numam-dpdk/app/test-pmd/config.c
Kevin Laatz 5d85a49661 app/testpmd: add check for Rx offload security flag
Add a check for the DEV_RX_OFFLOAD_SECURITY flag to the
port_offload_cap_display().

Signed-off-by: Kevin Laatz <kevin.laatz@intel.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
Acked-by: Bernard Iremonger <bernard.iremonger@intel.com>
2018-09-28 01:41:02 +02:00

3849 lines
101 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation.
* Copyright 2013-2014 6WIND S.A.
*/
#include <stdarg.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_debug.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_interrupts.h>
#include <rte_pci.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_string_fns.h>
#include <rte_cycles.h>
#include <rte_flow.h>
#include <rte_errno.h>
#ifdef RTE_LIBRTE_IXGBE_PMD
#include <rte_pmd_ixgbe.h>
#endif
#ifdef RTE_LIBRTE_I40E_PMD
#include <rte_pmd_i40e.h>
#endif
#ifdef RTE_LIBRTE_BNXT_PMD
#include <rte_pmd_bnxt.h>
#endif
#include <rte_gro.h>
#include <cmdline_parse_etheraddr.h>
#include "testpmd.h"
static char *flowtype_to_str(uint16_t flow_type);
static const struct {
enum tx_pkt_split split;
const char *name;
} tx_split_name[] = {
{
.split = TX_PKT_SPLIT_OFF,
.name = "off",
},
{
.split = TX_PKT_SPLIT_ON,
.name = "on",
},
{
.split = TX_PKT_SPLIT_RND,
.name = "rand",
},
};
const struct rss_type_info rss_type_table[] = {
{ "ipv4", ETH_RSS_IPV4 },
{ "ipv4-frag", ETH_RSS_FRAG_IPV4 },
{ "ipv4-tcp", ETH_RSS_NONFRAG_IPV4_TCP },
{ "ipv4-udp", ETH_RSS_NONFRAG_IPV4_UDP },
{ "ipv4-sctp", ETH_RSS_NONFRAG_IPV4_SCTP },
{ "ipv4-other", ETH_RSS_NONFRAG_IPV4_OTHER },
{ "ipv6", ETH_RSS_IPV6 },
{ "ipv6-frag", ETH_RSS_FRAG_IPV6 },
{ "ipv6-tcp", ETH_RSS_NONFRAG_IPV6_TCP },
{ "ipv6-udp", ETH_RSS_NONFRAG_IPV6_UDP },
{ "ipv6-sctp", ETH_RSS_NONFRAG_IPV6_SCTP },
{ "ipv6-other", ETH_RSS_NONFRAG_IPV6_OTHER },
{ "l2-payload", ETH_RSS_L2_PAYLOAD },
{ "ipv6-ex", ETH_RSS_IPV6_EX },
{ "ipv6-tcp-ex", ETH_RSS_IPV6_TCP_EX },
{ "ipv6-udp-ex", ETH_RSS_IPV6_UDP_EX },
{ "port", ETH_RSS_PORT },
{ "vxlan", ETH_RSS_VXLAN },
{ "geneve", ETH_RSS_GENEVE },
{ "nvgre", ETH_RSS_NVGRE },
{ "ip", ETH_RSS_IP },
{ "udp", ETH_RSS_UDP },
{ "tcp", ETH_RSS_TCP },
{ "sctp", ETH_RSS_SCTP },
{ "tunnel", ETH_RSS_TUNNEL },
{ NULL, 0 },
};
static void
print_ethaddr(const char *name, struct ether_addr *eth_addr)
{
char buf[ETHER_ADDR_FMT_SIZE];
ether_format_addr(buf, ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
void
nic_stats_display(portid_t port_id)
{
static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
static uint64_t prev_cycles[RTE_MAX_ETHPORTS];
uint64_t diff_pkts_rx, diff_pkts_tx, diff_cycles;
uint64_t mpps_rx, mpps_tx;
struct rte_eth_stats stats;
struct rte_port *port = &ports[port_id];
uint8_t i;
static const char *nic_stats_border = "########################";
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
rte_eth_stats_get(port_id, &stats);
printf("\n %s NIC statistics for port %-2d %s\n",
nic_stats_border, port_id, nic_stats_border);
if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: "
"%-"PRIu64"\n",
stats.ipackets, stats.imissed, stats.ibytes);
printf(" RX-errors: %-"PRIu64"\n", stats.ierrors);
printf(" RX-nombuf: %-10"PRIu64"\n",
stats.rx_nombuf);
printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: "
"%-"PRIu64"\n",
stats.opackets, stats.oerrors, stats.obytes);
}
else {
printf(" RX-packets: %10"PRIu64" RX-errors: %10"PRIu64
" RX-bytes: %10"PRIu64"\n",
stats.ipackets, stats.ierrors, stats.ibytes);
printf(" RX-errors: %10"PRIu64"\n", stats.ierrors);
printf(" RX-nombuf: %10"PRIu64"\n",
stats.rx_nombuf);
printf(" TX-packets: %10"PRIu64" TX-errors: %10"PRIu64
" TX-bytes: %10"PRIu64"\n",
stats.opackets, stats.oerrors, stats.obytes);
}
if (port->rx_queue_stats_mapping_enabled) {
printf("\n");
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
printf(" Stats reg %2d RX-packets: %10"PRIu64
" RX-errors: %10"PRIu64
" RX-bytes: %10"PRIu64"\n",
i, stats.q_ipackets[i], stats.q_errors[i], stats.q_ibytes[i]);
}
}
if (port->tx_queue_stats_mapping_enabled) {
printf("\n");
for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS; i++) {
printf(" Stats reg %2d TX-packets: %10"PRIu64
" TX-bytes: %10"PRIu64"\n",
i, stats.q_opackets[i], stats.q_obytes[i]);
}
}
diff_cycles = prev_cycles[port_id];
prev_cycles[port_id] = rte_rdtsc();
if (diff_cycles > 0)
diff_cycles = prev_cycles[port_id] - diff_cycles;
diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
(stats.ipackets - prev_pkts_rx[port_id]) : 0;
diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
(stats.opackets - prev_pkts_tx[port_id]) : 0;
prev_pkts_rx[port_id] = stats.ipackets;
prev_pkts_tx[port_id] = stats.opackets;
mpps_rx = diff_cycles > 0 ?
diff_pkts_rx * rte_get_tsc_hz() / diff_cycles : 0;
mpps_tx = diff_cycles > 0 ?
diff_pkts_tx * rte_get_tsc_hz() / diff_cycles : 0;
printf("\n Throughput (since last show)\n");
printf(" Rx-pps: %12"PRIu64"\n Tx-pps: %12"PRIu64"\n",
mpps_rx, mpps_tx);
printf(" %s############################%s\n",
nic_stats_border, nic_stats_border);
}
void
nic_stats_clear(portid_t port_id)
{
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
rte_eth_stats_reset(port_id);
printf("\n NIC statistics for port %d cleared\n", port_id);
}
void
nic_xstats_display(portid_t port_id)
{
struct rte_eth_xstat *xstats;
int cnt_xstats, idx_xstat;
struct rte_eth_xstat_name *xstats_names;
printf("###### NIC extended statistics for port %-2d\n", port_id);
if (!rte_eth_dev_is_valid_port(port_id)) {
printf("Error: Invalid port number %i\n", port_id);
return;
}
/* Get count */
cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
if (cnt_xstats < 0) {
printf("Error: Cannot get count of xstats\n");
return;
}
/* Get id-name lookup table */
xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
if (xstats_names == NULL) {
printf("Cannot allocate memory for xstats lookup\n");
return;
}
if (cnt_xstats != rte_eth_xstats_get_names(
port_id, xstats_names, cnt_xstats)) {
printf("Error: Cannot get xstats lookup\n");
free(xstats_names);
return;
}
/* Get stats themselves */
xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
if (xstats == NULL) {
printf("Cannot allocate memory for xstats\n");
free(xstats_names);
return;
}
if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
printf("Error: Unable to get xstats\n");
free(xstats_names);
free(xstats);
return;
}
/* Display xstats */
for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
if (xstats_hide_zero && !xstats[idx_xstat].value)
continue;
printf("%s: %"PRIu64"\n",
xstats_names[idx_xstat].name,
xstats[idx_xstat].value);
}
free(xstats_names);
free(xstats);
}
void
nic_xstats_clear(portid_t port_id)
{
rte_eth_xstats_reset(port_id);
}
void
nic_stats_mapping_display(portid_t port_id)
{
struct rte_port *port = &ports[port_id];
uint16_t i;
static const char *nic_stats_mapping_border = "########################";
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
if ((!port->rx_queue_stats_mapping_enabled) && (!port->tx_queue_stats_mapping_enabled)) {
printf("Port id %d - either does not support queue statistic mapping or"
" no queue statistic mapping set\n", port_id);
return;
}
printf("\n %s NIC statistics mapping for port %-2d %s\n",
nic_stats_mapping_border, port_id, nic_stats_mapping_border);
if (port->rx_queue_stats_mapping_enabled) {
for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
if (rx_queue_stats_mappings[i].port_id == port_id) {
printf(" RX-queue %2d mapped to Stats Reg %2d\n",
rx_queue_stats_mappings[i].queue_id,
rx_queue_stats_mappings[i].stats_counter_id);
}
}
printf("\n");
}
if (port->tx_queue_stats_mapping_enabled) {
for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
if (tx_queue_stats_mappings[i].port_id == port_id) {
printf(" TX-queue %2d mapped to Stats Reg %2d\n",
tx_queue_stats_mappings[i].queue_id,
tx_queue_stats_mappings[i].stats_counter_id);
}
}
}
printf(" %s####################################%s\n",
nic_stats_mapping_border, nic_stats_mapping_border);
}
void
rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
{
struct rte_eth_rxq_info qinfo;
int32_t rc;
static const char *info_border = "*********************";
rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
if (rc != 0) {
printf("Failed to retrieve information for port: %u, "
"RX queue: %hu\nerror desc: %s(%d)\n",
port_id, queue_id, strerror(-rc), rc);
return;
}
printf("\n%s Infos for port %-2u, RX queue %-2u %s",
info_border, port_id, queue_id, info_border);
printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
printf("\nRX drop packets: %s",
(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
printf("\nRX deferred start: %s",
(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
printf("\nRX scattered packets: %s",
(qinfo.scattered_rx != 0) ? "on" : "off");
printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
printf("\n");
}
void
tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
{
struct rte_eth_txq_info qinfo;
int32_t rc;
static const char *info_border = "*********************";
rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
if (rc != 0) {
printf("Failed to retrieve information for port: %u, "
"TX queue: %hu\nerror desc: %s(%d)\n",
port_id, queue_id, strerror(-rc), rc);
return;
}
printf("\n%s Infos for port %-2u, TX queue %-2u %s",
info_border, port_id, queue_id, info_border);
printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
printf("\nTX deferred start: %s",
(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
printf("\n");
}
void
port_infos_display(portid_t port_id)
{
struct rte_port *port;
struct ether_addr mac_addr;
struct rte_eth_link link;
struct rte_eth_dev_info dev_info;
int vlan_offload;
struct rte_mempool * mp;
static const char *info_border = "*********************";
uint16_t mtu;
char name[RTE_ETH_NAME_MAX_LEN];
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
port = &ports[port_id];
rte_eth_link_get_nowait(port_id, &link);
memset(&dev_info, 0, sizeof(dev_info));
rte_eth_dev_info_get(port_id, &dev_info);
printf("\n%s Infos for port %-2d %s\n",
info_border, port_id, info_border);
rte_eth_macaddr_get(port_id, &mac_addr);
print_ethaddr("MAC address: ", &mac_addr);
rte_eth_dev_get_name_by_port(port_id, name);
printf("\nDevice name: %s", name);
printf("\nDriver name: %s", dev_info.driver_name);
printf("\nConnect to socket: %u", port->socket_id);
if (port_numa[port_id] != NUMA_NO_CONFIG) {
mp = mbuf_pool_find(port_numa[port_id]);
if (mp)
printf("\nmemory allocation on the socket: %d",
port_numa[port_id]);
} else
printf("\nmemory allocation on the socket: %u",port->socket_id);
printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
printf("Link speed: %u Mbps\n", (unsigned) link.link_speed);
printf("Link duplex: %s\n", (link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex"));
if (!rte_eth_dev_get_mtu(port_id, &mtu))
printf("MTU: %u\n", mtu);
printf("Promiscuous mode: %s\n",
rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
printf("Allmulticast mode: %s\n",
rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
printf("Maximum number of MAC addresses: %u\n",
(unsigned int)(port->dev_info.max_mac_addrs));
printf("Maximum number of MAC addresses of hash filtering: %u\n",
(unsigned int)(port->dev_info.max_hash_mac_addrs));
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (vlan_offload >= 0){
printf("VLAN offload: \n");
if (vlan_offload & ETH_VLAN_STRIP_OFFLOAD)
printf(" strip on \n");
else
printf(" strip off \n");
if (vlan_offload & ETH_VLAN_FILTER_OFFLOAD)
printf(" filter on \n");
else
printf(" filter off \n");
if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)
