
case 0:
|
|
entry = ipv6_l3fwd_em_route_array[0];
|
|
break;
|
|
case 1:
|
|
entry = ipv6_l3fwd_em_route_array[1];
|
|
break;
|
|
case 2:
|
|
entry = ipv6_l3fwd_em_route_array[2];
|
|
break;
|
|
case 3:
|
|
entry = ipv6_l3fwd_em_route_array[3];
|
|
break;
|
|
};
|
|
entry.key.ip_dst[13] = c;
|
|
entry.key.ip_dst[14] = b;
|
|
entry.key.ip_dst[15] = a;
|
|
convert_ipv6_5tuple(&entry.key, &newkey);
|
|
int32_t ret = rte_hash_add_key(h, (void *) &newkey);
|
|
|
|
if (ret < 0)
|
|
rte_exit(EXIT_FAILURE, "Unable to add entry %u\n", i);
|
|
|
|
ipv6_l3fwd_out_if[ret] = (uint8_t) entry.if_out;
|
|
|
|
}
|
|
printf("Hash: Adding 0x%x keys\n", nr_flow);
|
|
}
|
|
|
|
/* Requirements:
|
|
* 1. IP packets without extension;
|
|
* 2. L4 payload should be either TCP or UDP.
|
|
*/
|
|
int
|
|
em_check_ptype(int portid)
|
|
{
|
|
int i, ret;
|
|
int ptype_l3_ipv4_ext = 0;
|
|
int ptype_l3_ipv6_ext = 0;
|
|
int ptype_l4_tcp = 0;
|
|
int ptype_l4_udp = 0;
|
|
uint32_t ptype_mask = RTE_PTYPE_L3_MASK | RTE_PTYPE_L4_MASK;
|
|
|
|
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, NULL, 0);
|
|
if (ret <= 0)
|
|
return 0;
|
|
|
|
uint32_t ptypes[ret];
|
|
|
|
ret = rte_eth_dev_get_supported_ptypes(portid, ptype_mask, ptypes, ret);
|
|
for (i = 0; i < ret; ++i) {
|
|
switch (ptypes[i]) {
|
|
case RTE_PTYPE_L3_IPV4_EXT:
|
|
ptype_l3_ipv4_ext = 1;
|
|
break;
|
|
case RTE_PTYPE_L3_IPV6_EXT:
|
|
ptype_l3_ipv6_ext = 1;
|
|
break;
|
|
case RTE_PTYPE_L4_TCP:
|
|
ptype_l4_tcp = 1;
|
|
break;
|
|
case RTE_PTYPE_L4_UDP:
|
|
ptype_l4_udp = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ptype_l3_ipv4_ext == 0)
|
|
printf("port %d cannot parse RTE_PTYPE_L3_IPV4_EXT\n", portid);
|
|
if (ptype_l3_ipv6_ext == 0)
|
|
printf("port %d cannot parse RTE_PTYPE_L3_IPV6_EXT\n", portid);
|
|
if (!ptype_l3_ipv4_ext || !ptype_l3_ipv6_ext)
|
|
return 0;
|
|
|
|
if (ptype_l4_tcp == 0)
|
|
printf("port %d cannot parse RTE_PTYPE_L4_TCP\n", portid);
|
|
if (ptype_l4_udp == 0)
|
|
printf("port %d cannot parse RTE_PTYPE_L4_UDP\n", portid);
|
|
if (ptype_l4_tcp && ptype_l4_udp)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void
|
|
em_parse_ptype(struct rte_mbuf *m)
|
|
{
|
|
struct rte_ether_hdr *eth_hdr;
|
|
uint32_t packet_type = RTE_PTYPE_UNKNOWN;
|
|
uint16_t ether_type;
|
|
void *l3;
|
|
int hdr_len;
|
|
struct rte_ipv4_hdr *ipv4_hdr;
|
|
struct rte_ipv6_hdr *ipv6_hdr;
|
|
|
|
eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
|
|
ether_type = eth_hdr->ether_type;
|
|
l3 = (uint8_t *)eth_hdr + sizeof(struct rte_ether_hdr);
|
|
if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4)) {
|
|
ipv4_hdr = (struct rte_ipv4_hdr *)l3;
|
|
hdr_len = rte_ipv4_hdr_len(ipv4_hdr);
|
|
