numam-dpdk/drivers/net/mlx5/mlx5_tx.h
Michael Baum 4ac9ad07bd net/mlx5: separate Tx burst functions to different files
This patch separates Tx burst function implementations to different
source files, thus allowing them to compile in parallel.

Signed-off-by: Michael Baum <michaelba@nvidia.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
2021-04-15 08:24:59 +02:00

3735 lines
115 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2021 6WIND S.A.
* Copyright 2021 Mellanox Technologies, Ltd
*/
#ifndef RTE_PMD_MLX5_TX_H_
#define RTE_PMD_MLX5_TX_H_
#include <stdint.h>
#include <sys/queue.h>
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_common.h>
#include <rte_spinlock.h>
#include <mlx5_common_mr.h>
#include "mlx5.h"
#include "mlx5_autoconf.h"
#include "mlx5_mr.h"
/* TX burst subroutines return codes. */
enum mlx5_txcmp_code {
MLX5_TXCMP_CODE_EXIT = 0,
MLX5_TXCMP_CODE_ERROR,
MLX5_TXCMP_CODE_SINGLE,
MLX5_TXCMP_CODE_MULTI,
MLX5_TXCMP_CODE_TSO,
MLX5_TXCMP_CODE_EMPW,
};
/*
* These defines are used to configure Tx burst routine option set supported
* at compile time. The not specified options are optimized out due to if
* conditions can be explicitly calculated at compile time.
* The offloads with bigger runtime check (require more CPU cycles toskip)
* overhead should have the bigger index - this is needed to select the better
* matching routine function if no exact match and some offloads are not
* actually requested.
*/
#define MLX5_TXOFF_CONFIG_MULTI (1u << 0) /* Multi-segment packets.*/
#define MLX5_TXOFF_CONFIG_TSO (1u << 1) /* TCP send offload supported.*/
#define MLX5_TXOFF_CONFIG_SWP (1u << 2) /* Tunnels/SW Parser offloads.*/
#define MLX5_TXOFF_CONFIG_CSUM (1u << 3) /* Check Sums offloaded. */
#define MLX5_TXOFF_CONFIG_INLINE (1u << 4) /* Data inlining supported. */
#define MLX5_TXOFF_CONFIG_VLAN (1u << 5) /* VLAN insertion supported.*/
#define MLX5_TXOFF_CONFIG_METADATA (1u << 6) /* Flow metadata. */
#define MLX5_TXOFF_CONFIG_EMPW (1u << 8) /* Enhanced MPW supported.*/
#define MLX5_TXOFF_CONFIG_MPW (1u << 9) /* Legacy MPW supported.*/
#define MLX5_TXOFF_CONFIG_TXPP (1u << 10) /* Scheduling on timestamp.*/
/* The most common offloads groups. */
#define MLX5_TXOFF_CONFIG_NONE 0
#define MLX5_TXOFF_CONFIG_FULL (MLX5_TXOFF_CONFIG_MULTI | \
MLX5_TXOFF_CONFIG_TSO | \
MLX5_TXOFF_CONFIG_SWP | \
MLX5_TXOFF_CONFIG_CSUM | \
MLX5_TXOFF_CONFIG_INLINE | \
MLX5_TXOFF_CONFIG_VLAN | \
MLX5_TXOFF_CONFIG_METADATA)
#define MLX5_TXOFF_CONFIG(mask) (olx & MLX5_TXOFF_CONFIG_##mask)
#define MLX5_TXOFF_PRE_DECL(func) \
uint16_t mlx5_tx_burst_##func(void *txq, \
struct rte_mbuf **pkts, \
uint16_t pkts_n)
#define MLX5_TXOFF_DECL(func, olx) \
uint16_t mlx5_tx_burst_##func(void *txq, \
struct rte_mbuf **pkts, \
uint16_t pkts_n) \
{ \
return mlx5_tx_burst_tmpl((struct mlx5_txq_data *)txq, \
pkts, pkts_n, (olx)); \
}
/* Mbuf dynamic flag offset for inline. */
extern uint64_t rte_net_mlx5_dynf_inline_mask;
#define PKT_TX_DYNF_NOINLINE rte_net_mlx5_dynf_inline_mask
extern uint32_t mlx5_ptype_table[] __rte_cache_aligned;
extern uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
extern uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
struct mlx5_txq_stats {
#ifdef MLX5_PMD_SOFT_COUNTERS
uint64_t opackets; /**< Total of successfully sent packets. */
uint64_t obytes; /**< Total of successfully sent bytes. */
#endif
uint64_t oerrors; /**< Total number of failed transmitted packets. */
};
/* TX queue send local data. */
__extension__
struct mlx5_txq_local {
struct mlx5_wqe *wqe_last; /* last sent WQE pointer. */
struct rte_mbuf *mbuf; /* first mbuf to process. */
uint16_t pkts_copy; /* packets copied to elts. */
uint16_t pkts_sent; /* packets sent. */
uint16_t pkts_loop; /* packets sent on loop entry. */
uint16_t elts_free; /* available elts remain. */
uint16_t wqe_free; /* available wqe remain. */
uint16_t mbuf_off; /* data offset in current mbuf. */
uint16_t mbuf_nseg; /* number of remaining mbuf. */
uint16_t mbuf_free; /* number of inline mbufs to free. */
};
/* TX queue descriptor. */
__extension__
struct mlx5_txq_data {
uint16_t elts_head; /* Current counter in (*elts)[]. */
uint16_t elts_tail; /* Counter of first element awaiting completion. */
uint16_t elts_comp; /* elts index since last completion request. */
uint16_t elts_s; /* Number of mbuf elements. */
uint16_t elts_m; /* Mask for mbuf elements indices. */
/* Fields related to elts mbuf storage. */
uint16_t wqe_ci; /* Consumer index for work queue. */
uint16_t wqe_pi; /* Producer index for work queue. */
uint16_t wqe_s; /* Number of WQ elements. */
uint16_t wqe_m; /* Mask Number for WQ elements. */
uint16_t wqe_comp; /* WQE index since last completion request. */
uint16_t wqe_thres; /* WQE threshold to request completion in CQ. */
/* WQ related fields. */
uint16_t cq_ci; /* Consumer index for completion queue. */
uint16_t cq_pi; /* Production index for completion queue. */
uint16_t cqe_s; /* Number of CQ elements. */
uint16_t cqe_m; /* Mask for CQ indices. */
/* CQ related fields. */
uint16_t elts_n:4; /* elts[] length (in log2). */
uint16_t cqe_n:4; /* Number of CQ elements (in log2). */
uint16_t wqe_n:4; /* Number of WQ elements (in log2). */
uint16_t tso_en:1; /* When set hardware TSO is enabled. */
uint16_t tunnel_en:1;
/* When set TX offload for tunneled packets are supported. */
uint16_t swp_en:1; /* Whether SW parser is enabled. */
uint16_t vlan_en:1; /* VLAN insertion in WQE is supported. */
uint16_t db_nc:1; /* Doorbell mapped to non-cached region. */
uint16_t db_heu:1; /* Doorbell heuristic write barrier. */
uint16_t fast_free:1; /* mbuf fast free on Tx is enabled. */
uint16_t inlen_send; /* Ordinary send data inline size. */
uint16_t inlen_empw; /* eMPW max packet size to inline. */
uint16_t inlen_mode; /* Minimal data length to inline. */
uint32_t qp_num_8s; /* QP number shifted by 8. */
uint64_t offloads; /* Offloads for Tx Queue. */