printf(" qinq(extend) on \n");
else
printf(" qinq(extend) off \n");
}
if (dev_info.hash_key_size > 0)
printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
if (dev_info.reta_size > 0)
printf("Redirection table size: %u\n", dev_info.reta_size);
if (!dev_info.flow_type_rss_offloads)
printf("No flow type is supported.\n");
else {
uint16_t i;
char *p;
printf("Supported flow types:\n");
for (i = RTE_ETH_FLOW_UNKNOWN + 1;
i < sizeof(dev_info.flow_type_rss_offloads) * CHAR_BIT; i++) {
if (!(dev_info.flow_type_rss_offloads & (1ULL << i)))
continue;
p = flowtype_to_str(i);
if (p)
printf(" %s\n", p);
else
printf(" user defined %d\n", i);
}
}
printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
printf("Maximum configurable length of RX packet: %u\n",
dev_info.max_rx_pktlen);
if (dev_info.max_vfs)
printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
if (dev_info.max_vmdq_pools)
printf("Maximum number of VMDq pools: %u\n",
dev_info.max_vmdq_pools);
printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
printf("Max possible number of RXDs per queue: %hu\n",
dev_info.rx_desc_lim.nb_max);
printf("Min possible number of RXDs per queue: %hu\n",
dev_info.rx_desc_lim.nb_min);
printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
printf("Max possible number of TXDs per queue: %hu\n",
dev_info.tx_desc_lim.nb_max);
printf("Min possible number of TXDs per queue: %hu\n",
dev_info.tx_desc_lim.nb_min);
printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
/* Show switch info only if valid switch domain and port id is set */
if (dev_info.switch_info.domain_id !=
RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
if (dev_info.switch_info.name)
printf("Switch name: %s\n", dev_info.switch_info.name);
printf("Switch domain Id: %u\n",
dev_info.switch_info.domain_id);
printf("Switch Port Id: %u\n",
dev_info.switch_info.port_id);
}
}
void
port_offload_cap_display(portid_t port_id)
{
struct rte_eth_dev_info dev_info;
static const char *info_border = "************";
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
rte_eth_dev_info_get(port_id, &dev_info);
printf("\n%s Port %d supported offload features: %s\n",
info_border, port_id, info_border);
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_VLAN_STRIP) {
printf("VLAN stripped: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_VLAN_STRIP)
printf("on\n");
else
printf("off\n");
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_QINQ_STRIP) {
printf("Double VLANs stripped: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_VLAN_EXTEND)
printf("on\n");
else
printf("off\n");
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_IPV4_CKSUM) {
printf("RX IPv4 checksum: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_IPV4_CKSUM)
printf("on\n");
else
printf("off\n");
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_UDP_CKSUM) {
printf("RX UDP checksum: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_UDP_CKSUM)
printf("on\n");
else
printf("off\n");
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_CKSUM) {
printf("RX TCP checksum: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_TCP_CKSUM)
printf("on\n");
else
printf("off\n");
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) {
printf("RX Outer IPv4 checksum: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)
printf("on\n");
else
printf("off\n");
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TCP_LRO) {
printf("Large receive offload: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_TCP_LRO)
printf("on\n");
else
printf("off\n");
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_TIMESTAMP) {
printf("HW timestamp: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_TIMESTAMP)
printf("on\n");
else
printf("off\n");
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_KEEP_CRC) {
printf("Rx Keep CRC: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_KEEP_CRC)
printf("on\n");
else
printf("off\n");
}
if (dev_info.rx_offload_capa & DEV_RX_OFFLOAD_SECURITY) {
printf("RX offload security: ");
if (ports[port_id].dev_conf.rxmode.offloads &
DEV_RX_OFFLOAD_SECURITY)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) {
printf("VLAN insert: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_VLAN_INSERT)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) {
printf("Double VLANs insert: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_QINQ_INSERT)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPV4_CKSUM) {
printf("TX IPv4 checksum: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_IPV4_CKSUM)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_CKSUM) {
printf("TX UDP checksum: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_UDP_CKSUM)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_CKSUM) {
printf("TX TCP checksum: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_TCP_CKSUM)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_SCTP_CKSUM) {
printf("TX SCTP checksum: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_SCTP_CKSUM)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) {
printf("TX Outer IPv4 checksum: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_TCP_TSO) {
printf("TX TCP segmentation: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_TCP_TSO)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TSO) {
printf("TX UDP segmentation: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_UDP_TSO)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VXLAN_TNL_TSO) {
printf("TSO for VXLAN tunnel packet: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_VXLAN_TNL_TSO)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GRE_TNL_TSO) {
printf("TSO for GRE tunnel packet: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_GRE_TNL_TSO)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IPIP_TNL_TSO) {
printf("TSO for IPIP tunnel packet: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_IPIP_TNL_TSO)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_GENEVE_TNL_TSO) {
printf("TSO for GENEVE tunnel packet: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_GENEVE_TNL_TSO)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_IP_TNL_TSO) {
printf("IP tunnel TSO: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_IP_TNL_TSO)
printf("on\n");
else
printf("off\n");
}
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_UDP_TNL_TSO) {
printf("UDP tunnel TSO: ");
if (ports[port_id].dev_conf.txmode.offloads &
DEV_TX_OFFLOAD_UDP_TNL_TSO)
printf("on\n");
else
printf("off\n");
}
}
int
port_id_is_invalid(portid_t port_id, enum print_warning warning)
{
uint16_t pid;
if (port_id == (portid_t)RTE_PORT_ALL)
return 0;
RTE_ETH_FOREACH_DEV(pid)
if (port_id == pid)
return 0;
if (warning == ENABLED_WARN)
printf("Invalid port %d\n", port_id);
return 1;
}
void print_valid_ports(void)
{
portid_t pid;
printf("The valid ports array is [");
RTE_ETH_FOREACH_DEV(pid) {
printf(" %d", pid);
}
printf(" ]\n");
}
static int
vlan_id_is_invalid(uint16_t vlan_id)
{
if (vlan_id < 4096)
return 0;
printf("Invalid vlan_id %d (must be < 4096)\n", vlan_id);
return 1;
}
static int
port_reg_off_is_invalid(portid_t port_id, uint32_t reg_off)
{
const struct rte_pci_device *pci_dev;
const struct rte_bus *bus;
uint64_t pci_len;
if (reg_off & 0x3) {
printf("Port register offset 0x%X not aligned on a 4-byte "
"boundary\n",
(unsigned)reg_off);
return 1;
}
if (!ports[port_id].dev_info.device) {
printf("Invalid device\n");
return 0;
}
bus = rte_bus_find_by_device(ports[port_id].dev_info.device);
if (bus && !strcmp(bus->name, "pci")) {
pci_dev = RTE_DEV_TO_PCI(ports[port_id].dev_info.device);
} else {
printf("Not a PCI device\n");
return 1;
}
pci_len = pci_dev->mem_resource[0].len;
if (reg_off >= pci_len) {
printf("Port %d: register offset %u (0x%X) out of port PCI "
"resource (length=%"PRIu64")\n",
port_id, (unsigned)reg_off, (unsigned)reg_off, pci_len);
return 1;
}
return 0;
}
static int
reg_bit_pos_is_invalid(uint8_t bit_pos)
{
if (bit_pos <= 31)
return 0;
printf("Invalid bit position %d (must be <= 31)\n", bit_pos);
return 1;
}
#define display_port_and_reg_off(port_id, reg_off) \
printf("port %d PCI register at offset 0x%X: ", (port_id), (reg_off))
static inline void
display_port_reg_value(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
{
display_port_and_reg_off(port_id, (unsigned)reg_off);
printf("0x%08X (%u)\n", (unsigned)reg_v, (unsigned)reg_v);
}
void
port_reg_bit_display(portid_t port_id, uint32_t reg_off, uint8_t bit_x)
{
uint32_t reg_v;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
if (reg_bit_pos_is_invalid(bit_x))
return;
reg_v = port_id_pci_reg_read(port_id, reg_off);
display_port_and_reg_off(port_id, (unsigned)reg_off);
printf("bit %d=%d\n", bit_x, (int) ((reg_v & (1 << bit_x)) >> bit_x));
}
void
port_reg_bit_field_display(portid_t port_id, uint32_t reg_off,
uint8_t bit1_pos, uint8_t bit2_pos)
{
uint32_t reg_v;
uint8_t l_bit;
uint8_t h_bit;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
if (reg_bit_pos_is_invalid(bit1_pos))
return;
if (reg_bit_pos_is_invalid(bit2_pos))
return;
if (bit1_pos > bit2_pos)
l_bit = bit2_pos, h_bit = bit1_pos;
else
l_bit = bit1_pos, h_bit = bit2_pos;
reg_v = port_id_pci_reg_read(port_id, reg_off);
reg_v >>= l_bit;
if (h_bit < 31)
reg_v &= ((1 << (h_bit - l_bit + 1)) - 1);
display_port_and_reg_off(port_id, (unsigned)reg_off);
printf("bits[%d, %d]=0x%0*X (%u)\n", l_bit, h_bit,
((h_bit - l_bit) / 4) + 1, (unsigned)reg_v, (unsigned)reg_v);
}
void
port_reg_display(portid_t port_id, uint32_t reg_off)
{
uint32_t reg_v;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
reg_v = port_id_pci_reg_read(port_id, reg_off);
display_port_reg_value(port_id, reg_off, reg_v);
}
void
port_reg_bit_set(portid_t port_id, uint32_t reg_off, uint8_t bit_pos,
uint8_t bit_v)
{
uint32_t reg_v;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
if (reg_bit_pos_is_invalid(bit_pos))
return;
if (bit_v > 1) {
printf("Invalid bit value %d (must be 0 or 1)\n", (int) bit_v);
return;
}
reg_v = port_id_pci_reg_read(port_id, reg_off);
if (bit_v == 0)
reg_v &= ~(1 << bit_pos);
else
reg_v |= (1 << bit_pos);
port_id_pci_reg_write(port_id, reg_off, reg_v);
display_port_reg_value(port_id, reg_off, reg_v);
}
void
port_reg_bit_field_set(portid_t port_id, uint32_t reg_off,
uint8_t bit1_pos, uint8_t bit2_pos, uint32_t value)
{
uint32_t max_v;
uint32_t reg_v;
uint8_t l_bit;
uint8_t h_bit;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
if (reg_bit_pos_is_invalid(bit1_pos))
return;
if (reg_bit_pos_is_invalid(bit2_pos))
return;
if (bit1_pos > bit2_pos)
l_bit = bit2_pos, h_bit = bit1_pos;
else
l_bit = bit1_pos, h_bit = bit2_pos;
if ((h_bit - l_bit) < 31)
max_v = (1 << (h_bit - l_bit + 1)) - 1;
else
max_v = 0xFFFFFFFF;
if (value > max_v) {
printf("Invalid value %u (0x%x) must be < %u (0x%x)\n",
(unsigned)value, (unsigned)value,
(unsigned)max_v, (unsigned)max_v);
return;
}
reg_v = port_id_pci_reg_read(port_id, reg_off);
reg_v &= ~(max_v << l_bit); /* Keep unchanged bits */
reg_v |= (value << l_bit); /* Set changed bits */
port_id_pci_reg_write(port_id, reg_off, reg_v);
display_port_reg_value(port_id, reg_off, reg_v);
}
void
port_reg_set(portid_t port_id, uint32_t reg_off, uint32_t reg_v)
{
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (port_reg_off_is_invalid(port_id, reg_off))
return;
port_id_pci_reg_write(port_id, reg_off, reg_v);
display_port_reg_value(port_id, reg_off, reg_v);
}
void
port_mtu_set(portid_t port_id, uint16_t mtu)
{
int diag;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
diag = rte_eth_dev_set_mtu(port_id, mtu);
if (diag == 0)
return;