if (hdr_len == sizeof(struct rte_ipv4_hdr)) {
|
|
packet_type |= RTE_PTYPE_L3_IPV4;
|
|
if (ipv4_hdr->next_proto_id == IPPROTO_TCP)
|
|
packet_type |= RTE_PTYPE_L4_TCP;
|
|
else if (ipv4_hdr->next_proto_id == IPPROTO_UDP)
|
|
packet_type |= RTE_PTYPE_L4_UDP;
|
|
} else
|
|
packet_type |= RTE_PTYPE_L3_IPV4_EXT;
|
|
} else if (ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6)) {
|
|
ipv6_hdr = (struct rte_ipv6_hdr *)l3;
|
|
if (ipv6_hdr->proto == IPPROTO_TCP)
|
|
packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP;
|
|
else if (ipv6_hdr->proto == IPPROTO_UDP)
|
|
packet_type |= RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP;
|
|
else
|
|
packet_type |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
|
|
}
|
|
|
|
m->packet_type = packet_type;
|
|
}
|
|
|
|
uint16_t
|
|
em_cb_parse_ptype(uint16_t port __rte_unused, uint16_t queue __rte_unused,
|
|
struct rte_mbuf *pkts[], uint16_t nb_pkts,
|
|
uint16_t max_pkts __rte_unused,
|
|
void *user_param __rte_unused)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < nb_pkts; ++i)
|
|
em_parse_ptype(pkts[i]);
|
|
|
|
return nb_pkts;
|
|
}
|
|
|
|
/* main processing loop */
|
|
int
|
|
em_main_loop(__rte_unused void *dummy)
|
|
{
|
|
struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
|
|
unsigned lcore_id;
|
|
uint64_t prev_tsc, diff_tsc, cur_tsc;
|
|
int i, nb_rx;
|
|
uint8_t queueid;
|
|
uint16_t portid;
|
|
struct lcore_conf *qconf;
|
|
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
|
|
US_PER_S * BURST_TX_DRAIN_US;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
qconf = &lcore_conf[lcore_id];
|
|
|
|
if (qconf->n_rx_queue == 0) {
|
|
RTE_LOG(INFO, L3FWD, "lcore %u has nothing to do\n", lcore_id);
|
|
return 0;
|
|
}
|
|
|
|
RTE_LOG(INFO, L3FWD, "entering main loop on lcore %u\n", lcore_id);
|
|
|
|
for (i = 0; i < qconf->n_rx_queue; i++) {
|
|
|
|
portid = qconf->rx_queue_list[i].port_id;
|
|
queueid = qconf->rx_queue_list[i].queue_id;
|
|
RTE_LOG(INFO, L3FWD,
|
|
" -- lcoreid=%u portid=%u rxqueueid=%hhu\n",
|
|
lcore_id, portid, queueid);
|
|
}
|
|
|
|
cur_tsc = rte_rdtsc();
|
|
prev_tsc = cur_tsc;
|
|
|
|
while (!force_quit) {
|
|
|
|
/*
|
|
* TX burst queue drain
|
|
*/
|
|
diff_tsc = cur_tsc - prev_tsc;
|
|
if (unlikely(diff_tsc > drain_tsc)) {
|
|
|
|
for (i = 0; i < qconf->n_tx_port; ++i) {
|
|
portid = qconf->tx_port_id[i];
|
|
if (qconf->tx_mbufs[portid].len == 0)
|
|
continue;
|
|
send_burst(qconf,
|
|
qconf->tx_mbufs[portid].len,
|
|
portid);
|
|
qconf->tx_mbufs[portid].len = 0;
|
|
}
|
|
|
|
prev_tsc = cur_tsc;
|
|
}
|
|
|
|
/*
|
|
* Read packet from RX queues
|
|
*/
|
|
for (i = 0; i < qconf->n_rx_queue; ++i) {
|
|
portid = qconf->rx_queue_list[i].port_id;