struct mlx5_mr_ctrl mr_ctrl; /* MR control descriptor. */
struct mlx5_wqe *wqes; /* Work queue. */
struct mlx5_wqe *wqes_end; /* Work queue array limit. */
#ifdef RTE_LIBRTE_MLX5_DEBUG
uint32_t *fcqs; /* Free completion queue (debug extended). */
#else
uint16_t *fcqs; /* Free completion queue. */
#endif
volatile struct mlx5_cqe *cqes; /* Completion queue. */
volatile uint32_t *qp_db; /* Work queue doorbell. */
volatile uint32_t *cq_db; /* Completion queue doorbell. */
uint16_t port_id; /* Port ID of device. */
uint16_t idx; /* Queue index. */
uint64_t ts_mask; /* Timestamp flag dynamic mask. */
int32_t ts_offset; /* Timestamp field dynamic offset. */
struct mlx5_dev_ctx_shared *sh; /* Shared context. */
struct mlx5_txq_stats stats; /* TX queue counters. */
#ifndef RTE_ARCH_64
rte_spinlock_t *uar_lock;
/* UAR access lock required for 32bit implementations */
#endif
struct rte_mbuf *elts[0];
/* Storage for queued packets, must be the last field. */
} __rte_cache_aligned;
enum mlx5_txq_type {
MLX5_TXQ_TYPE_STANDARD, /* Standard Tx queue. */
MLX5_TXQ_TYPE_HAIRPIN, /* Hairpin Tx queue. */
};
/* TX queue control descriptor. */
struct mlx5_txq_ctrl {
LIST_ENTRY(mlx5_txq_ctrl) next; /* Pointer to the next element. */
uint32_t refcnt; /* Reference counter. */
unsigned int socket; /* CPU socket ID for allocations. */
enum mlx5_txq_type type; /* The txq ctrl type. */
unsigned int max_inline_data; /* Max inline data. */
unsigned int max_tso_header; /* Max TSO header size. */
struct mlx5_txq_obj *obj; /* Verbs/DevX queue object. */
struct mlx5_priv *priv; /* Back pointer to private data. */
off_t uar_mmap_offset; /* UAR mmap offset for non-primary process. */
void *bf_reg; /* BlueFlame register from Verbs. */
uint16_t dump_file_n; /* Number of dump files. */
struct rte_eth_hairpin_conf hairpin_conf; /* Hairpin configuration. */
uint32_t hairpin_status; /* Hairpin binding status. */
struct mlx5_txq_data txq; /* Data path structure. */
/* Must be the last field in the structure, contains elts[]. */
};
/* mlx5_txq.c */
int mlx5_tx_queue_start(struct rte_eth_dev *dev, uint16_t queue_id);
int mlx5_tx_queue_stop(struct rte_eth_dev *dev, uint16_t queue_id);
int mlx5_tx_queue_start_primary(struct rte_eth_dev *dev, uint16_t queue_id);
int mlx5_tx_queue_stop_primary(struct rte_eth_dev *dev, uint16_t queue_id);
int mlx5_tx_queue_setup(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
unsigned int socket, const struct rte_eth_txconf *conf);
int mlx5_tx_hairpin_queue_setup
(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
const struct rte_eth_hairpin_conf *hairpin_conf);
void mlx5_tx_queue_release(void *dpdk_txq);
void txq_uar_init(struct mlx5_txq_ctrl *txq_ctrl);
int mlx5_tx_uar_init_secondary(struct rte_eth_dev *dev, int fd);
void mlx5_tx_uar_uninit_secondary(struct rte_eth_dev *dev);
int mlx5_txq_obj_verify(struct rte_eth_dev *dev);
struct mlx5_txq_ctrl *mlx5_txq_new(struct rte_eth_dev *dev, uint16_t idx,
uint16_t desc, unsigned int socket,
const struct rte_eth_txconf *conf);
struct mlx5_txq_ctrl *mlx5_txq_hairpin_new
(struct rte_eth_dev *dev, uint16_t idx, uint16_t desc,
const struct rte_eth_hairpin_conf *hairpin_conf);
struct mlx5_txq_ctrl *mlx5_txq_get(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_txq_release(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_txq_releasable(struct rte_eth_dev *dev, uint16_t idx);
int mlx5_txq_verify(struct rte_eth_dev *dev);
void txq_alloc_elts(struct mlx5_txq_ctrl *txq_ctrl);
void txq_free_elts(struct mlx5_txq_ctrl *txq_ctrl);
uint64_t mlx5_get_tx_port_offloads(struct rte_eth_dev *dev);
void mlx5_txq_dynf_timestamp_set(struct rte_eth_dev *dev);
/* mlx5_tx.c */
uint16_t removed_tx_burst(void *dpdk_txq, struct rte_mbuf **pkts,
uint16_t pkts_n);
void mlx5_tx_handle_completion(struct mlx5_txq_data *__rte_restrict txq,
unsigned int olx __rte_unused);
int mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset);
void mlx5_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
struct rte_eth_txq_info *qinfo);
int mlx5_tx_burst_mode_get(struct rte_eth_dev *dev, uint16_t tx_queue_id,
struct rte_eth_burst_mode *mode);
/* mlx5_mr.c */
uint32_t mlx5_tx_mb2mr_bh(struct mlx5_txq_data *txq, struct rte_mbuf *mb);
uint32_t mlx5_tx_update_ext_mp(struct mlx5_txq_data *txq, uintptr_t addr,
struct rte_mempool *mp);
/* mlx5_tx_empw.c */
MLX5_TXOFF_PRE_DECL(full_empw);
MLX5_TXOFF_PRE_DECL(none_empw);
MLX5_TXOFF_PRE_DECL(md_empw);
MLX5_TXOFF_PRE_DECL(mt_empw);
MLX5_TXOFF_PRE_DECL(mtsc_empw);
MLX5_TXOFF_PRE_DECL(mti_empw);
MLX5_TXOFF_PRE_DECL(mtv_empw);
MLX5_TXOFF_PRE_DECL(mtiv_empw);
MLX5_TXOFF_PRE_DECL(sc_empw);
MLX5_TXOFF_PRE_DECL(sci_empw);
MLX5_TXOFF_PRE_DECL(scv_empw);
MLX5_TXOFF_PRE_DECL(sciv_empw);
MLX5_TXOFF_PRE_DECL(i_empw);
MLX5_TXOFF_PRE_DECL(v_empw);
MLX5_TXOFF_PRE_DECL(iv_empw);
/* mlx5_tx_nompw.c */
MLX5_TXOFF_PRE_DECL(full);
MLX5_TXOFF_PRE_DECL(none);
MLX5_TXOFF_PRE_DECL(md);
MLX5_TXOFF_PRE_DECL(mt);
MLX5_TXOFF_PRE_DECL(mtsc);
MLX5_TXOFF_PRE_DECL(mti);
MLX5_TXOFF_PRE_DECL(mtv);
MLX5_TXOFF_PRE_DECL(mtiv);
MLX5_TXOFF_PRE_DECL(sc);
MLX5_TXOFF_PRE_DECL(sci);
MLX5_TXOFF_PRE_DECL(scv);
MLX5_TXOFF_PRE_DECL(sciv);
MLX5_TXOFF_PRE_DECL(i);
MLX5_TXOFF_PRE_DECL(v);
MLX5_TXOFF_PRE_DECL(iv);
/* mlx5_tx_txpp.c */
MLX5_TXOFF_PRE_DECL(full_ts_nompw);
MLX5_TXOFF_PRE_DECL(full_ts_nompwi);
MLX5_TXOFF_PRE_DECL(full_ts);
MLX5_TXOFF_PRE_DECL(full_ts_noi);
MLX5_TXOFF_PRE_DECL(none_ts);
MLX5_TXOFF_PRE_DECL(mdi_ts);
MLX5_TXOFF_PRE_DECL(mti_ts);
MLX5_TXOFF_PRE_DECL(mtiv_ts);
/* mlx5_tx_mpw.c */
MLX5_TXOFF_PRE_DECL(none_mpw);
MLX5_TXOFF_PRE_DECL(mci_mpw);
MLX5_TXOFF_PRE_DECL(mc_mpw);
MLX5_TXOFF_PRE_DECL(i_mpw);
static __rte_always_inline uint64_t *
mlx5_tx_bfreg(struct mlx5_txq_data *txq)
{
return MLX5_PROC_PRIV(txq->port_id)->uar_table[txq->idx];
}
/**
* Provide safe 64bit store operation to mlx5 UAR region for both 32bit and
* 64bit architectures.