printf("Set MTU failed. diag=%d\n", diag);
}
/* Generic flow management functions. */
/** Generate flow_item[] entry. */
#define MK_FLOW_ITEM(t, s) \
[RTE_FLOW_ITEM_TYPE_ ## t] = { \
.name = # t, \
.size = s, \
}
/** Information about known flow pattern items. */
static const struct {
const char *name;
size_t size;
} flow_item[] = {
MK_FLOW_ITEM(END, 0),
MK_FLOW_ITEM(VOID, 0),
MK_FLOW_ITEM(INVERT, 0),
MK_FLOW_ITEM(ANY, sizeof(struct rte_flow_item_any)),
MK_FLOW_ITEM(PF, 0),
MK_FLOW_ITEM(VF, sizeof(struct rte_flow_item_vf)),
MK_FLOW_ITEM(PHY_PORT, sizeof(struct rte_flow_item_phy_port)),
MK_FLOW_ITEM(PORT_ID, sizeof(struct rte_flow_item_port_id)),
MK_FLOW_ITEM(RAW, sizeof(struct rte_flow_item_raw)),
MK_FLOW_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
MK_FLOW_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
MK_FLOW_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
MK_FLOW_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
MK_FLOW_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
MK_FLOW_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
MK_FLOW_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
MK_FLOW_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
MK_FLOW_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
MK_FLOW_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
MK_FLOW_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
MK_FLOW_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
MK_FLOW_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
MK_FLOW_ITEM(FUZZY, sizeof(struct rte_flow_item_fuzzy)),
MK_FLOW_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
MK_FLOW_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
MK_FLOW_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
MK_FLOW_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
MK_FLOW_ITEM(VXLAN_GPE, sizeof(struct rte_flow_item_vxlan_gpe)),
MK_FLOW_ITEM(ARP_ETH_IPV4, sizeof(struct rte_flow_item_arp_eth_ipv4)),
MK_FLOW_ITEM(IPV6_EXT, sizeof(struct rte_flow_item_ipv6_ext)),
MK_FLOW_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
MK_FLOW_ITEM(ICMP6_ND_NS, sizeof(struct rte_flow_item_icmp6_nd_ns)),
MK_FLOW_ITEM(ICMP6_ND_NA, sizeof(struct rte_flow_item_icmp6_nd_na)),
MK_FLOW_ITEM(ICMP6_ND_OPT, sizeof(struct rte_flow_item_icmp6_nd_opt)),
MK_FLOW_ITEM(ICMP6_ND_OPT_SLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
MK_FLOW_ITEM(ICMP6_ND_OPT_TLA_ETH,
sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
};
/** Pattern item specification types. */
enum item_spec_type {
ITEM_SPEC,
ITEM_LAST,
ITEM_MASK,
};
/** Compute storage space needed by item specification and copy it. */
static size_t
flow_item_spec_copy(void *buf, const struct rte_flow_item *item,
enum item_spec_type type)
{
size_t size = 0;
const void *data =
type == ITEM_SPEC ? item->spec :
type == ITEM_LAST ? item->last :
type == ITEM_MASK ? item->mask :
NULL;
if (!item->spec || !data)
goto empty;
switch (item->type) {
union {
const struct rte_flow_item_raw *raw;
} spec;
union {
const struct rte_flow_item_raw *raw;
} last;
union {
const struct rte_flow_item_raw *raw;
} mask;
union {
const struct rte_flow_item_raw *raw;
} src;
union {
struct rte_flow_item_raw *raw;
} dst;
size_t off;
case RTE_FLOW_ITEM_TYPE_RAW:
spec.raw = item->spec;
last.raw = item->last ? item->last : item->spec;
mask.raw = item->mask ? item->mask : &rte_flow_item_raw_mask;
src.raw = data;
dst.raw = buf;
off = RTE_ALIGN_CEIL(sizeof(struct rte_flow_item_raw),
sizeof(*src.raw->pattern));
if (type == ITEM_SPEC ||
(type == ITEM_MASK &&
((spec.raw->length & mask.raw->length) >=
(last.raw->length & mask.raw->length))))
size = spec.raw->length & mask.raw->length;
else
size = last.raw->length & mask.raw->length;
size = off + size * sizeof(*src.raw->pattern);
if (dst.raw) {
memcpy(dst.raw, src.raw, sizeof(*src.raw));
dst.raw->pattern = memcpy((uint8_t *)dst.raw + off,
src.raw->pattern,
size - off);
}
break;
default:
size = flow_item[item->type].size;
if (buf)
memcpy(buf, data, size);
break;
}
empty:
return RTE_ALIGN_CEIL(size, sizeof(double));
}
/** Generate flow_action[] entry. */
#define MK_FLOW_ACTION(t, s) \
[RTE_FLOW_ACTION_TYPE_ ## t] = { \
.name = # t, \
.size = s, \
}
/** Information about known flow actions. */
static const struct {
const char *name;
size_t size;
} flow_action[] = {
MK_FLOW_ACTION(END, 0),
MK_FLOW_ACTION(VOID, 0),
MK_FLOW_ACTION(PASSTHRU, 0),
MK_FLOW_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
MK_FLOW_ACTION(FLAG, 0),
MK_FLOW_ACTION(QUEUE, sizeof(struct rte_flow_action_queue)),
MK_FLOW_ACTION(DROP, 0),
MK_FLOW_ACTION(COUNT, sizeof(struct rte_flow_action_count)),
MK_FLOW_ACTION(RSS, sizeof(struct rte_flow_action_rss)),
MK_FLOW_ACTION(PF, 0),
MK_FLOW_ACTION(VF, sizeof(struct rte_flow_action_vf)),
MK_FLOW_ACTION(PHY_PORT, sizeof(struct rte_flow_action_phy_port)),
MK_FLOW_ACTION(PORT_ID, sizeof(struct rte_flow_action_port_id)),
MK_FLOW_ACTION(METER, sizeof(struct rte_flow_action_meter)),
MK_FLOW_ACTION(OF_SET_MPLS_TTL,
sizeof(struct rte_flow_action_of_set_mpls_ttl)),
MK_FLOW_ACTION(OF_DEC_MPLS_TTL, 0),
MK_FLOW_ACTION(OF_SET_NW_TTL,
sizeof(struct rte_flow_action_of_set_nw_ttl)),
MK_FLOW_ACTION(OF_DEC_NW_TTL, 0),
MK_FLOW_ACTION(OF_COPY_TTL_OUT, 0),
MK_FLOW_ACTION(OF_COPY_TTL_IN, 0),
MK_FLOW_ACTION(OF_POP_VLAN, 0),
MK_FLOW_ACTION(OF_PUSH_VLAN,
sizeof(struct rte_flow_action_of_push_vlan)),
MK_FLOW_ACTION(OF_SET_VLAN_VID,
sizeof(struct rte_flow_action_of_set_vlan_vid)),
MK_FLOW_ACTION(OF_SET_VLAN_PCP,
sizeof(struct rte_flow_action_of_set_vlan_pcp)),
MK_FLOW_ACTION(OF_POP_MPLS,
sizeof(struct rte_flow_action_of_pop_mpls)),
MK_FLOW_ACTION(OF_PUSH_MPLS,
sizeof(struct rte_flow_action_of_push_mpls)),
};
/** Compute storage space needed by action configuration and copy it. */
static size_t
flow_action_conf_copy(void *buf, const struct rte_flow_action *action)
{
size_t size = 0;
if (!action->conf)
goto empty;
switch (action->type) {
union {
const struct rte_flow_action_rss *rss;
} src;
union {
struct rte_flow_action_rss *rss;
} dst;
size_t off;
case RTE_FLOW_ACTION_TYPE_RSS:
src.rss = action->conf;
dst.rss = buf;
off = 0;
if (dst.rss)
*dst.rss = (struct rte_flow_action_rss){
.func = src.rss->func,
.level = src.rss->level,
.types = src.rss->types,
.key_len = src.rss->key_len,
.queue_num = src.rss->queue_num,
};
off += sizeof(*src.rss);
if (src.rss->key_len) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
size = sizeof(*src.rss->key) * src.rss->key_len;
if (dst.rss)
dst.rss->key = memcpy
((void *)((uintptr_t)dst.rss + off),
src.rss->key, size);
off += size;
}
if (src.rss->queue_num) {
off = RTE_ALIGN_CEIL(off, sizeof(double));
size = sizeof(*src.rss->queue) * src.rss->queue_num;
if (dst.rss)
dst.rss->queue = memcpy
((void *)((uintptr_t)dst.rss + off),
src.rss->queue, size);
off += size;
}
size = off;
break;
default:
size = flow_action[action->type].size;
if (buf)
memcpy(buf, action->conf, size);
break;
}
empty:
return RTE_ALIGN_CEIL(size, sizeof(double));
}
/** Generate a port_flow entry from attributes/pattern/actions. */
static struct port_flow *
port_flow_new(const struct rte_flow_attr *attr,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions)
{
const struct rte_flow_item *item;
const struct rte_flow_action *action;
struct port_flow *pf = NULL;
size_t tmp;
size_t off1 = 0;
size_t off2 = 0;
int err = ENOTSUP;
store:
item = pattern;
if (pf)
pf->pattern = (void *)&pf->data[off1];
do {
struct rte_flow_item *dst = NULL;
if ((unsigned int)item->type >= RTE_DIM(flow_item) ||
!flow_item[item->type].name)
goto notsup;
if (pf)
dst = memcpy(pf->data + off1, item, sizeof(*item));
off1 += sizeof(*item);
if (item->spec) {
if (pf)
dst->spec = pf->data + off2;
off2 += flow_item_spec_copy
(pf ? pf->data + off2 : NULL, item, ITEM_SPEC);
}
if (item->last) {
if (pf)
dst->last = pf->data + off2;
off2 += flow_item_spec_copy
(pf ? pf->data + off2 : NULL, item, ITEM_LAST);
}
if (item->mask) {
if (pf)
dst->mask = pf->data + off2;
off2 += flow_item_spec_copy
(pf ? pf->data + off2 : NULL, item, ITEM_MASK);
}
off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
} while ((item++)->type != RTE_FLOW_ITEM_TYPE_END);
off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
action = actions;
if (pf)
pf->actions = (void *)&pf->data[off1];
do {
struct rte_flow_action *dst = NULL;
if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
!flow_action[action->type].name)
goto notsup;
if (pf)
dst = memcpy(pf->data + off1, action, sizeof(*action));
off1 += sizeof(*action);
if (action->conf) {
if (pf)
dst->conf = pf->data + off2;
off2 += flow_action_conf_copy
(pf ? pf->data + off2 : NULL, action);
}
off2 = RTE_ALIGN_CEIL(off2, sizeof(double));
} while ((action++)->type != RTE_FLOW_ACTION_TYPE_END);
if (pf != NULL)
return pf;
off1 = RTE_ALIGN_CEIL(off1, sizeof(double));
tmp = RTE_ALIGN_CEIL(offsetof(struct port_flow, data), sizeof(double));
pf = calloc(1, tmp + off1 + off2);
if (pf == NULL)
err = errno;
else {
*pf = (const struct port_flow){
.size = tmp + off1 + off2,
.attr = *attr,
};
tmp -= offsetof(struct port_flow, data);
off2 = tmp + off1;
off1 = tmp;
goto store;
}
notsup:
rte_errno = err;
return NULL;
}
/** Print a message out of a flow error. */
static int
port_flow_complain(struct rte_flow_error *error)
{
static const char *const errstrlist[] = {
[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
};
const char *errstr;
char buf[32];
int err = rte_errno;
if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
!errstrlist[error->type])
errstr = "unknown type";
else
errstr = errstrlist[error->type];
printf("Caught error type %d (%s): %s%s: %s\n",
error->type, errstr,
error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
error->cause), buf) : "",
error->message ? error->message : "(no stated reason)",
rte_strerror(err));
return -err;
}
/** Validate flow rule. */
int
port_flow_validate(portid_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions)
{
struct rte_flow_error error;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x11, sizeof(error));
if (rte_flow_validate(port_id, attr, pattern, actions, &error))
return port_flow_complain(&error);
printf("Flow rule validated\n");
return 0;
}
/** Create flow rule. */
int
port_flow_create(portid_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions)
{
struct rte_flow *flow;
struct rte_port *port;
struct port_flow *pf;
uint32_t id;
struct rte_flow_error error;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x22, sizeof(error));
flow = rte_flow_create(port_id, attr, pattern, actions, &error);
if (!flow)
return port_flow_complain(&error);
port = &ports[port_id];
if (port->flow_list) {
if (port->flow_list->id == UINT32_MAX) {
printf("Highest rule ID is already assigned, delete"
" it first");
rte_flow_destroy(port_id, flow, NULL);
return -ENOMEM;
}
id = port->flow_list->id + 1;
} else
id = 0;
pf = port_flow_new(attr, pattern, actions);
if (!pf) {
int err = rte_errno;
printf("Cannot allocate flow: %s\n", rte_strerror(err));
rte_flow_destroy(port_id, flow, NULL);
return -err;
}
pf->next = port->flow_list;
pf->id = id;
pf->flow = flow;
port->flow_list = pf;
printf("Flow rule #%u created\n", pf->id);
return 0;
}
/** Destroy a number of flow rules. */
int
port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
{
struct rte_port *port;
struct port_flow **tmp;
uint32_t c = 0;
int ret = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
tmp = &port->flow_list;
while (*tmp) {
uint32_t i;
for (i = 0; i != n; ++i) {
struct rte_flow_error error;
struct port_flow *pf = *tmp;
if (rule[i] != pf->id)
continue;
/*
* Poisoning to make sure PMDs update it in case
* of error.