|
|
queueid = qconf->rx_queue_list[i].queue_id;
|
|
nb_rx = rte_eth_rx_burst(portid, queueid, pkts_burst,
|
|
MAX_PKT_BURST);
|
|
if (nb_rx == 0)
|
|
continue;
|
|
|
|
#if defined RTE_ARCH_X86 || defined __ARM_NEON
|
|
l3fwd_em_send_packets(nb_rx, pkts_burst,
|
|
portid, qconf);
|
|
#else
|
|
l3fwd_em_no_opt_send_packets(nb_rx, pkts_burst,
|
|
portid, qconf);
|
|
#endif
|
|
}
|
|
|
|
cur_tsc = rte_rdtsc();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
em_event_loop_single(struct l3fwd_event_resources *evt_rsrc,
|
|
const uint8_t flags)
|
|
{
|
|
const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
|
|
const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
|
|
evt_rsrc->evq.nb_queues - 1];
|
|
const uint8_t event_d_id = evt_rsrc->event_d_id;
|
|
struct lcore_conf *lconf;
|
|
unsigned int lcore_id;
|
|
struct rte_event ev;
|
|
|
|
if (event_p_id < 0)
|
|
return;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
lconf = &lcore_conf[lcore_id];
|
|
|
|
RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
|
|
while (!force_quit) {
|
|
if (!rte_event_dequeue_burst(event_d_id, event_p_id, &ev, 1, 0))
|
|
continue;
|
|
|
|
struct rte_mbuf *mbuf = ev.mbuf;
|
|
|
|
#if defined RTE_ARCH_X86 || defined __ARM_NEON
|
|
mbuf->port = em_get_dst_port(lconf, mbuf, mbuf->port);
|
|
process_packet(mbuf, &mbuf->port);
|
|
#else
|
|
l3fwd_em_simple_process(mbuf, lconf);
|
|
#endif
|
|
if (mbuf->port == BAD_PORT) {
|
|
rte_pktmbuf_free(mbuf);
|
|
continue;
|
|
}
|
|
|
|
if (flags & L3FWD_EVENT_TX_ENQ) {
|
|
ev.queue_id = tx_q_id;
|
|
ev.op = RTE_EVENT_OP_FORWARD;
|
|
while (rte_event_enqueue_burst(event_d_id, event_p_id,
|
|
&ev, 1) && !force_quit)
|
|
;
|
|
}
|
|
|
|
if (flags & L3FWD_EVENT_TX_DIRECT) {
|
|
rte_event_eth_tx_adapter_txq_set(mbuf, 0);
|
|
while (!rte_event_eth_tx_adapter_enqueue(event_d_id,
|
|
event_p_id, &ev, 1, 0) &&
|
|
!force_quit)
|
|
;
|
|
}
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
em_event_loop_burst(struct l3fwd_event_resources *evt_rsrc,
|
|
const uint8_t flags)
|
|
{
|
|
const int event_p_id = l3fwd_get_free_event_port(evt_rsrc);
|
|
const uint8_t tx_q_id = evt_rsrc->evq.event_q_id[
|
|
evt_rsrc->evq.nb_queues - 1];
|
|
const uint8_t event_d_id = evt_rsrc->event_d_id;
|
|
const uint16_t deq_len = evt_rsrc->deq_depth;
|
|
struct rte_event events[MAX_PKT_BURST];
|
|
struct lcore_conf *lconf;
|
|
unsigned int lcore_id;
|
|
int i, nb_enq, nb_deq;
|
|
|
|
if (event_p_id < 0)
|
|
return;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
|
|
lconf = &lcore_conf[lcore_id];
|
|
|
|
RTE_LOG(INFO, L3FWD, "entering %s on lcore %u\n", __func__, lcore_id);
|
|
|
|
while (!force_quit) {
|
|