*
* @param val
* value to write in CPU endian format.
* @param addr
* Address to write to.
* @param lock
* Address of the lock to use for that UAR access.
*/
static __rte_always_inline void
__mlx5_uar_write64_relaxed(uint64_t val, void *addr,
rte_spinlock_t *lock __rte_unused)
{
#ifdef RTE_ARCH_64
*(uint64_t *)addr = val;
#else /* !RTE_ARCH_64 */
rte_spinlock_lock(lock);
*(uint32_t *)addr = val;
rte_io_wmb();
*((uint32_t *)addr + 1) = val >> 32;
rte_spinlock_unlock(lock);
#endif
}
/**
* Provide safe 64bit store operation to mlx5 UAR region for both 32bit and
* 64bit architectures while guaranteeing the order of execution with the
* code being executed.
*
* @param val
* value to write in CPU endian format.
* @param addr
* Address to write to.
* @param lock
* Address of the lock to use for that UAR access.
*/
static __rte_always_inline void
__mlx5_uar_write64(uint64_t val, void *addr, rte_spinlock_t *lock)
{
rte_io_wmb();
__mlx5_uar_write64_relaxed(val, addr, lock);
}
/* Assist macros, used instead of directly calling the functions they wrap. */
#ifdef RTE_ARCH_64
#define mlx5_uar_write64_relaxed(val, dst, lock) \
__mlx5_uar_write64_relaxed(val, dst, NULL)
#define mlx5_uar_write64(val, dst, lock) __mlx5_uar_write64(val, dst, NULL)
#else
#define mlx5_uar_write64_relaxed(val, dst, lock) \
__mlx5_uar_write64_relaxed(val, dst, lock)
#define mlx5_uar_write64(val, dst, lock) __mlx5_uar_write64(val, dst, lock)
#endif
/**
* Query LKey from a packet buffer for Tx. If not found, add the mempool.
*
* @param txq
* Pointer to Tx queue structure.
* @param addr
* Address to search.
*
* @return
* Searched LKey on success, UINT32_MAX on no match.
*/
static __rte_always_inline uint32_t
mlx5_tx_mb2mr(struct mlx5_txq_data *txq, struct rte_mbuf *mb)
{
struct mlx5_mr_ctrl *mr_ctrl = &txq->mr_ctrl;
uintptr_t addr = (uintptr_t)mb->buf_addr;
uint32_t lkey;
/* Check generation bit to see if there's any change on existing MRs. */
if (unlikely(*mr_ctrl->dev_gen_ptr != mr_ctrl->cur_gen))
mlx5_mr_flush_local_cache(mr_ctrl);
/* Linear search on MR cache array. */
lkey = mlx5_mr_lookup_lkey(mr_ctrl->cache, &mr_ctrl->mru,
MLX5_MR_CACHE_N, addr);
if (likely(lkey != UINT32_MAX))
return lkey;
/* Take slower bottom-half on miss. */
return mlx5_tx_mb2mr_bh(txq, mb);
}
/**
* Ring TX queue doorbell and flush the update if requested.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe
* Pointer to the last WQE posted in the NIC.
* @param cond
* Request for write memory barrier after BlueFlame update.
*/
static __rte_always_inline void
mlx5_tx_dbrec_cond_wmb(struct mlx5_txq_data *txq, volatile struct mlx5_wqe *wqe,
int cond)
{
uint64_t *dst = mlx5_tx_bfreg(txq);
volatile uint64_t *src = ((volatile uint64_t *)wqe);
rte_io_wmb();
*txq->qp_db = rte_cpu_to_be_32(txq->wqe_ci);
/* Ensure ordering between DB record and BF copy. */
rte_wmb();
mlx5_uar_write64_relaxed(*src, dst, txq->uar_lock);
if (cond)
rte_wmb();
}
/**
* Ring TX queue doorbell and flush the update by write memory barrier.
*
* @param txq
* Pointer to TX queue structure.
* @param wqe
* Pointer to the last WQE posted in the NIC.
*/
static __rte_always_inline void
mlx5_tx_dbrec(struct mlx5_txq_data *txq, volatile struct mlx5_wqe *wqe)
{
mlx5_tx_dbrec_cond_wmb(txq, wqe, 1);
}
/**
* Convert timestamp from mbuf format to linear counter
* of Clock Queue completions (24 bits).
*
* @param sh
* Pointer to the device shared context to fetch Tx
* packet pacing timestamp and parameters.
* @param ts
* Timestamp from mbuf to convert.
* @return
* positive or zero value - completion ID to wait.
* negative value - conversion error.
*/
static __rte_always_inline int32_t
mlx5_txpp_convert_tx_ts(struct mlx5_dev_ctx_shared *sh, uint64_t mts)
{
uint64_t ts, ci;
uint32_t tick;
do {
/*
* Read atomically two uint64_t fields and compare lsb bits.
* It there is no match - the timestamp was updated in
* the service thread, data should be re-read.