*/
memset(&error, 0x33, sizeof(error));
if (rte_flow_destroy(port_id, pf->flow, &error)) {
ret = port_flow_complain(&error);
continue;
}
printf("Flow rule #%u destroyed\n", pf->id);
*tmp = pf->next;
free(pf);
break;
}
if (i == n)
tmp = &(*tmp)->next;
++c;
}
return ret;
}
/** Remove all flow rules. */
int
port_flow_flush(portid_t port_id)
{
struct rte_flow_error error;
struct rte_port *port;
int ret = 0;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x44, sizeof(error));
if (rte_flow_flush(port_id, &error)) {
ret = port_flow_complain(&error);
if (port_id_is_invalid(port_id, DISABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return ret;
}
port = &ports[port_id];
while (port->flow_list) {
struct port_flow *pf = port->flow_list->next;
free(port->flow_list);
port->flow_list = pf;
}
return ret;
}
/** Query a flow rule. */
int
port_flow_query(portid_t port_id, uint32_t rule,
const struct rte_flow_action *action)
{
struct rte_flow_error error;
struct rte_port *port;
struct port_flow *pf;
const char *name;
union {
struct rte_flow_query_count count;
} query;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
for (pf = port->flow_list; pf; pf = pf->next)
if (pf->id == rule)
break;
if (!pf) {
printf("Flow rule #%u not found\n", rule);
return -ENOENT;
}
if ((unsigned int)action->type >= RTE_DIM(flow_action) ||
!flow_action[action->type].name)
name = "unknown";
else
name = flow_action[action->type].name;
switch (action->type) {
case RTE_FLOW_ACTION_TYPE_COUNT:
break;
default:
printf("Cannot query action type %d (%s)\n",
action->type, name);
return -ENOTSUP;
}
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x55, sizeof(error));
memset(&query, 0, sizeof(query));
if (rte_flow_query(port_id, pf->flow, action, &query, &error))
return port_flow_complain(&error);
switch (action->type) {
case RTE_FLOW_ACTION_TYPE_COUNT:
printf("%s:\n"
" hits_set: %u\n"
" bytes_set: %u\n"
" hits: %" PRIu64 "\n"
" bytes: %" PRIu64 "\n",
name,
query.count.hits_set,
query.count.bytes_set,
query.count.hits,
query.count.bytes);
break;
default:
printf("Cannot display result for action type %d (%s)\n",
action->type, name);
break;
}
return 0;
}
/** List flow rules. */
void
port_flow_list(portid_t port_id, uint32_t n, const uint32_t group[n])
{
struct rte_port *port;
struct port_flow *pf;
struct port_flow *list = NULL;
uint32_t i;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return;
port = &ports[port_id];
if (!port->flow_list)
return;
/* Sort flows by group, priority and ID. */
for (pf = port->flow_list; pf != NULL; pf = pf->next) {
struct port_flow **tmp;
if (n) {
/* Filter out unwanted groups. */
for (i = 0; i != n; ++i)
if (pf->attr.group == group[i])
break;
if (i == n)
continue;
}
tmp = &list;
while (*tmp &&
(pf->attr.group > (*tmp)->attr.group ||
(pf->attr.group == (*tmp)->attr.group &&
pf->attr.priority > (*tmp)->attr.priority) ||
(pf->attr.group == (*tmp)->attr.group &&
pf->attr.priority == (*tmp)->attr.priority &&
pf->id > (*tmp)->id)))
tmp = &(*tmp)->tmp;
pf->tmp = *tmp;
*tmp = pf;
}
printf("ID\tGroup\tPrio\tAttr\tRule\n");
for (pf = list; pf != NULL; pf = pf->tmp) {
const struct rte_flow_item *item = pf->pattern;
const struct rte_flow_action *action = pf->actions;
printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
pf->id,
pf->attr.group,
pf->attr.priority,
pf->attr.ingress ? 'i' : '-',
pf->attr.egress ? 'e' : '-',
pf->attr.transfer ? 't' : '-');
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
printf("%s ", flow_item[item->type].name);
++item;
}
printf("=>");
while (action->type != RTE_FLOW_ACTION_TYPE_END) {
if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
printf(" %s", flow_action[action->type].name);
++action;
}
printf("\n");
}
}
/** Restrict ingress traffic to the defined flow rules. */
int
port_flow_isolate(portid_t port_id, int set)
{
struct rte_flow_error error;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x66, sizeof(error));
if (rte_flow_isolate(port_id, set, &error))
return port_flow_complain(&error);
printf("Ingress traffic on port %u is %s to the defined flow rules\n",
port_id,
set ? "now restricted" : "not restricted anymore");
return 0;
}
/*
* RX/TX ring descriptors display functions.
*/
int
rx_queue_id_is_invalid(queueid_t rxq_id)
{
if (rxq_id < nb_rxq)
return 0;
printf("Invalid RX queue %d (must be < nb_rxq=%d)\n", rxq_id, nb_rxq);
return 1;
}
int
tx_queue_id_is_invalid(queueid_t txq_id)
{
if (txq_id < nb_txq)
return 0;
printf("Invalid TX queue %d (must be < nb_rxq=%d)\n", txq_id, nb_txq);
return 1;
}
static int
rx_desc_id_is_invalid(uint16_t rxdesc_id)
{
if (rxdesc_id < nb_rxd)
return 0;
printf("Invalid RX descriptor %d (must be < nb_rxd=%d)\n",
rxdesc_id, nb_rxd);
return 1;
}
static int
tx_desc_id_is_invalid(uint16_t txdesc_id)
{
if (txdesc_id < nb_txd)
return 0;
printf("Invalid TX descriptor %d (must be < nb_txd=%d)\n",
txdesc_id, nb_txd);
return 1;
}
static const struct rte_memzone *
ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
snprintf(mz_name, sizeof(mz_name), "%s_%s_%d_%d",
ports[port_id].dev_info.driver_name, ring_name, port_id, q_id);
mz = rte_memzone_lookup(mz_name);
if (mz == NULL)
printf("%s ring memory zoneof (port %d, queue %d) not"
"found (zone name = %s\n",
ring_name, port_id, q_id, mz_name);
return mz;
}
union igb_ring_dword {
uint64_t dword;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint32_t lo;
uint32_t hi;
#else
uint32_t hi;
uint32_t lo;
#endif
} words;
};
struct igb_ring_desc_32_bytes {
union igb_ring_dword lo_dword;
union igb_ring_dword hi_dword;
union igb_ring_dword resv1;
union igb_ring_dword resv2;
};
struct igb_ring_desc_16_bytes {
union igb_ring_dword lo_dword;
union igb_ring_dword hi_dword;
};
static void
ring_rxd_display_dword(union igb_ring_dword dword)
{
printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
(unsigned)dword.words.hi);
}
static void
ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
portid_t port_id,
#else
__rte_unused portid_t port_id,
#endif
uint16_t desc_id)
{
struct igb_ring_desc_16_bytes *ring =
(struct igb_ring_desc_16_bytes *)ring_mz->addr;
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
struct rte_eth_dev_info dev_info;
memset(&dev_info, 0, sizeof(dev_info));
rte_eth_dev_info_get(port_id, &dev_info);
if (strstr(dev_info.driver_name, "i40e") != NULL) {
/* 32 bytes RX descriptor, i40e only */
struct igb_ring_desc_32_bytes *ring =
(struct igb_ring_desc_32_bytes *)ring_mz->addr;
ring[desc_id].lo_dword.dword =
rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
ring_rxd_display_dword(ring[desc_id].lo_dword);
ring[desc_id].hi_dword.dword =
rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
ring_rxd_display_dword(ring[desc_id].hi_dword);
ring[desc_id].resv1.dword =
rte_le_to_cpu_64(ring[desc_id].resv1.dword);
ring_rxd_display_dword(ring[desc_id].resv1);
ring[desc_id].resv2.dword =
rte_le_to_cpu_64(ring[desc_id].resv2.dword);
ring_rxd_display_dword(ring[desc_id].resv2);
return;
}
#endif
/* 16 bytes RX descriptor */
ring[desc_id].lo_dword.dword =
rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
ring_rxd_display_dword(ring[desc_id].lo_dword);
ring[desc_id].hi_dword.dword =
rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
ring_rxd_display_dword(ring[desc_id].hi_dword);
}
static void
ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
{
struct igb_ring_desc_16_bytes *ring;
struct igb_ring_desc_16_bytes txd;
ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
(unsigned)txd.lo_dword.words.lo,
(unsigned)txd.lo_dword.words.hi,
(unsigned)txd.hi_dword.words.lo,
(unsigned)txd.hi_dword.words.hi);
}
void
rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
{
const struct rte_memzone *rx_mz;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (rx_queue_id_is_invalid(rxq_id))
return;
if (rx_desc_id_is_invalid(rxd_id))
return;
rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
if (rx_mz == NULL)
return;
ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
}
void
tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
{
const struct rte_memzone *tx_mz;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (tx_queue_id_is_invalid(txq_id))
return;
if (tx_desc_id_is_invalid(txd_id))
return;
tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
if (tx_mz == NULL)
return;
ring_tx_descriptor_display(tx_mz, txd_id);
}
void
fwd_lcores_config_display(void)
{
lcoreid_t lc_id;
printf("List of forwarding lcores:");
for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
printf(" %2u", fwd_lcores_cpuids[lc_id]);
printf("\n");
}
void
rxtx_config_display(void)
{
portid_t pid;
queueid_t qid;
printf(" %s packet forwarding%s packets/burst=%d\n",
cur_fwd_eng->fwd_mode_name,
retry_enabled == 0 ? "" : " with retry",
nb_pkt_per_burst);
if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
printf(" packet len=%u - nb packet segments=%d\n",
(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
printf(" nb forwarding cores=%d - nb forwarding ports=%d\n",
nb_fwd_lcores, nb_fwd_ports);
RTE_ETH_FOREACH_DEV(pid) {
struct rte_eth_rxconf *rx_conf = &ports[pid].rx_conf[0];
struct rte_eth_txconf *tx_conf = &ports[pid].tx_conf[0];
uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
uint16_t nb_rx_desc_tmp;
uint16_t nb_tx_desc_tmp;
struct rte_eth_rxq_info rx_qinfo;
struct rte_eth_txq_info tx_qinfo;
int32_t rc;
/* per port config */
printf(" port %d: RX queue number: %d Tx queue number: %d\n",
(unsigned int)pid, nb_rxq, nb_txq);
printf(" Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
ports[pid].dev_conf.rxmode.offloads,
ports[pid].dev_conf.txmode.offloads);
/* per rx queue config only for first queue to be less verbose */
for (qid = 0; qid < 1; qid++) {
rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
if (rc)
nb_rx_desc_tmp = nb_rx_desc[qid];
else
nb_rx_desc_tmp = rx_qinfo.nb_desc;
printf(" RX queue: %d\n", qid);
printf(" RX desc=%d - RX free threshold=%d\n",
nb_rx_desc_tmp, rx_conf[qid].rx_free_thresh);
printf(" RX threshold registers: pthresh=%d hthresh=%d "
" wthresh=%d\n",
rx_conf[qid].rx_thresh.pthresh,
rx_conf[qid].rx_thresh.hthresh,
rx_conf[qid].rx_thresh.wthresh);
printf(" RX Offloads=0x%"PRIx64"\n",
rx_conf[qid].offloads);
}
/* per tx queue config only for first queue to be less verbose */
for (qid = 0; qid < 1; qid++) {
rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
if (rc)
nb_tx_desc_tmp = nb_tx_desc[qid];
else
nb_tx_desc_tmp = tx_qinfo.nb_desc;
printf(" TX queue: %d\n", qid);
printf(" TX desc=%d - TX free threshold=%d\n",
nb_tx_desc_tmp, tx_conf[qid].tx_free_thresh);
printf(" TX threshold registers: pthresh=%d hthresh=%d "
" wthresh=%d\n",
tx_conf[qid].tx_thresh.pthresh,
tx_conf[qid].tx_thresh.hthresh,
tx_conf[qid].tx_thresh.wthresh);
printf(" TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
tx_conf[qid].offloads, tx_conf->tx_rs_thresh);
}
}
}
void
port_rss_reta_info(portid_t port_id,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t nb_entries)
{
uint16_t i, idx, shift;
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
if (ret != 0) {
printf("Failed to get RSS RETA info, return code = %d\n", ret);
return;
}
for (i = 0; i < nb_entries; i++) {
idx = i / RTE_RETA_GROUP_SIZE;
shift = i % RTE_RETA_GROUP_SIZE;
if (!(reta_conf[idx].mask & (1ULL << shift)))
continue;
printf("RSS RETA configuration: hash index=%u, queue=%u\n",
i, reta_conf[idx].reta[shift]);
}
}
/*
* Displays the RSS hash functions of a port, and, optionaly, the RSS hash
* key of the port.