/* Read events from RX queues */
|
|
nb_deq = rte_event_dequeue_burst(event_d_id, event_p_id,
|
|
events, deq_len, 0);
|
|
if (nb_deq == 0) {
|
|
rte_pause();
|
|
continue;
|
|
}
|
|
|
|
#if defined RTE_ARCH_X86 || defined __ARM_NEON
|
|
l3fwd_em_process_events(nb_deq, (struct rte_event **)&events,
|
|
lconf);
|
|
#else
|
|
l3fwd_em_no_opt_process_events(nb_deq,
|
|
(struct rte_event **)&events,
|
|
lconf);
|
|
#endif
|
|
for (i = 0; i < nb_deq; i++) {
|
|
if (flags & L3FWD_EVENT_TX_ENQ) {
|
|
events[i].queue_id = tx_q_id;
|
|
events[i].op = RTE_EVENT_OP_FORWARD;
|
|
}
|
|
|
|
if (flags & L3FWD_EVENT_TX_DIRECT)
|
|
rte_event_eth_tx_adapter_txq_set(events[i].mbuf,
|
|
0);
|
|
}
|
|
|
|
if (flags & L3FWD_EVENT_TX_ENQ) {
|
|
nb_enq = rte_event_enqueue_burst(event_d_id, event_p_id,
|
|
events, nb_deq);
|
|
while (nb_enq < nb_deq && !force_quit)
|
|
nb_enq += rte_event_enqueue_burst(event_d_id,
|
|
event_p_id, events + nb_enq,
|
|
nb_deq - nb_enq);
|
|
}
|
|
|
|
if (flags & L3FWD_EVENT_TX_DIRECT) {
|
|
nb_enq = rte_event_eth_tx_adapter_enqueue(event_d_id,
|
|
event_p_id, events, nb_deq, 0);
|
|
while (nb_enq < nb_deq && !force_quit)
|
|
nb_enq += rte_event_eth_tx_adapter_enqueue(
|
|
event_d_id, event_p_id,
|
|
events + nb_enq,
|
|
nb_deq - nb_enq, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static __rte_always_inline void
|
|
em_event_loop(struct l3fwd_event_resources *evt_rsrc,
|
|
const uint8_t flags)
|
|
{
|
|
if (flags & L3FWD_EVENT_SINGLE)
|
|
em_event_loop_single(evt_rsrc, flags);
|
|
if (flags & L3FWD_EVENT_BURST)
|
|
em_event_loop_burst(evt_rsrc, flags);
|
|
}
|
|
|
|
int __rte_noinline
|
|
em_event_main_loop_tx_d(__rte_unused void *dummy)
|
|
{
|
|
struct l3fwd_event_resources *evt_rsrc =
|
|
l3fwd_get_eventdev_rsrc();
|
|
|
|
em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_SINGLE);
|
|
return 0;
|
|
}
|
|
|
|
int __rte_noinline
|
|
em_event_main_loop_tx_d_burst(__rte_unused void *dummy)
|
|
{
|
|
struct l3fwd_event_resources *evt_rsrc =
|
|
l3fwd_get_eventdev_rsrc();
|
|
|
|
em_event_loop(evt_rsrc, L3FWD_EVENT_TX_DIRECT | L3FWD_EVENT_BURST);
|
|
return 0;
|
|
}
|
|
|
|
int __rte_noinline
|
|
em_event_main_loop_tx_q(__rte_unused void *dummy)
|
|
{
|
|
struct l3fwd_event_resources *evt_rsrc =
|
|
l3fwd_get_eventdev_rsrc();
|
|
|
|
em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_SINGLE);
|
|
return 0;
|
|
}
|
|
|
|
int __rte_noinline
|
|
em_event_main_loop_tx_q_burst(__rte_unused void *dummy)
|
|
{
|
|
struct l3fwd_event_resources *evt_rsrc =
|
|
l3fwd_get_eventdev_rsrc();
|
|
|
|
em_event_loop(evt_rsrc, L3FWD_EVENT_TX_ENQ | L3FWD_EVENT_BURST);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize exact match (hash) parameters.