*/
rte_compiler_barrier();
ci = __atomic_load_n(&sh->txpp.ts.ci_ts, __ATOMIC_RELAXED);
ts = __atomic_load_n(&sh->txpp.ts.ts, __ATOMIC_RELAXED);
rte_compiler_barrier();
if (!((ts ^ ci) << (64 - MLX5_CQ_INDEX_WIDTH)))
break;
} while (true);
/* Perform the skew correction, positive value to send earlier. */
mts -= sh->txpp.skew;
mts -= ts;
if (unlikely(mts >= UINT64_MAX / 2)) {
/* We have negative integer, mts is in the past. */
__atomic_fetch_add(&sh->txpp.err_ts_past,
1, __ATOMIC_RELAXED);
return -1;
}
tick = sh->txpp.tick;
MLX5_ASSERT(tick);
/* Convert delta to completions, round up. */
mts = (mts + tick - 1) / tick;
if (unlikely(mts >= (1 << MLX5_CQ_INDEX_WIDTH) / 2 - 1)) {
/* We have mts is too distant future. */
__atomic_fetch_add(&sh->txpp.err_ts_future,
1, __ATOMIC_RELAXED);
return -1;
}
mts <<= 64 - MLX5_CQ_INDEX_WIDTH;
ci += mts;
ci >>= 64 - MLX5_CQ_INDEX_WIDTH;
return ci;
}
/**
* Set Software Parser flags and offsets in Ethernet Segment of WQE.
* Flags must be preliminary initialized to zero.
*
* @param loc
* Pointer to burst routine local context.
* @param swp_flags
* Pointer to store Software Parser flags.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Software Parser offsets packed in dword.
* Software Parser flags are set by pointer.
*/
static __rte_always_inline uint32_t
txq_mbuf_to_swp(struct mlx5_txq_local *__rte_restrict loc,
uint8_t *swp_flags,
unsigned int olx)
{
uint64_t ol, tunnel;
unsigned int idx, off;
uint32_t set;
if (!MLX5_TXOFF_CONFIG(SWP))
return 0;
ol = loc->mbuf->ol_flags;
tunnel = ol & PKT_TX_TUNNEL_MASK;
/*
* Check whether Software Parser is required.
* Only customized tunnels may ask for.
*/
if (likely(tunnel != PKT_TX_TUNNEL_UDP && tunnel != PKT_TX_TUNNEL_IP))
return 0;
/*
* The index should have:
* bit[0:1] = PKT_TX_L4_MASK
* bit[4] = PKT_TX_IPV6
* bit[8] = PKT_TX_OUTER_IPV6
* bit[9] = PKT_TX_OUTER_UDP
*/
idx = (ol & (PKT_TX_L4_MASK | PKT_TX_IPV6 | PKT_TX_OUTER_IPV6)) >> 52;
idx |= (tunnel == PKT_TX_TUNNEL_UDP) ? (1 << 9) : 0;
*swp_flags = mlx5_swp_types_table[idx];
/*
* Set offsets for SW parser. Since ConnectX-5, SW parser just
* complements HW parser. SW parser starts to engage only if HW parser
* can't reach a header. For the older devices, HW parser will not kick
* in if any of SWP offsets is set. Therefore, all of the L3 offsets
* should be set regardless of HW offload.
*/
off = loc->mbuf->outer_l2_len;
if (MLX5_TXOFF_CONFIG(VLAN) && ol & PKT_TX_VLAN_PKT)
off += sizeof(struct rte_vlan_hdr);
set = (off >> 1) << 8; /* Outer L3 offset. */
off += loc->mbuf->outer_l3_len;
if (tunnel == PKT_TX_TUNNEL_UDP)
set |= off >> 1; /* Outer L4 offset. */
if (ol & (PKT_TX_IPV4 | PKT_TX_IPV6)) { /* Inner IP. */
const uint64_t csum = ol & PKT_TX_L4_MASK;
off += loc->mbuf->l2_len;
set |= (off >> 1) << 24; /* Inner L3 offset. */
if (csum == PKT_TX_TCP_CKSUM ||
csum == PKT_TX_UDP_CKSUM ||
(MLX5_TXOFF_CONFIG(TSO) && ol & PKT_TX_TCP_SEG)) {
off += loc->mbuf->l3_len;
set |= (off >> 1) << 16; /* Inner L4 offset. */
}
}
set = rte_cpu_to_le_32(set);
return set;
}
/**
* Convert the Checksum offloads to Verbs.
*
* @param buf
* Pointer to the mbuf.
*
* @return
* Converted checksum flags.
*/
static __rte_always_inline uint8_t
txq_ol_cksum_to_cs(struct rte_mbuf *buf)
{
uint32_t idx;
uint8_t is_tunnel = !!(buf->ol_flags & PKT_TX_TUNNEL_MASK);
const uint64_t ol_flags_mask = PKT_TX_TCP_SEG | PKT_TX_L4_MASK |
PKT_TX_IP_CKSUM | PKT_TX_OUTER_IP_CKSUM;
/*
* The index should have:
* bit[0] = PKT_TX_TCP_SEG
* bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
* bit[4] = PKT_TX_IP_CKSUM
* bit[8] = PKT_TX_OUTER_IP_CKSUM
* bit[9] = tunnel
*/
idx = ((buf->ol_flags & ol_flags_mask) >> 50) | (!!is_tunnel << 9);
return mlx5_cksum_table[idx];
}
/**
* Free the mbufs from the linear array of pointers.
*
* @param txq
* Pointer to Tx queue structure.
* @param pkts
* Pointer to array of packets to be free.
* @param pkts_n
* Number of packets to be freed.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_free_mbuf(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
unsigned int pkts_n,
unsigned int olx __rte_unused)
{
struct rte_mempool *pool = NULL;
struct rte_mbuf **p_free = NULL;
struct rte_mbuf *mbuf;
unsigned int n_free = 0;
/*
* The implemented algorithm eliminates
* copying pointers to temporary array
* for rte_mempool_put_bulk() calls.
*/
MLX5_ASSERT(pkts);
MLX5_ASSERT(pkts_n);
/*
* Free mbufs directly to the pool in bulk
* if fast free offload is engaged
*/
if (!MLX5_TXOFF_CONFIG(MULTI) && txq->fast_free) {
mbuf = *pkts;
pool = mbuf->pool;
rte_mempool_put_bulk(pool, (void *)pkts, pkts_n);
return;
}
for (;;) {
for (;;) {
/*
* Decrement mbuf reference counter, detach
* indirect and external buffers if needed.
*/
mbuf = rte_pktmbuf_prefree_seg(*pkts);
if (likely(mbuf != NULL)) {
MLX5_ASSERT(mbuf == *pkts);
if (likely(n_free != 0)) {
if (unlikely(pool != mbuf->pool))
/* From different pool. */
break;
} else {
/* Start new scan array. */
pool = mbuf->pool;
p_free = pkts;
}
++n_free;
++pkts;
--pkts_n;
if (unlikely(pkts_n == 0)) {
mbuf = NULL;
break;
}
} else {
/*
* This happens if mbuf is still referenced.
* We can't put it back to the pool, skip.
*/
++pkts;
--pkts_n;
if (unlikely(n_free != 0))
/* There is some array to free.*/
break;
if (unlikely(pkts_n == 0))
/* Last mbuf, nothing to free. */
return;
}
}
for (;;) {
/*
* This loop is implemented to avoid multiple
* inlining of rte_mempool_put_bulk().