*/
void
port_rss_hash_conf_show(portid_t port_id, char rss_info[], int show_rss_key)
{
struct rte_eth_rss_conf rss_conf;
uint8_t rss_key[RSS_HASH_KEY_LENGTH];
uint64_t rss_hf;
uint8_t i;
int diag;
struct rte_eth_dev_info dev_info;
uint8_t hash_key_size;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
memset(&dev_info, 0, sizeof(dev_info));
rte_eth_dev_info_get(port_id, &dev_info);
if (dev_info.hash_key_size > 0 &&
dev_info.hash_key_size <= sizeof(rss_key))
hash_key_size = dev_info.hash_key_size;
else {
printf("dev_info did not provide a valid hash key size\n");
return;
}
rss_conf.rss_hf = 0;
for (i = 0; rss_type_table[i].str; i++) {
if (!strcmp(rss_info, rss_type_table[i].str))
rss_conf.rss_hf = rss_type_table[i].rss_type;
}
/* Get RSS hash key if asked to display it */
rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
rss_conf.rss_key_len = hash_key_size;
diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
if (diag != 0) {
switch (diag) {
case -ENODEV:
printf("port index %d invalid\n", port_id);
break;
case -ENOTSUP:
printf("operation not supported by device\n");
break;
default:
printf("operation failed - diag=%d\n", diag);
break;
}
return;
}
rss_hf = rss_conf.rss_hf;
if (rss_hf == 0) {
printf("RSS disabled\n");
return;
}
printf("RSS functions:\n ");
for (i = 0; rss_type_table[i].str; i++) {
if (rss_hf & rss_type_table[i].rss_type)
printf("%s ", rss_type_table[i].str);
}
printf("\n");
if (!show_rss_key)
return;
printf("RSS key:\n");
for (i = 0; i < hash_key_size; i++)
printf("%02X", rss_key[i]);
printf("\n");
}
void
port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
uint hash_key_len)
{
struct rte_eth_rss_conf rss_conf;
int diag;
unsigned int i;
rss_conf.rss_key = NULL;
rss_conf.rss_key_len = hash_key_len;
rss_conf.rss_hf = 0;
for (i = 0; rss_type_table[i].str; i++) {
if (!strcmp(rss_type_table[i].str, rss_type))
rss_conf.rss_hf = rss_type_table[i].rss_type;
}
diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
if (diag == 0) {
rss_conf.rss_key = hash_key;
diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
}
if (diag == 0)
return;
switch (diag) {
case -ENODEV:
printf("port index %d invalid\n", port_id);
break;
case -ENOTSUP:
printf("operation not supported by device\n");
break;
default:
printf("operation failed - diag=%d\n", diag);
break;
}
}
/*
* Setup forwarding configuration for each logical core.
*/
static void
setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
{
streamid_t nb_fs_per_lcore;
streamid_t nb_fs;
streamid_t sm_id;
lcoreid_t nb_extra;
lcoreid_t nb_fc;
lcoreid_t nb_lc;
lcoreid_t lc_id;
nb_fs = cfg->nb_fwd_streams;
nb_fc = cfg->nb_fwd_lcores;
if (nb_fs <= nb_fc) {
nb_fs_per_lcore = 1;
nb_extra = 0;
} else {
nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
nb_extra = (lcoreid_t) (nb_fs % nb_fc);
}
nb_lc = (lcoreid_t) (nb_fc - nb_extra);
sm_id = 0;
for (lc_id = 0; lc_id < nb_lc; lc_id++) {
fwd_lcores[lc_id]->stream_idx = sm_id;
fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
}
/*
* Assign extra remaining streams, if any.
*/
nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
for (lc_id = 0; lc_id < nb_extra; lc_id++) {
fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
}
}
static portid_t
fwd_topology_tx_port_get(portid_t rxp)
{
static int warning_once = 1;
RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
switch (port_topology) {
default:
case PORT_TOPOLOGY_PAIRED:
if ((rxp & 0x1) == 0) {
if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
return rxp + 1;
if (warning_once) {
printf("\nWarning! port-topology=paired"
" and odd forward ports number,"
" the last port will pair with"
" itself.\n\n");
warning_once = 0;
}
return rxp;
}
return rxp - 1;
case PORT_TOPOLOGY_CHAINED:
return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
case PORT_TOPOLOGY_LOOP:
return rxp;
}
}
static void
simple_fwd_config_setup(void)
{
portid_t i;
cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) cur_fwd_config.nb_fwd_ports;
/* reinitialize forwarding streams */
init_fwd_streams();
/*
* In the simple forwarding test, the number of forwarding cores
* must be lower or equal to the number of forwarding ports.
*/
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
cur_fwd_config.nb_fwd_lcores =
(lcoreid_t) cur_fwd_config.nb_fwd_ports;
setup_fwd_config_of_each_lcore(&cur_fwd_config);
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
fwd_streams[i]->rx_port = fwd_ports_ids[i];
fwd_streams[i]->rx_queue = 0;
fwd_streams[i]->tx_port =
fwd_ports_ids[fwd_topology_tx_port_get(i)];
fwd_streams[i]->tx_queue = 0;
fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
fwd_streams[i]->retry_enabled = retry_enabled;
}
}
/**
* For the RSS forwarding test all streams distributed over lcores. Each stream
* being composed of a RX queue to poll on a RX port for input messages,
* associated with a TX queue of a TX port where to send forwarded packets.
*/
static void
rss_fwd_config_setup(void)
{
portid_t rxp;
portid_t txp;
queueid_t rxq;
queueid_t nb_q;
streamid_t sm_id;
nb_q = nb_rxq;
if (nb_q > nb_txq)
nb_q = nb_txq;
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
cur_fwd_config.nb_fwd_lcores =
(lcoreid_t)cur_fwd_config.nb_fwd_streams;
/* reinitialize forwarding streams */
init_fwd_streams();
setup_fwd_config_of_each_lcore(&cur_fwd_config);
rxp = 0; rxq = 0;
for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
struct fwd_stream *fs;
fs = fwd_streams[sm_id];
txp = fwd_topology_tx_port_get(rxp);
fs->rx_port = fwd_ports_ids[rxp];
fs->rx_queue = rxq;
fs->tx_port = fwd_ports_ids[txp];
fs->tx_queue = rxq;
fs->peer_addr = fs->tx_port;
fs->retry_enabled = retry_enabled;
rxp++;
if (rxp < nb_fwd_ports)
continue;
rxp = 0;
rxq++;
}
}
/**
* For the DCB forwarding test, each core is assigned on each traffic class.
*
* Each core is assigned a multi-stream, each stream being composed of
* a RX queue to poll on a RX port for input messages, associated with
* a TX queue of a TX port where to send forwarded packets. All RX and
* TX queues are mapping to the same traffic class.
* If VMDQ and DCB co-exist, each traffic class on different POOLs share
* the same core
*/
static void
dcb_fwd_config_setup(void)
{
struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
portid_t txp, rxp = 0;
queueid_t txq, rxq = 0;
lcoreid_t lc_id;
uint16_t nb_rx_queue, nb_tx_queue;
uint16_t i, j, k, sm_id = 0;
uint8_t tc = 0;
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
/* reinitialize forwarding streams */
init_fwd_streams();
sm_id = 0;
txp = 1;
/* get the dcb info on the first RX and TX ports */
(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
fwd_lcores[lc_id]->stream_nb = 0;
fwd_lcores[lc_id]->stream_idx = sm_id;
for (i = 0; i < ETH_MAX_VMDQ_POOL; i++) {
/* if the nb_queue is zero, means this tc is
* not enabled on the POOL
*/
if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
break;
k = fwd_lcores[lc_id]->stream_nb +
fwd_lcores[lc_id]->stream_idx;
rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
for (j = 0; j < nb_rx_queue; j++) {
struct fwd_stream *fs;
fs = fwd_streams[k + j];
fs->rx_port = fwd_ports_ids[rxp];
fs->rx_queue = rxq + j;
fs->tx_port = fwd_ports_ids[txp];
fs->tx_queue = txq + j % nb_tx_queue;
fs->peer_addr = fs->tx_port;
fs->retry_enabled = retry_enabled;
}
fwd_lcores[lc_id]->stream_nb +=
rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
}
sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
tc++;
if (tc < rxp_dcb_info.nb_tcs)
continue;
/* Restart from TC 0 on next RX port */
tc = 0;
if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
rxp = (portid_t)
(rxp + ((nb_ports >> 1) / nb_fwd_ports));
else
rxp++;
if (rxp >= nb_fwd_ports)
return;
/* get the dcb information on next RX and TX ports */
if ((rxp & 0x1) == 0)
txp = (portid_t) (rxp + 1);
else
txp = (portid_t) (rxp - 1);
rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
}
}
static void
icmp_echo_config_setup(void)
{
portid_t rxp;
queueid_t rxq;
lcoreid_t lc_id;
uint16_t sm_id;
if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
(nb_txq * nb_fwd_ports);
else
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
cur_fwd_config.nb_fwd_lcores =
(lcoreid_t)cur_fwd_config.nb_fwd_streams;
if (verbose_level > 0) {
printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
__FUNCTION__,
cur_fwd_config.nb_fwd_lcores,
cur_fwd_config.nb_fwd_ports,
cur_fwd_config.nb_fwd_streams);
}
/* reinitialize forwarding streams */
init_fwd_streams();
setup_fwd_config_of_each_lcore(&cur_fwd_config);
rxp = 0; rxq = 0;
for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
if (verbose_level > 0)
printf(" core=%d: \n", lc_id);
for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
struct fwd_stream *fs;
fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
fs->rx_port = fwd_ports_ids[rxp];
fs->rx_queue = rxq;
fs->tx_port = fs->rx_port;
fs->tx_queue = rxq;
fs->peer_addr = fs->tx_port;
fs->retry_enabled = retry_enabled;
if (verbose_level > 0)
printf(" stream=%d port=%d rxq=%d txq=%d\n",
sm_id, fs->rx_port, fs->rx_queue,
fs->tx_queue);
rxq = (queueid_t) (rxq + 1);
if (rxq == nb_rxq) {
rxq = 0;
rxp = (portid_t) (rxp + 1);
}
}
}
}
#if defined RTE_LIBRTE_PMD_SOFTNIC
static void
softnic_fwd_config_setup(void)
{
struct rte_port *port;
portid_t pid, softnic_portid;
queueid_t i;
uint8_t softnic_enable = 0;
RTE_ETH_FOREACH_DEV(pid) {
port = &ports[pid];
const char *driver = port->dev_info.driver_name;
if (strcmp(driver, "net_softnic") == 0) {
softnic_portid = pid;
softnic_enable = 1;
break;
}
}
if (softnic_enable == 0) {
printf("Softnic mode not configured(%s)!\n", __func__);
return;
}
cur_fwd_config.nb_fwd_ports = 1;
cur_fwd_config.nb_fwd_streams = (streamid_t) nb_rxq;
/* Re-initialize forwarding streams */
init_fwd_streams();
/*
* In the softnic forwarding test, the number of forwarding cores
* is set to one and remaining are used for softnic packet processing.