|
|
*/
|
|
void
|
|
setup_hash(const int socketid)
|
|
{
|
|
struct rte_hash_parameters ipv4_l3fwd_hash_params = {
|
|
.name = NULL,
|
|
.entries = L3FWD_HASH_ENTRIES,
|
|
.key_len = sizeof(union ipv4_5tuple_host),
|
|
.hash_func = ipv4_hash_crc,
|
|
.hash_func_init_val = 0,
|
|
};
|
|
|
|
struct rte_hash_parameters ipv6_l3fwd_hash_params = {
|
|
.name = NULL,
|
|
.entries = L3FWD_HASH_ENTRIES,
|
|
.key_len = sizeof(union ipv6_5tuple_host),
|
|
.hash_func = ipv6_hash_crc,
|
|
.hash_func_init_val = 0,
|
|
};
|
|
|
|
char s[64];
|
|
|
|
/* create ipv4 hash */
|
|
snprintf(s, sizeof(s), "ipv4_l3fwd_hash_%d", socketid);
|
|
ipv4_l3fwd_hash_params.name = s;
|
|
ipv4_l3fwd_hash_params.socket_id = socketid;
|
|
ipv4_l3fwd_em_lookup_struct[socketid] =
|
|
rte_hash_create(&ipv4_l3fwd_hash_params);
|
|
if (ipv4_l3fwd_em_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Unable to create the l3fwd hash on socket %d\n",
|
|
socketid);
|
|
|
|
/* create ipv6 hash */
|
|
snprintf(s, sizeof(s), "ipv6_l3fwd_hash_%d", socketid);
|
|
ipv6_l3fwd_hash_params.name = s;
|
|
ipv6_l3fwd_hash_params.socket_id = socketid;
|
|
ipv6_l3fwd_em_lookup_struct[socketid] =
|
|
rte_hash_create(&ipv6_l3fwd_hash_params);
|
|
if (ipv6_l3fwd_em_lookup_struct[socketid] == NULL)
|
|
rte_exit(EXIT_FAILURE,
|
|
"Unable to create the l3fwd hash on socket %d\n",
|
|
socketid);
|
|
|
|
if (hash_entry_number != HASH_ENTRY_NUMBER_DEFAULT) {
|
|
/* For testing hash matching with a large number of flows we
|
|
* generate millions of IP 5-tuples with an incremented dst
|
|
* address to initialize the hash table. */
|
|
if (ipv6 == 0) {
|
|
/* populate the ipv4 hash */
|
|
populate_ipv4_many_flow_into_table(
|
|
ipv4_l3fwd_em_lookup_struct[socketid],
|
|
hash_entry_number);
|
|
} else {
|
|
/* populate the ipv6 hash */
|
|
populate_ipv6_many_flow_into_table(
|
|
ipv6_l3fwd_em_lookup_struct[socketid],
|
|
hash_entry_number);
|
|
}
|
|
} else {
|
|
/*
|
|
* Use data in ipv4/ipv6 l3fwd lookup table
|
|
* directly to initialize the hash table.
|
|
*/
|
|
if (ipv6 == 0) {
|
|
/* populate the ipv4 hash */
|
|
populate_ipv4_few_flow_into_table(
|
|
ipv4_l3fwd_em_lookup_struct[socketid]);
|
|
} else {
|
|
/* populate the ipv6 hash */
|
|
populate_ipv6_few_flow_into_table(
|
|
ipv6_l3fwd_em_lookup_struct[socketid]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return ipv4/ipv6 em fwd lookup struct. */
|
|
void *
|
|
em_get_ipv4_l3fwd_lookup_struct(const int socketid)
|
|
{
|
|
return ipv4_l3fwd_em_lookup_struct[socketid];
|
|
}
|
|
|
|
void *
|
|
em_get_ipv6_l3fwd_lookup_struct(const int socketid)
|
|
{
|
|
return ipv6_l3fwd_em_lookup_struct[socketid];
|
|
}
|