*/
MLX5_ASSERT(pool);
MLX5_ASSERT(p_free);
MLX5_ASSERT(n_free);
/*
* Free the array of pre-freed mbufs
* belonging to the same memory pool.
*/
rte_mempool_put_bulk(pool, (void *)p_free, n_free);
if (unlikely(mbuf != NULL)) {
/* There is the request to start new scan. */
pool = mbuf->pool;
p_free = pkts++;
n_free = 1;
--pkts_n;
if (likely(pkts_n != 0))
break;
/*
* This is the last mbuf to be freed.
* Do one more loop iteration to complete.
* This is rare case of the last unique mbuf.
*/
mbuf = NULL;
continue;
}
if (likely(pkts_n == 0))
return;
n_free = 0;
break;
}
}
}
/**
* No inline version to free buffers for optimal call
* on the tx_burst completion.
*/
static __rte_noinline void
__mlx5_tx_free_mbuf(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
unsigned int pkts_n,
unsigned int olx __rte_unused)
{
mlx5_tx_free_mbuf(txq, pkts, pkts_n, olx);
}
/**
* Free the mbuf from the elts ring buffer till new tail.
*
* @param txq
* Pointer to Tx queue structure.
* @param tail
* Index in elts to free up to, becomes new elts tail.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_free_elts(struct mlx5_txq_data *__rte_restrict txq,
uint16_t tail,
unsigned int olx __rte_unused)
{
uint16_t n_elts = tail - txq->elts_tail;
MLX5_ASSERT(n_elts);
MLX5_ASSERT(n_elts <= txq->elts_s);
/*
* Implement a loop to support ring buffer wraparound
* with single inlining of mlx5_tx_free_mbuf().
*/
do {
unsigned int part;
part = txq->elts_s - (txq->elts_tail & txq->elts_m);
part = RTE_MIN(part, n_elts);
MLX5_ASSERT(part);
MLX5_ASSERT(part <= txq->elts_s);
mlx5_tx_free_mbuf(txq,
&txq->elts[txq->elts_tail & txq->elts_m],
part, olx);
txq->elts_tail += part;
n_elts -= part;
} while (n_elts);
}
/**
* Store the mbuf being sent into elts ring buffer.
* On Tx completion these mbufs will be freed.
*
* @param txq
* Pointer to Tx queue structure.
* @param pkts
* Pointer to array of packets to be stored.
* @param pkts_n
* Number of packets to be stored.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_copy_elts(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
unsigned int pkts_n,
unsigned int olx __rte_unused)
{
unsigned int part;
struct rte_mbuf **elts = (struct rte_mbuf **)txq->elts;
MLX5_ASSERT(pkts);
MLX5_ASSERT(pkts_n);
part = txq->elts_s - (txq->elts_head & txq->elts_m);
MLX5_ASSERT(part);
MLX5_ASSERT(part <= txq->elts_s);
/* This code is a good candidate for vectorizing with SIMD. */
rte_memcpy((void *)(elts + (txq->elts_head & txq->elts_m)),
(void *)pkts,
RTE_MIN(part, pkts_n) * sizeof(struct rte_mbuf *));
txq->elts_head += pkts_n;
if (unlikely(part < pkts_n))
/* The copy is wrapping around the elts array. */
rte_memcpy((void *)elts, (void *)(pkts + part),
(pkts_n - part) * sizeof(struct rte_mbuf *));
}
/**
* Check if the completion request flag should be set in the last WQE.
* Both pushed mbufs and WQEs are monitored and the completion request
* flag is set if any of thresholds is reached.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_request_completion(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
uint16_t head = txq->elts_head;
unsigned int part;
part = MLX5_TXOFF_CONFIG(INLINE) ?
0 : loc->pkts_sent - loc->pkts_copy;
head += part;
if ((uint16_t)(head - txq->elts_comp) >= MLX5_TX_COMP_THRESH ||
(MLX5_TXOFF_CONFIG(INLINE) &&
(uint16_t)(txq->wqe_ci - txq->wqe_comp) >= txq->wqe_thres)) {
volatile struct mlx5_wqe *last = loc->wqe_last;
MLX5_ASSERT(last);
txq->elts_comp = head;
if (MLX5_TXOFF_CONFIG(INLINE))
txq->wqe_comp = txq->wqe_ci;
/* Request unconditional completion on last WQE. */
last->cseg.flags = RTE_BE32(MLX5_COMP_ALWAYS <<
MLX5_COMP_MODE_OFFSET);
/* Save elts_head in dedicated free on completion queue. */
#ifdef RTE_LIBRTE_MLX5_DEBUG
txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head |
(last->cseg.opcode >> 8) << 16;
#else
txq->fcqs[txq->cq_pi++ & txq->cqe_m] = head;
#endif
/* A CQE slot must always be available. */
MLX5_ASSERT((txq->cq_pi - txq->cq_ci) <= txq->cqe_s);
}
}
/**
* Build the Control Segment with specified opcode:
* - MLX5_OPCODE_SEND
* - MLX5_OPCODE_ENHANCED_MPSW
* - MLX5_OPCODE_TSO
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Control Segment.
* @param ds
* Supposed length of WQE in segments.
* @param opcode
* SQ WQE opcode to put into Control Segment.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_cseg_init(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc __rte_unused,
struct mlx5_wqe *__rte_restrict wqe,
unsigned int ds,
unsigned int opcode,
unsigned int olx __rte_unused)
{
struct mlx5_wqe_cseg *__rte_restrict cs = &wqe->cseg;
/* For legacy MPW replace the EMPW by TSO with modifier. */
if (MLX5_TXOFF_CONFIG(MPW) && opcode == MLX5_OPCODE_ENHANCED_MPSW)
opcode = MLX5_OPCODE_TSO | MLX5_OPC_MOD_MPW << 24;
cs->opcode = rte_cpu_to_be_32((txq->wqe_ci << 8) | opcode);
cs->sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
cs->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
MLX5_COMP_MODE_OFFSET);
cs->misc = RTE_BE32(0);
}
/**
* Build the Synchronize Queue Segment with specified completion index.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Control Segment.
* @param wci
* Completion index in Clock Queue to wait.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_wseg_init(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc __rte_unused,
struct mlx5_wqe *restrict wqe,
unsigned int wci,
unsigned int olx __rte_unused)
{
struct mlx5_wqe_qseg *qs;
qs = RTE_PTR_ADD(wqe, MLX5_WSEG_SIZE);
qs->max_index = rte_cpu_to_be_32(wci);
qs->qpn_cqn = rte_cpu_to_be_32(txq->sh->txpp.clock_queue.cq_obj.cq->id);
qs->reserved0 = RTE_BE32(0);
qs->reserved1 = RTE_BE32(0);
}
/**
* Build the Ethernet Segment without inlined data.