*/
cur_fwd_config.nb_fwd_lcores = 1;
setup_fwd_config_of_each_lcore(&cur_fwd_config);
for (i = 0; i < cur_fwd_config.nb_fwd_streams; i++) {
fwd_streams[i]->rx_port = softnic_portid;
fwd_streams[i]->rx_queue = i;
fwd_streams[i]->tx_port = softnic_portid;
fwd_streams[i]->tx_queue = i;
fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
fwd_streams[i]->retry_enabled = retry_enabled;
}
}
#endif
void
fwd_config_setup(void)
{
cur_fwd_config.fwd_eng = cur_fwd_eng;
if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
icmp_echo_config_setup();
return;
}
#if defined RTE_LIBRTE_PMD_SOFTNIC
if (strcmp(cur_fwd_eng->fwd_mode_name, "softnic") == 0) {
softnic_fwd_config_setup();
return;
}
#endif
if ((nb_rxq > 1) && (nb_txq > 1)){
if (dcb_config)
dcb_fwd_config_setup();
else
rss_fwd_config_setup();
}
else
simple_fwd_config_setup();
}
void
pkt_fwd_config_display(struct fwd_config *cfg)
{
struct fwd_stream *fs;
lcoreid_t lc_id;
streamid_t sm_id;
printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
"NUMA support %s, MP over anonymous pages %s\n",
cfg->fwd_eng->fwd_mode_name,
retry_enabled == 0 ? "" : " with retry",
cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
numa_support == 1 ? "enabled" : "disabled",
mp_anon != 0 ? "enabled" : "disabled");
if (retry_enabled)
printf("TX retry num: %u, delay between TX retries: %uus\n",
burst_tx_retry_num, burst_tx_delay_time);
for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
printf("Logical Core %u (socket %u) forwards packets on "
"%d streams:",
fwd_lcores_cpuids[lc_id],
rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
fwd_lcores[lc_id]->stream_nb);
for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
printf("\n RX P=%d/Q=%d (socket %u) -> TX "
"P=%d/Q=%d (socket %u) ",
fs->rx_port, fs->rx_queue,
ports[fs->rx_port].socket_id,
fs->tx_port, fs->tx_queue,
ports[fs->tx_port].socket_id);
print_ethaddr("peer=",
&peer_eth_addrs[fs->peer_addr]);
}
printf("\n");
}
printf("\n");
}
void
set_fwd_eth_peer(portid_t port_id, char *peer_addr)
{
uint8_t c, new_peer_addr[6];
if (!rte_eth_dev_is_valid_port(port_id)) {
printf("Error: Invalid port number %i\n", port_id);
return;
}
if (cmdline_parse_etheraddr(NULL, peer_addr, &new_peer_addr,
sizeof(new_peer_addr)) < 0) {
printf("Error: Invalid ethernet address: %s\n", peer_addr);
return;
}
for (c = 0; c < 6; c++)
peer_eth_addrs[port_id].addr_bytes[c] =
new_peer_addr[c];
}
int
set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
{
unsigned int i;
unsigned int lcore_cpuid;
int record_now;
record_now = 0;
again:
for (i = 0; i < nb_lc; i++) {
lcore_cpuid = lcorelist[i];
if (! rte_lcore_is_enabled(lcore_cpuid)) {
printf("lcore %u not enabled\n", lcore_cpuid);
return -1;
}
if (lcore_cpuid == rte_get_master_lcore()) {
printf("lcore %u cannot be masked on for running "
"packet forwarding, which is the master lcore "
"and reserved for command line parsing only\n",
lcore_cpuid);
return -1;
}
if (record_now)
fwd_lcores_cpuids[i] = lcore_cpuid;
}
if (record_now == 0) {
record_now = 1;
goto again;
}
nb_cfg_lcores = (lcoreid_t) nb_lc;
if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
printf("previous number of forwarding cores %u - changed to "
"number of configured cores %u\n",
(unsigned int) nb_fwd_lcores, nb_lc);
nb_fwd_lcores = (lcoreid_t) nb_lc;
}
return 0;
}
int
set_fwd_lcores_mask(uint64_t lcoremask)
{
unsigned int lcorelist[64];
unsigned int nb_lc;
unsigned int i;
if (lcoremask == 0) {
printf("Invalid NULL mask of cores\n");
return -1;
}
nb_lc = 0;
for (i = 0; i < 64; i++) {
if (! ((uint64_t)(1ULL << i) & lcoremask))
continue;
lcorelist[nb_lc++] = i;
}
return set_fwd_lcores_list(lcorelist, nb_lc);
}
void
set_fwd_lcores_number(uint16_t nb_lc)
{
if (nb_lc > nb_cfg_lcores) {
printf("nb fwd cores %u > %u (max. number of configured "
"lcores) - ignored\n",
(unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
return;
}
nb_fwd_lcores = (lcoreid_t) nb_lc;
printf("Number of forwarding cores set to %u\n",
(unsigned int) nb_fwd_lcores);
}
void
set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
{
unsigned int i;
portid_t port_id;
int record_now;
record_now = 0;
again:
for (i = 0; i < nb_pt; i++) {
port_id = (portid_t) portlist[i];
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (record_now)
fwd_ports_ids[i] = port_id;
}
if (record_now == 0) {
record_now = 1;
goto again;
}
nb_cfg_ports = (portid_t) nb_pt;
if (nb_fwd_ports != (portid_t) nb_pt) {
printf("previous number of forwarding ports %u - changed to "
"number of configured ports %u\n",
(unsigned int) nb_fwd_ports, nb_pt);
nb_fwd_ports = (portid_t) nb_pt;
}
}
void
set_fwd_ports_mask(uint64_t portmask)
{
unsigned int portlist[64];
unsigned int nb_pt;
unsigned int i;
if (portmask == 0) {
printf("Invalid NULL mask of ports\n");
return;
}
nb_pt = 0;
RTE_ETH_FOREACH_DEV(i) {
if (! ((uint64_t)(1ULL << i) & portmask))
continue;
portlist[nb_pt++] = i;
}
set_fwd_ports_list(portlist, nb_pt);
}
void
set_fwd_ports_number(uint16_t nb_pt)
{
if (nb_pt > nb_cfg_ports) {
printf("nb fwd ports %u > %u (number of configured "
"ports) - ignored\n",
(unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
return;
}
nb_fwd_ports = (portid_t) nb_pt;
printf("Number of forwarding ports set to %u\n",
(unsigned int) nb_fwd_ports);
}
int
port_is_forwarding(portid_t port_id)
{
unsigned int i;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return -1;
for (i = 0; i < nb_fwd_ports; i++) {
if (fwd_ports_ids[i] == port_id)
return 1;
}
return 0;
}
void
set_nb_pkt_per_burst(uint16_t nb)
{
if (nb > MAX_PKT_BURST) {
printf("nb pkt per burst: %u > %u (maximum packet per burst) "
" ignored\n",
(unsigned int) nb, (unsigned int) MAX_PKT_BURST);
return;
}
nb_pkt_per_burst = nb;
printf("Number of packets per burst set to %u\n",
(unsigned int) nb_pkt_per_burst);
}
static const char *
tx_split_get_name(enum tx_pkt_split split)
{
uint32_t i;
for (i = 0; i != RTE_DIM(tx_split_name); i++) {
if (tx_split_name[i].split == split)
return tx_split_name[i].name;
}
return NULL;
}
void
set_tx_pkt_split(const char *name)
{
uint32_t i;
for (i = 0; i != RTE_DIM(tx_split_name); i++) {
if (strcmp(tx_split_name[i].name, name) == 0) {
tx_pkt_split = tx_split_name[i].split;
return;
}
}
printf("unknown value: \"%s\"\n", name);
}
void
show_tx_pkt_segments(void)
{
uint32_t i, n;
const char *split;
n = tx_pkt_nb_segs;
split = tx_split_get_name(tx_pkt_split);
printf("Number of segments: %u\n", n);
printf("Segment sizes: ");
for (i = 0; i != n - 1; i++)
printf("%hu,", tx_pkt_seg_lengths[i]);
printf("%hu\n", tx_pkt_seg_lengths[i]);
printf("Split packet: %s\n", split);
}
void
set_tx_pkt_segments(unsigned *seg_lengths, unsigned nb_segs)
{
uint16_t tx_pkt_len;
unsigned i;
if (nb_segs >= (unsigned) nb_txd) {
printf("nb segments per TX packets=%u >= nb_txd=%u - ignored\n",
nb_segs, (unsigned int) nb_txd);
return;
}
/*
* Check that each segment length is greater or equal than
* the mbuf data sise.
* Check also that the total packet length is greater or equal than the
* size of an empty UDP/IP packet (sizeof(struct ether_hdr) + 20 + 8).
*/
tx_pkt_len = 0;
for (i = 0; i < nb_segs; i++) {
if (seg_lengths[i] > (unsigned) mbuf_data_size) {
printf("length[%u]=%u > mbuf_data_size=%u - give up\n",
i, seg_lengths[i], (unsigned) mbuf_data_size);
return;
}
tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
}
if (tx_pkt_len < (sizeof(struct ether_hdr) + 20 + 8)) {
printf("total packet length=%u < %d - give up\n",
(unsigned) tx_pkt_len,
(int)(sizeof(struct ether_hdr) + 20 + 8));
return;
}
for (i = 0; i < nb_segs; i++)
tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
tx_pkt_length = tx_pkt_len;
tx_pkt_nb_segs = (uint8_t) nb_segs;
}
void
setup_gro(const char *onoff, portid_t port_id)
{
if (!rte_eth_dev_is_valid_port(port_id)) {
printf("invalid port id %u\n", port_id);
return;
}
if (test_done == 0) {
printf("Before enable/disable GRO,"
" please stop forwarding first\n");
return;
}
if (strcmp(onoff, "on") == 0) {
if (gro_ports[port_id].enable != 0) {
printf("Port %u has enabled GRO. Please"
" disable GRO first\n", port_id);
return;
}
if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
gro_ports[port_id].param.max_flow_num =
GRO_DEFAULT_FLOW_NUM;
gro_ports[port_id].param.max_item_per_flow =
GRO_DEFAULT_ITEM_NUM_PER_FLOW;
}
gro_ports[port_id].enable = 1;
} else {
if (gro_ports[port_id].enable == 0) {
printf("Port %u has disabled GRO\n", port_id);
return;
}
gro_ports[port_id].enable = 0;
}
}
void
setup_gro_flush_cycles(uint8_t cycles)
{
if (test_done == 0) {
printf("Before change flush interval for GRO,"
" please stop forwarding first.\n");
return;
}
if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
GRO_DEFAULT_FLUSH_CYCLES) {
printf("The flushing cycle be in the range"
" of 1 to %u. Revert to the default"
" value %u.\n",
GRO_MAX_FLUSH_CYCLES,
GRO_DEFAULT_FLUSH_CYCLES);
cycles = GRO_DEFAULT_FLUSH_CYCLES;
}
gro_flush_cycles = cycles;
}
void
show_gro(portid_t port_id)
{
struct rte_gro_param *param;
uint32_t max_pkts_num;
param = &gro_ports[port_id].param;
if (!rte_eth_dev_is_valid_port(port_id)) {
printf("Invalid port id %u.\n", port_id);
return;
}
if (gro_ports[port_id].enable) {
printf("GRO type: TCP/IPv4\n");
if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
max_pkts_num = param->max_flow_num *
param->max_item_per_flow;
} else
max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
printf("Max number of packets to perform GRO: %u\n",
max_pkts_num);
printf("Flushing cycles: %u\n", gro_flush_cycles);
} else
printf("Port %u doesn't enable GRO.\n", port_id);
}
void
setup_gso(const char *mode, portid_t port_id)
{
if (!rte_eth_dev_is_valid_port(port_id)) {
printf("invalid port id %u\n", port_id);
return;
}
if (strcmp(mode, "on") == 0) {
if (test_done == 0) {
printf("before enabling GSO,"
" please stop forwarding first\n");
return;
}
gso_ports[port_id].enable = 1;
} else if (strcmp(mode, "off") == 0) {
if (test_done == 0) {
printf("before disabling GSO,"
" please stop forwarding first\n");
return;
}
gso_ports[port_id].enable = 0;
}
}
char*
list_pkt_forwarding_modes(void)
{
static char fwd_modes[128] = "";
const char *separator = "|";
struct fwd_engine *fwd_eng;
unsigned i = 0;
if (strlen (fwd_modes) == 0) {
while ((fwd_eng = fwd_engines[i++]) != NULL) {
strncat(fwd_modes, fwd_eng->fwd_mode_name,
sizeof(fwd_modes) - strlen(fwd_modes) - 1);
strncat(fwd_modes, separator,
sizeof(fwd_modes) - strlen(fwd_modes) - 1);
}
fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
}
return fwd_modes;
}
char*
list_pkt_forwarding_retry_modes(void)
{
static char fwd_modes[128] = "";
const char *separator = "|";
struct fwd_engine *fwd_eng;
unsigned i = 0;
if (strlen(fwd_modes) == 0) {
while ((fwd_eng = fwd_engines[i++]) != NULL) {
if (fwd_eng == &rx_only_engine)
continue;
strncat(fwd_modes, fwd_eng->fwd_mode_name,
sizeof(fwd_modes) -
strlen(fwd_modes) - 1);
strncat(fwd_modes, separator,
sizeof(fwd_modes) -
strlen(fwd_modes) - 1);
}
fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
}
return fwd_modes;
}
void
set_pkt_forwarding_mode(const char *fwd_mode_name)
{
struct fwd_engine *fwd_eng;
unsigned i;
i = 0;
while ((fwd_eng = fwd_engines[i]) != NULL) {
if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
printf("Set %s packet forwarding mode%s\n",
fwd_mode_name,
retry_enabled == 0 ? "" : " with retry");
cur_fwd_eng = fwd_eng;
return;
}
i++;
}
printf("Invalid %s packet forwarding mode\n", fwd_mode_name);
}
void
set_verbose_level(uint16_t vb_level)
{
printf("Change verbose level from %u to %u\n",
(unsigned int) verbose_level, (unsigned int) vb_level);
verbose_level = vb_level;
}
void
vlan_extend_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on) {
vlan_offload |= ETH_VLAN_EXTEND_OFFLOAD;
port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_EXTEND;
} else {
vlan_offload &= ~ETH_VLAN_EXTEND_OFFLOAD;
port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_EXTEND;
}
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0)
printf("rx_vlan_extend_set(port_pi=%d, on=%d) failed "
"diag=%d\n", port_id, on, diag);
ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
}
void
rx_vlan_strip_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on) {
vlan_offload |= ETH_VLAN_STRIP_OFFLOAD;
port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_STRIP;
} else {
vlan_offload &= ~ETH_VLAN_STRIP_OFFLOAD;
port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_STRIP;
}
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0)
printf("rx_vlan_strip_set(port_pi=%d, on=%d) failed "
"diag=%d\n", port_id, on, diag);
ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
}
void
rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
{
int diag;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
if (diag < 0)
printf("rx_vlan_strip_set_on_queue(port_pi=%d, queue_id=%d, on=%d) failed "
"diag=%d\n", port_id, queue_id, on, diag);
}
void
rx_vlan_filter_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on) {
vlan_offload |= ETH_VLAN_FILTER_OFFLOAD;
port_rx_offloads |= DEV_RX_OFFLOAD_VLAN_FILTER;
} else {
vlan_offload &= ~ETH_VLAN_FILTER_OFFLOAD;
port_rx_offloads &= ~DEV_RX_OFFLOAD_VLAN_FILTER;
}
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0)
printf("rx_vlan_filter_set(port_pi=%d, on=%d) failed "
"diag=%d\n", port_id, on, diag);
ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
}
int
rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
{
int diag;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return 1;
if (vlan_id_is_invalid(vlan_id))
return 1;
diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
if (diag == 0)
return 0;
printf("rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed "
"diag=%d\n",
port_id, vlan_id, on, diag);
return -1;
}
void
rx_vlan_all_filter_set(portid_t port_id, int on)
{
uint16_t vlan_id;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
if (rx_vft_set(port_id, vlan_id, on))
break;
}
}
void
vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
{
int diag;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
if (diag == 0)
return;
printf("tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed "
"diag=%d\n",
port_id, vlan_type, tp_id, diag);
}
void
tx_vlan_set(portid_t port_id, uint16_t vlan_id)
{
int vlan_offload;
struct rte_eth_dev_info dev_info;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (vlan_id_is_invalid(vlan_id))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (vlan_offload & ETH_VLAN_EXTEND_OFFLOAD) {
printf("Error, as QinQ has been enabled.\n");
return;
}
rte_eth_dev_info_get(port_id, &dev_info);
if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_VLAN_INSERT) == 0) {
printf("Error: vlan insert is not supported by port %d\n",
port_id);
return;
}
tx_vlan_reset(port_id);
ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_VLAN_INSERT;
ports[port_id].tx_vlan_id = vlan_id;
}
void
tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
{
int vlan_offload;
struct rte_eth_dev_info dev_info;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (vlan_id_is_invalid(vlan_id))
return;
if (vlan_id_is_invalid(vlan_id_outer))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (!(vlan_offload & ETH_VLAN_EXTEND_OFFLOAD)) {
printf("Error, as QinQ hasn't been enabled.\n");
return;
}
rte_eth_dev_info_get(port_id, &dev_info);
if ((dev_info.tx_offload_capa & DEV_TX_OFFLOAD_QINQ_INSERT) == 0) {
printf("Error: qinq insert not supported by port %d\n",
port_id);
return;
}
tx_vlan_reset(port_id);
ports[port_id].dev_conf.txmode.offloads |= DEV_TX_OFFLOAD_QINQ_INSERT;
ports[port_id].tx_vlan_id = vlan_id;
ports[port_id].tx_vlan_id_outer = vlan_id_outer;
}
void
tx_vlan_reset(portid_t port_id)
{
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
ports[port_id].dev_conf.txmode.offloads &=
~(DEV_TX_OFFLOAD_VLAN_INSERT |
DEV_TX_OFFLOAD_QINQ_INSERT);
ports[port_id].tx_vlan_id = 0;
ports[port_id].tx_vlan_id_outer = 0;
}
void
tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
{
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
}
void
set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
{
uint16_t i;
uint8_t existing_mapping_found = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
return;
if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
printf("map_value not in required range 0..%d\n",
RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
return;
}
if (!is_rx) { /*then tx*/
for (i = 0; i < nb_tx_queue_stats_mappings; i++) {
if ((tx_queue_stats_mappings[i].port_id == port_id) &&
(tx_queue_stats_mappings[i].queue_id == queue_id)) {
tx_queue_stats_mappings[i].stats_counter_id = map_value;
existing_mapping_found = 1;
break;
}
}
if (!existing_mapping_found) { /* A new additional mapping... */
tx_queue_stats_mappings[nb_tx_queue_stats_mappings].port_id = port_id;
tx_queue_stats_mappings[nb_tx_queue_stats_mappings].queue_id = queue_id;
tx_queue_stats_mappings[nb_tx_queue_stats_mappings].stats_counter_id = map_value;
nb_tx_queue_stats_mappings++;
}
}
else { /*rx*/
for (i = 0; i < nb_rx_queue_stats_mappings; i++) {
if ((rx_queue_stats_mappings[i].port_id == port_id) &&
(rx_queue_stats_mappings[i].queue_id == queue_id)) {
rx_queue_stats_mappings[i].stats_counter_id = map_value;
existing_mapping_found = 1;
break;
}
}
if (!existing_mapping_found) { /* A new additional mapping... */
rx_queue_stats_mappings[nb_rx_queue_stats_mappings].port_id = port_id;
rx_queue_stats_mappings[nb_rx_queue_stats_mappings].queue_id = queue_id;
rx_queue_stats_mappings[nb_rx_queue_stats_mappings].stats_counter_id = map_value;
nb_rx_queue_stats_mappings++;
}
}
}
void
set_xstats_hide_zero(uint8_t on_off)
{
xstats_hide_zero = on_off;
}
static inline void
print_fdir_mask(struct rte_eth_fdir_masks *mask)
{
printf("\n vlan_tci: 0x%04x", rte_be_to_cpu_16(mask->vlan_tci_mask));
if (fdir_conf.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
printf(", mac_addr: 0x%02x, tunnel_type: 0x%01x,"
" tunnel_id: 0x%08x",
mask->mac_addr_byte_mask, mask->tunnel_type_mask,
rte_be_to_cpu_32(mask->tunnel_id_mask));
else if (fdir_conf.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN) {
printf(", src_ipv4: 0x%08x, dst_ipv4: 0x%08x",
rte_be_to_cpu_32(mask->ipv4_mask.src_ip),
rte_be_to_cpu_32(mask->ipv4_mask.dst_ip));
printf("\n src_port: 0x%04x, dst_port: 0x%04x",
rte_be_to_cpu_16(mask->src_port_mask),
rte_be_to_cpu_16(mask->dst_port_mask));
printf("\n src_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
rte_be_to_cpu_32(mask->ipv6_mask.src_ip[0]),
rte_be_to_cpu_32(mask->ipv6_mask.src_ip[1]),
rte_be_to_cpu_32(mask->ipv6_mask.src_ip[2]),
rte_be_to_cpu_32(mask->ipv6_mask.src_ip[3]));
printf("\n dst_ipv6: 0x%08x,0x%08x,0x%08x,0x%08x",
rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[0]),
rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[1]),
rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[2]),
rte_be_to_cpu_32(mask->ipv6_mask.dst_ip[3]));
}
printf("\n");
}
static inline void
print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
{
struct rte_eth_flex_payload_cfg *cfg;
uint32_t i, j;
for (i = 0; i < flex_conf->nb_payloads; i++) {
cfg = &flex_conf->flex_set[i];
if (cfg->type == RTE_ETH_RAW_PAYLOAD)
printf("\n RAW: ");
else if (cfg->type == RTE_ETH_L2_PAYLOAD)
printf("\n L2_PAYLOAD: ");
else if (cfg->type == RTE_ETH_L3_PAYLOAD)
printf("\n L3_PAYLOAD: ");
else if (cfg->type == RTE_ETH_L4_PAYLOAD)
printf("\n L4_PAYLOAD: ");
else
printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type);
for (j = 0; j < num; j++)
printf(" %-5u", cfg->src_offset[j]);
}
printf("\n");
}
static char *
flowtype_to_str(uint16_t flow_type)
{
struct flow_type_info {
char str[32];
uint16_t ftype;
};
uint8_t i;
static struct flow_type_info flowtype_str_table[] = {
{"raw", RTE_ETH_FLOW_RAW},
{"ipv4", RTE_ETH_FLOW_IPV4},
{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
{"ipv6", RTE_ETH_FLOW_IPV6},
{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
{"port", RTE_ETH_FLOW_PORT},
{"vxlan", RTE_ETH_FLOW_VXLAN},
{"geneve", RTE_ETH_FLOW_GENEVE},
{"nvgre", RTE_ETH_FLOW_NVGRE},
{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
};
for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
if (flowtype_str_table[i].ftype == flow_type)
return flowtype_str_table[i].str;
}
return NULL;
}
static inline void
print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
{
struct rte_eth_fdir_flex_mask *mask;