* Supports Software Parser, Checksums and VLAN insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_eseg_none(struct mlx5_txq_data *__rte_restrict txq __rte_unused,
struct mlx5_txq_local *__rte_restrict loc,
struct mlx5_wqe *__rte_restrict wqe,
unsigned int olx)
{
struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
uint32_t csum;
/*
* Calculate and set check sum flags first, dword field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
es->flags = rte_cpu_to_le_32(csum);
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
/* Engage VLAN tag insertion feature if requested. */
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
/*
* We should get here only if device support
* this feature correctly.
*/
MLX5_ASSERT(txq->vlan_en);
es->inline_hdr = rte_cpu_to_be_32(MLX5_ETH_WQE_VLAN_INSERT |
loc->mbuf->vlan_tci);
} else {
es->inline_hdr = RTE_BE32(0);
}
}
/**
* Build the Ethernet Segment with minimal inlined data
* of MLX5_ESEG_MIN_INLINE_SIZE bytes length. This is
* used to fill the gap in single WQEBB WQEs.
* Supports Software Parser, Checksums and VLAN
* insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param vlan
* Length of VLAN tag insertion if any.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_eseg_dmin(struct mlx5_txq_data *__rte_restrict txq __rte_unused,
struct mlx5_txq_local *__rte_restrict loc,
struct mlx5_wqe *__rte_restrict wqe,
unsigned int vlan,
unsigned int olx)
{
struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
uint32_t csum;
uint8_t *psrc, *pdst;
/*
* Calculate and set check sum flags first, dword field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
es->flags = rte_cpu_to_le_32(csum);
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
es->inline_hdr_sz = RTE_BE16(MLX5_ESEG_MIN_INLINE_SIZE);
es->inline_data = *(unaligned_uint16_t *)psrc;
psrc += sizeof(uint16_t);
pdst = (uint8_t *)(es + 1);
if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
/* Implement VLAN tag insertion as part inline data. */
memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
/* Insert VLAN ethertype + VLAN tag. */
*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
/* Copy the rest two bytes from packet data. */
MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
} else {
/* Fill the gap in the title WQEBB with inline data. */
rte_mov16(pdst, psrc);
}
}
/**
* Build the Ethernet Segment with entire packet data inlining. Checks the
* boundary of WQEBB and ring buffer wrapping, supports Software Parser,
* Checksums and VLAN insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param vlan
* Length of VLAN tag insertion if any.
* @param inlen
* Length of data to inline (VLAN included, if any).
* @param tso
* TSO flag, set mss field from the packet.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment (aligned and wrapped around).
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_eseg_data(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
struct mlx5_wqe *__rte_restrict wqe,
unsigned int vlan,
unsigned int inlen,
unsigned int tso,
unsigned int olx)
{
struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
uint32_t csum;
uint8_t *psrc, *pdst;
unsigned int part;
/*
* Calculate and set check sum flags first, dword field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
if (tso) {
csum <<= 24;
csum |= loc->mbuf->tso_segsz;
es->flags = rte_cpu_to_be_32(csum);
} else {
es->flags = rte_cpu_to_le_32(csum);
}
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
es->inline_hdr_sz = rte_cpu_to_be_16(inlen);
es->inline_data = *(unaligned_uint16_t *)psrc;
psrc += sizeof(uint16_t);
pdst = (uint8_t *)(es + 1);
if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
/* Implement VLAN tag insertion as part inline data. */
memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
/* Insert VLAN ethertype + VLAN tag. */
*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
/* Copy the rest two bytes from packet data. */
MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
psrc += sizeof(uint16_t);
} else {
/* Fill the gap in the title WQEBB with inline data. */
rte_mov16(pdst, psrc);
psrc += sizeof(rte_v128u32_t);
}
pdst = (uint8_t *)(es + 2);
MLX5_ASSERT(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
MLX5_ASSERT(pdst < (uint8_t *)txq->wqes_end);
inlen -= MLX5_ESEG_MIN_INLINE_SIZE;
if (!inlen) {
MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
return (struct mlx5_wqe_dseg *)pdst;
}
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, inlen);
do {
rte_memcpy(pdst, psrc, part);
inlen -= part;
if (likely(!inlen)) {
/*
* If return value is not used by the caller
* the code below will be optimized out.
*/
pdst += part;
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
pdst = (uint8_t *)txq->wqes;
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
psrc += part;
part = inlen;
} while (true);
}
/**
* Copy data from chain of mbuf to the specified linear buffer.
* Checksums and VLAN insertion Tx offload features. If data
* from some mbuf copied completely this mbuf is freed. Local
* structure is used to keep the byte stream state.
*
* @param pdst
* Pointer to the destination linear buffer.
* @param loc
* Pointer to burst routine local context.
* @param len
* Length of data to be copied.
* @param must
* Length of data to be copied ignoring no inline hint.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Number of actual copied data bytes. This is always greater than or
* equal to must parameter and might be lesser than len in no inline
* hint flag is encountered.
*/
static __rte_always_inline unsigned int
mlx5_tx_mseg_memcpy(uint8_t *pdst,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int len,
unsigned int must,
unsigned int olx __rte_unused)
{
struct rte_mbuf *mbuf;
unsigned int part, dlen, copy = 0;
uint8_t *psrc;
MLX5_ASSERT(len);
MLX5_ASSERT(must <= len);
do {
/* Allow zero length packets, must check first. */
dlen = rte_pktmbuf_data_len(loc->mbuf);
if (dlen <= loc->mbuf_off) {
/* Exhausted packet, just free. */
mbuf = loc->mbuf;
loc->mbuf = mbuf->next;
rte_pktmbuf_free_seg(mbuf);
loc->mbuf_off = 0;
MLX5_ASSERT(loc->mbuf_nseg > 1);
MLX5_ASSERT(loc->mbuf);
--loc->mbuf_nseg;
if (loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE) {
unsigned int diff;
if (copy >= must) {
/*
* We already copied the minimal
* requested amount of data.
*/
return copy;
}
diff = must - copy;
if (diff <= rte_pktmbuf_data_len(loc->mbuf)) {
/*
* Copy only the minimal required
* part of the data buffer.
*/
len = diff;
}
}
continue;
}
dlen -= loc->mbuf_off;
psrc = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
loc->mbuf_off);
part = RTE_MIN(len, dlen);
rte_memcpy(pdst, psrc, part);
copy += part;
loc->mbuf_off += part;
len -= part;
if (!len) {
if (loc->mbuf_off >= rte_pktmbuf_data_len(loc->mbuf)) {
loc->mbuf_off = 0;
/* Exhausted packet, just free. */
mbuf = loc->mbuf;
loc->mbuf = mbuf->next;
rte_pktmbuf_free_seg(mbuf);
loc->mbuf_off = 0;
MLX5_ASSERT(loc->mbuf_nseg >= 1);
--loc->mbuf_nseg;
}
return copy;
}
pdst += part;
} while (true);
}
/**
* Build the Ethernet Segment with inlined data from multi-segment packet.
* Checks the boundary of WQEBB and ring buffer wrapping, supports Software
* Parser, Checksums and VLAN insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param vlan
* Length of VLAN tag insertion if any.