uint32_t i, j;
char *p;
for (i = 0; i < flex_conf->nb_flexmasks; i++) {
mask = &flex_conf->flex_mask[i];
p = flowtype_to_str(mask->flow_type);
printf("\n %s:\t", p ? p : "unknown");
for (j = 0; j < num; j++)
printf(" %02x", mask->mask[j]);
}
printf("\n");
}
static inline void
print_fdir_flow_type(uint32_t flow_types_mask)
{
int i;
char *p;
for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
if (!(flow_types_mask & (1 << i)))
continue;
p = flowtype_to_str(i);
if (p)
printf(" %s", p);
else
printf(" unknown");
}
printf("\n");
}
void
fdir_get_infos(portid_t port_id)
{
struct rte_eth_fdir_stats fdir_stat;
struct rte_eth_fdir_info fdir_info;
int ret;
static const char *fdir_stats_border = "########################";
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
ret = rte_eth_dev_filter_supported(port_id, RTE_ETH_FILTER_FDIR);
if (ret < 0) {
printf("\n FDIR is not supported on port %-2d\n",
port_id);
return;
}
memset(&fdir_info, 0, sizeof(fdir_info));
rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
RTE_ETH_FILTER_INFO, &fdir_info);
memset(&fdir_stat, 0, sizeof(fdir_stat));
rte_eth_dev_filter_ctrl(port_id, RTE_ETH_FILTER_FDIR,
RTE_ETH_FILTER_STATS, &fdir_stat);
printf("\n %s FDIR infos for port %-2d %s\n",
fdir_stats_border, port_id, fdir_stats_border);
printf(" MODE: ");
if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
printf(" PERFECT\n");
else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
printf(" PERFECT-MAC-VLAN\n");
else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
printf(" PERFECT-TUNNEL\n");
else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
printf(" SIGNATURE\n");
else
printf(" DISABLE\n");
if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
printf(" SUPPORTED FLOW TYPE: ");
print_fdir_flow_type(fdir_info.flow_types_mask[0]);
}
printf(" FLEX PAYLOAD INFO:\n");
printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n"
" payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n"
" bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n",
fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
fdir_info.flex_payload_unit,
fdir_info.max_flex_payload_segment_num,
fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
printf(" MASK: ");
print_fdir_mask(&fdir_info.mask);
if (fdir_info.flex_conf.nb_payloads > 0) {
printf(" FLEX PAYLOAD SRC OFFSET:");
print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
}
if (fdir_info.flex_conf.nb_flexmasks > 0) {
printf(" FLEX MASK CFG:");
print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
}
printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n",
fdir_stat.guarant_cnt, fdir_stat.best_cnt);
printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n",
fdir_info.guarant_spc, fdir_info.best_spc);
printf(" collision: %-10"PRIu32" free: %"PRIu32"\n"
" maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n"
" add: %-10"PRIu64" remove: %"PRIu64"\n"
" f_add: %-10"PRIu64" f_remove: %"PRIu64"\n",
fdir_stat.collision, fdir_stat.free,
fdir_stat.maxhash, fdir_stat.maxlen,
fdir_stat.add, fdir_stat.remove,
fdir_stat.f_add, fdir_stat.f_remove);
printf(" %s############################%s\n",
fdir_stats_border, fdir_stats_border);
}
void
fdir_set_flex_mask(portid_t port_id, struct rte_eth_fdir_flex_mask *cfg)
{
struct rte_port *port;
struct rte_eth_fdir_flex_conf *flex_conf;
int i, idx = 0;
port = &ports[port_id];
flex_conf = &port->dev_conf.fdir_conf.flex_conf;
for (i = 0; i < RTE_ETH_FLOW_MAX; i++) {
if (cfg->flow_type == flex_conf->flex_mask[i].flow_type) {
idx = i;
break;
}
}
if (i >= RTE_ETH_FLOW_MAX) {
if (flex_conf->nb_flexmasks < RTE_DIM(flex_conf->flex_mask)) {
idx = flex_conf->nb_flexmasks;
flex_conf->nb_flexmasks++;
} else {
printf("The flex mask table is full. Can not set flex"
" mask for flow_type(%u).", cfg->flow_type);
return;
}
}
rte_memcpy(&flex_conf->flex_mask[idx],
cfg,
sizeof(struct rte_eth_fdir_flex_mask));
}
void
fdir_set_flex_payload(portid_t port_id, struct rte_eth_flex_payload_cfg *cfg)
{
struct rte_port *port;
struct rte_eth_fdir_flex_conf *flex_conf;
int i, idx = 0;
port = &ports[port_id];
flex_conf = &port->dev_conf.fdir_conf.flex_conf;
for (i = 0; i < RTE_ETH_PAYLOAD_MAX; i++) {
if (cfg->type == flex_conf->flex_set[i].type) {
idx = i;
break;
}
}
if (i >= RTE_ETH_PAYLOAD_MAX) {
if (flex_conf->nb_payloads < RTE_DIM(flex_conf->flex_set)) {
idx = flex_conf->nb_payloads;
flex_conf->nb_payloads++;
} else {
printf("The flex payload table is full. Can not set"
" flex payload for type(%u).", cfg->type);
return;
}
}
rte_memcpy(&flex_conf->flex_set[idx],
cfg,
sizeof(struct rte_eth_flex_payload_cfg));
}
void
set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
{
#ifdef RTE_LIBRTE_IXGBE_PMD
int diag;
if (is_rx)
diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
else
diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
if (diag == 0)
return;
printf("rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
is_rx ? "rx" : "tx", port_id, diag);
return;
#endif
printf("VF %s setting not supported for port %d\n",
is_rx ? "Rx" : "Tx", port_id);
RTE_SET_USED(vf);
RTE_SET_USED(on);
}
int
set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint16_t rate)
{
int diag;
struct rte_eth_link link;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return 1;
rte_eth_link_get_nowait(port_id, &link);
if (rate > link.link_speed) {
printf("Invalid rate value:%u bigger than link speed: %u\n",
rate, link.link_speed);
return 1;
}
diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
if (diag == 0)
return diag;
printf("rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
port_id, diag);
return diag;
}
int
set_vf_rate_limit(portid_t port_id, uint16_t vf, uint16_t rate, uint64_t q_msk)
{
int diag = -ENOTSUP;
RTE_SET_USED(vf);
RTE_SET_USED(rate);
RTE_SET_USED(q_msk);
#ifdef RTE_LIBRTE_IXGBE_PMD
if (diag == -ENOTSUP)
diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
q_msk);
#endif
#ifdef RTE_LIBRTE_BNXT_PMD
if (diag == -ENOTSUP)
diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
#endif
if (diag == 0)
return diag;
printf("set_vf_rate_limit for port_id=%d failed diag=%d\n",
port_id, diag);
return diag;
}
/*
* Functions to manage the set of filtered Multicast MAC addresses.
*
* A pool of filtered multicast MAC addresses is associated with each port.
* The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
* The address of the pool and the number of valid multicast MAC addresses
* recorded in the pool are stored in the fields "mc_addr_pool" and
* "mc_addr_nb" of the "rte_port" data structure.
*
* The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
* to be supplied a contiguous array of multicast MAC addresses.
* To comply with this constraint, the set of multicast addresses recorded
* into the pool are systematically compacted at the beginning of the pool.
* Hence, when a multicast address is removed from the pool, all following
* addresses, if any, are copied back to keep the set contiguous.
*/
#define MCAST_POOL_INC 32
static int
mcast_addr_pool_extend(struct rte_port *port)
{
struct ether_addr *mc_pool;
size_t mc_pool_size;
/*
* If a free entry is available at the end of the pool, just
* increment the number of recorded multicast addresses.
*/
if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
port->mc_addr_nb++;
return 0;
}
/*
* [re]allocate a pool with MCAST_POOL_INC more entries.
* The previous test guarantees that port->mc_addr_nb is a multiple
* of MCAST_POOL_INC.
*/
mc_pool_size = sizeof(struct ether_addr) * (port->mc_addr_nb +
MCAST_POOL_INC);
mc_pool = (struct ether_addr *) realloc(port->mc_addr_pool,
mc_pool_size);
if (mc_pool == NULL) {
printf("allocation of pool of %u multicast addresses failed\n",
port->mc_addr_nb + MCAST_POOL_INC);
return -ENOMEM;
}
port->mc_addr_pool = mc_pool;
port->mc_addr_nb++;
return 0;
}
static void
mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
{
port->mc_addr_nb--;
if (addr_idx == port->mc_addr_nb) {
/* No need to recompact the set of multicast addressses. */
if (port->mc_addr_nb == 0) {
/* free the pool of multicast addresses. */
free(port->mc_addr_pool);
port->mc_addr_pool = NULL;
}
return;
}
memmove(&port->mc_addr_pool[addr_idx],
&port->mc_addr_pool[addr_idx + 1],
sizeof(struct ether_addr) * (port->mc_addr_nb - addr_idx));
}
static void
eth_port_multicast_addr_list_set(portid_t port_id)
{
struct rte_port *port;
int diag;
port = &ports[port_id];
diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
port->mc_addr_nb);
if (diag == 0)
return;
printf("rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
port->mc_addr_nb, port_id, -diag);
}
void
mcast_addr_add(portid_t port_id, struct ether_addr *mc_addr)
{
struct rte_port *port;
uint32_t i;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
port = &ports[port_id];
/*
* Check that the added multicast MAC address is not already recorded
* in the pool of multicast addresses.
*/
for (i = 0; i < port->mc_addr_nb; i++) {
if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
printf("multicast address already filtered by port\n");
return;
}
}
if (mcast_addr_pool_extend(port) != 0)
return;
ether_addr_copy(mc_addr, &port->mc_addr_pool[i]);
eth_port_multicast_addr_list_set(port_id);
}
void
mcast_addr_remove(portid_t port_id, struct ether_addr *mc_addr)
{
struct rte_port *port;
uint32_t i;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
port = &ports[port_id];
/*
* Search the pool of multicast MAC addresses for the removed address.
*/
for (i = 0; i < port->mc_addr_nb; i++) {
if (is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
break;
}
if (i == port->mc_addr_nb) {
printf("multicast address not filtered by port %d\n", port_id);
return;
}
mcast_addr_pool_remove(port, i);
eth_port_multicast_addr_list_set(port_id);
}
void
port_dcb_info_display(portid_t port_id)
{
struct rte_eth_dcb_info dcb_info;
uint16_t i;
int ret;
static const char *border = "================";
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
if (ret) {
printf("\n Failed to get dcb infos on port %-2d\n",
port_id);
return;
}
printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border);
printf(" TC NUMBER: %d\n", dcb_info.nb_tcs);
printf("\n TC : ");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", i);
printf("\n Priority : ");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.prio_tc[i]);
printf("\n BW percent :");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d%%", dcb_info.tc_bws[i]);
printf("\n RXQ base : ");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
printf("\n RXQ number :");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
printf("\n TXQ base : ");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
printf("\n TXQ number :");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
printf("\n");
}
uint8_t *
open_file(const char *file_path, uint32_t *size)
{
int fd = open(file_path, O_RDONLY);
off_t pkg_size;
uint8_t *buf = NULL;
int ret = 0;
struct stat st_buf;
if (size)
*size = 0;
if (fd == -1) {
printf("%s: Failed to open %s\n", __func__, file_path);
return buf;
}
if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
close(fd);
printf("%s: File operations failed\n", __func__);
return buf;
}
pkg_size = st_buf.st_size;
if (pkg_size < 0) {
close(fd);
printf("%s: File operations failed\n", __func__);
return buf;
}
buf = (uint8_t *)malloc(pkg_size);
if (!buf) {
close(fd);
printf("%s: Failed to malloc memory\n", __func__);
return buf;
}
ret = read(fd, buf, pkg_size);
if (ret < 0) {
close(fd);
printf("%s: File read operation failed\n", __func__);
close_file(buf);
return NULL;
}
if (size)
*size = pkg_size;
close(fd);
return buf;
}
int
save_file(const char *file_path, uint8_t *buf, uint32_t size)
{
FILE *fh = fopen(file_path, "wb");
if (fh == NULL) {
printf("%s: Failed to open %s\n", __func__, file_path);
return -1;
}
if (fwrite(buf, 1, size, fh) != size) {
fclose(fh);
printf("%s: File write operation failed\n", __func__);
return -1;
}
fclose(fh);
return 0;
}
int
close_file(uint8_t *buf)
{
if (buf) {
free((void *)buf);
return 0;
}
return -1;
}
void
port_queue_region_info_display(portid_t port_id, void *buf)
{
#ifdef RTE_LIBRTE_I40E_PMD
uint16_t i, j;
struct rte_pmd_i40e_queue_regions *info =
(struct rte_pmd_i40e_queue_regions *)buf;
static const char *queue_region_info_stats_border = "-------";
if (!info->queue_region_number)
printf("there is no region has been set before");
printf("\n %s All queue region info for port=%2d %s",
queue_region_info_stats_border, port_id,
queue_region_info_stats_border);
printf("\n queue_region_number: %-14u \n",
info->queue_region_number);
for (i = 0; i < info->queue_region_number; i++) {
printf("\n region_id: %-14u queue_number: %-14u "
"queue_start_index: %-14u \n",
info->region[i].region_id,
info->region[i].queue_num,
info->region[i].queue_start_index);
printf(" user_priority_num is %-14u :",
info->region[i].user_priority_num);
for (j = 0; j < info->region[i].user_priority_num; j++)
printf(" %-14u ", info->region[i].user_priority[j]);
printf("\n flowtype_num is %-14u :",
info->region[i].flowtype_num);
for (j = 0; j < info->region[i].flowtype_num; j++)
printf(" %-14u ", info->region[i].hw_flowtype[j]);
}
#else
RTE_SET_USED(port_id);
RTE_SET_USED(buf);
#endif
printf("\n\n");
}