* @param inlen
* Length of data to inline (VLAN included, if any).
* @param tso
* TSO flag, set mss field from the packet.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment (aligned and possible NOT wrapped
* around - caller should do wrapping check on its own).
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_eseg_mdat(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
struct mlx5_wqe *__rte_restrict wqe,
unsigned int vlan,
unsigned int inlen,
unsigned int tso,
unsigned int olx)
{
struct mlx5_wqe_eseg *__rte_restrict es = &wqe->eseg;
uint32_t csum;
uint8_t *pdst;
unsigned int part, tlen = 0;
/*
* Calculate and set check sum flags first, uint32_t field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
if (tso) {
csum <<= 24;
csum |= loc->mbuf->tso_segsz;
es->flags = rte_cpu_to_be_32(csum);
} else {
es->flags = rte_cpu_to_le_32(csum);
}
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0 : 0;
MLX5_ASSERT(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
pdst = (uint8_t *)&es->inline_data;
if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
/* Implement VLAN tag insertion as part inline data. */
mlx5_tx_mseg_memcpy(pdst, loc,
2 * RTE_ETHER_ADDR_LEN,
2 * RTE_ETHER_ADDR_LEN, olx);
pdst += 2 * RTE_ETHER_ADDR_LEN;
*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
tlen += 2 * RTE_ETHER_ADDR_LEN + sizeof(struct rte_vlan_hdr);
}
MLX5_ASSERT(pdst < (uint8_t *)txq->wqes_end);
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, inlen - tlen);
MLX5_ASSERT(part);
do {
unsigned int copy;
/*
* Copying may be interrupted inside the routine
* if run into no inline hint flag.
*/
copy = tlen >= txq->inlen_mode ? 0 : (txq->inlen_mode - tlen);
copy = mlx5_tx_mseg_memcpy(pdst, loc, part, copy, olx);
tlen += copy;
if (likely(inlen <= tlen) || copy < part) {
es->inline_hdr_sz = rte_cpu_to_be_16(tlen);
pdst += copy;
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
part = inlen - tlen;
} while (true);
}
/**
* Build the Data Segment of pointer type.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to WQE to fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_dseg_ptr(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
struct mlx5_wqe_dseg *__rte_restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
MLX5_ASSERT(len);
dseg->bcount = rte_cpu_to_be_32(len);
dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
}
/**
* Build the Data Segment of pointer type or inline if data length is less than
* buffer in minimal Data Segment size.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to WQE to fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_dseg_iptr(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
struct mlx5_wqe_dseg *__rte_restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
uintptr_t dst, src;
MLX5_ASSERT(len);
if (len > MLX5_DSEG_MIN_INLINE_SIZE) {
dseg->bcount = rte_cpu_to_be_32(len);
dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
return;
}
dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
/* Unrolled implementation of generic rte_memcpy. */
dst = (uintptr_t)&dseg->inline_data[0];
src = (uintptr_t)buf;
if (len & 0x08) {
#ifdef RTE_ARCH_STRICT_ALIGN
MLX5_ASSERT(dst == RTE_PTR_ALIGN(dst, sizeof(uint32_t)));
*(uint32_t *)dst = *(unaligned_uint32_t *)src;
dst += sizeof(uint32_t);
src += sizeof(uint32_t);
*(uint32_t *)dst = *(unaligned_uint32_t *)src;
dst += sizeof(uint32_t);
src += sizeof(uint32_t);
#else
*(uint64_t *)dst = *(unaligned_uint64_t *)src;
dst += sizeof(uint64_t);
src += sizeof(uint64_t);
#endif
}
if (len & 0x04) {
*(uint32_t *)dst = *(unaligned_uint32_t *)src;
dst += sizeof(uint32_t);
src += sizeof(uint32_t);
}
if (len & 0x02) {
*(uint16_t *)dst = *(unaligned_uint16_t *)src;
dst += sizeof(uint16_t);
src += sizeof(uint16_t);
}
if (len & 0x01)
*(uint8_t *)dst = *(uint8_t *)src;
}
/**
* Build the Data Segment of inlined data from single
* segment packet, no VLAN insertion.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to WQE to fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment after inlined data.
* Ring buffer wraparound check is needed. We do not do it here because it
* may not be needed for the last packet in the eMPW session.
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_dseg_empw(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc __rte_unused,
struct mlx5_wqe_dseg *__rte_restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
unsigned int part;
uint8_t *pdst;
if (!MLX5_TXOFF_CONFIG(MPW)) {
/* Store the descriptor byte counter for eMPW sessions. */
dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
pdst = &dseg->inline_data[0];
} else {
/* The entire legacy MPW session counter is stored on close. */
pdst = (uint8_t *)dseg;
}
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, len);
do {
rte_memcpy(pdst, buf, part);
len -= part;
if (likely(!len)) {
pdst += part;
if (!MLX5_TXOFF_CONFIG(MPW))
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
/* Note: no final wraparound check here. */
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
buf += part;
part = len;
} while (true);
}
/**
* Build the Data Segment of inlined data from single
* segment packet with VLAN insertion.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to the dseg fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment after inlined data.
* Ring buffer wraparound check is needed.
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_dseg_vlan(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc __rte_unused,
struct mlx5_wqe_dseg *__rte_restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
unsigned int part;
uint8_t *pdst;
MLX5_ASSERT(len > MLX5_ESEG_MIN_INLINE_SIZE);
if (!MLX5_TXOFF_CONFIG(MPW)) {
/* Store the descriptor byte counter for eMPW sessions. */
dseg->bcount = rte_cpu_to_be_32
((len + sizeof(struct rte_vlan_hdr)) |
MLX5_ETH_WQE_DATA_INLINE);
pdst = &dseg->inline_data[0];
} else {
/* The entire legacy MPW session counter is stored on close. */
pdst = (uint8_t *)dseg;
}
memcpy(pdst, buf, MLX5_DSEG_MIN_INLINE_SIZE);
buf += MLX5_DSEG_MIN_INLINE_SIZE;
pdst += MLX5_DSEG_MIN_INLINE_SIZE;
len -= MLX5_DSEG_MIN_INLINE_SIZE;
/* Insert VLAN ethertype + VLAN tag. Pointer is aligned. */
MLX5_ASSERT(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
pdst = (uint8_t *)txq->wqes;
*(uint32_t *)pdst = rte_cpu_to_be_32((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, len);
do {
rte_memcpy(pdst, buf, part);
len -= part;
if (likely(!len)) {
pdst += part;
if (!MLX5_TXOFF_CONFIG(MPW))
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
/* Note: no final wraparound check here. */
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
buf += part;
part = len;
} while (true);
}
/**
* Build the Ethernet Segment with optionally inlined data with
* VLAN insertion and following Data Segments (if any) from
* multi-segment packet. Used by ordinary send and TSO.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet/Data Segments.
* @param vlan
* Length of VLAN header to insert, 0 means no VLAN insertion.
* @param inlen
* Data length to inline. For TSO this parameter specifies exact value,
* for ordinary send routine can be aligned by caller to provide better WQE
* space saving and data buffer start address alignment.
* This length includes VLAN header being inserted.
* @param tso
* Zero means ordinary send, inlined data can be extended,
* otherwise this is TSO, inlined data length is fixed.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Actual size of built WQE in segments.
*/
static __rte_always_inline unsigned int
mlx5_tx_mseg_build(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
struct mlx5_wqe *__rte_restrict wqe,
unsigned int vlan,
unsigned int inlen,
unsigned int tso,
unsigned int olx __rte_unused)
{
struct mlx5_wqe_dseg *__rte_restrict dseg;
unsigned int ds;
MLX5_ASSERT((rte_pktmbuf_pkt_len(loc->mbuf) + vlan) >= inlen);
loc->mbuf_nseg = NB_SEGS(loc->mbuf);
loc->mbuf_off = 0;
dseg = mlx5_tx_eseg_mdat(txq, loc, wqe, vlan, inlen, tso, olx);
if (!loc->mbuf_nseg)
goto dseg_done;
/*
* There are still some mbuf remaining, not inlined.
* The first mbuf may be partially inlined and we
* must process the possible non-zero data offset.
*/
if (loc->mbuf_off) {
unsigned int dlen;
uint8_t *dptr;
/*
* Exhausted packets must be dropped before.
* Non-zero offset means there are some data
* remained in the packet.
*/
MLX5_ASSERT(loc->mbuf_off < rte_pktmbuf_data_len(loc->mbuf));
MLX5_ASSERT(rte_pktmbuf_data_len(loc->mbuf));
dptr = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
loc->mbuf_off);
dlen = rte_pktmbuf_data_len(loc->mbuf) - loc->mbuf_off;
/*
* Build the pointer/minimal Data Segment.
* Do ring buffer wrapping check in advance.
*/
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
mlx5_tx_dseg_iptr(txq, loc, dseg, dptr, dlen, olx);
/* Store the mbuf to be freed on completion. */
MLX5_ASSERT(loc->elts_free);
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
++dseg;
if (--loc->mbuf_nseg == 0)
goto dseg_done;
loc->mbuf = loc->mbuf->next;
loc->mbuf_off = 0;
}
do {
if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
struct rte_mbuf *mbuf;
/* Zero length segment found, just skip. */
mbuf = loc->mbuf;
loc->mbuf = loc->mbuf->next;
rte_pktmbuf_free_seg(mbuf);
if (--loc->mbuf_nseg == 0)
break;
} else {
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
mlx5_tx_dseg_iptr
(txq, loc, dseg,
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
rte_pktmbuf_data_len(loc->mbuf), olx);
MLX5_ASSERT(loc->elts_free);
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
++dseg;
if (--loc->mbuf_nseg == 0)
break;
loc->mbuf = loc->mbuf->next;
}
} while (true);
dseg_done:
/* Calculate actual segments used from the dseg pointer. */
if ((uintptr_t)wqe < (uintptr_t)dseg)
ds = ((uintptr_t)dseg - (uintptr_t)wqe) / MLX5_WSEG_SIZE;
else
ds = (((uintptr_t)dseg - (uintptr_t)wqe) +
txq->wqe_s * MLX5_WQE_SIZE) / MLX5_WSEG_SIZE;
return ds;
}
/**
* The routine checks timestamp flag in the current packet,
* and push WAIT WQE into the queue if scheduling is required.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_SINGLE - continue processing with the packet.
* MLX5_TXCMP_CODE_MULTI - the WAIT inserted, continue processing.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_schedule_send(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
if (MLX5_TXOFF_CONFIG(TXPP) &&
loc->mbuf->ol_flags & txq->ts_mask) {
struct mlx5_wqe *wqe;
uint64_t ts;
int32_t wci;
/*
* Estimate the required space quickly and roughly.
* We would like to ensure the packet can be pushed
* to the queue and we won't get the orphan WAIT WQE.
*/
if (loc->wqe_free <= MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE ||
loc->elts_free < NB_SEGS(loc->mbuf))
return MLX5_TXCMP_CODE_EXIT;
/* Convert the timestamp into completion to wait. */
ts = *RTE_MBUF_DYNFIELD(loc->mbuf, txq->ts_offset, uint64_t *);
wci = mlx5_txpp_convert_tx_ts(txq->sh, ts);
if (unlikely(wci < 0))
return MLX5_TXCMP_CODE_SINGLE;
/* Build the WAIT WQE with specified completion. */
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
mlx5_tx_cseg_init(txq, loc, wqe, 2, MLX5_OPCODE_WAIT, olx);
mlx5_tx_wseg_init(txq, loc, wqe, wci, olx);
++txq->wqe_ci;
--loc->wqe_free;
return MLX5_TXCMP_CODE_MULTI;
}
return MLX5_TXCMP_CODE_SINGLE;
}
/**
* Tx one packet function for multi-segment TSO. Supports all
* types of Tx offloads, uses MLX5_OPCODE_TSO to build WQEs,
* sends one packet per WQE.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_tso(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
struct mlx5_wqe *__rte_restrict wqe;
unsigned int ds, dlen, inlen, ntcp, vlan = 0;
if (MLX5_TXOFF_CONFIG(TXPP)) {
enum mlx5_txcmp_code wret;
/* Generate WAIT for scheduling if requested. */
wret = mlx5_tx_schedule_send(txq, loc, olx);
if (wret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (wret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
}
/*
* Calculate data length to be inlined to estimate
* the required space in WQE ring buffer.
*/
dlen = rte_pktmbuf_pkt_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
vlan = sizeof(struct rte_vlan_hdr);
inlen = loc->mbuf->l2_len + vlan +
loc->mbuf->l3_len + loc->mbuf->l4_len;
if (unlikely((!inlen || !loc->mbuf->tso_segsz)))
return MLX5_TXCMP_CODE_ERROR;
if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
inlen += loc->mbuf->outer_l2_len + loc->mbuf->outer_l3_len;
/* Packet must contain all TSO headers. */
if (unlikely(inlen > MLX5_MAX_TSO_HEADER ||
inlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
inlen > (dlen + vlan)))
return MLX5_TXCMP_CODE_ERROR;
MLX5_ASSERT(inlen >= txq->inlen_mode);
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Data Segments of pointer/min inline type
*/
ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
/* Check for maximal WQE size. */
if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_ERROR;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes/packets counters. */
ntcp = (dlen - (inlen - vlan) + loc->mbuf->tso_segsz - 1) /
loc->mbuf->tso_segsz;
/*
* One will be added for mbuf itself at the end of the mlx5_tx_burst
* from loc->pkts_sent field.
*/
--ntcp;
txq->stats.opackets += ntcp;
txq->stats.obytes += dlen + vlan + ntcp * inlen;
#endif
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_TSO, olx);
ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 1, olx);
wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
return MLX5_TXCMP_CODE_MULTI;
}
/**
* Tx one packet function for multi-segment SEND. Supports all types of Tx
* offloads, uses MLX5_OPCODE_SEND to build WQEs, sends one packet per WQE,
* without any data inlining in Ethernet Segment.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_send(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
struct mlx5_wqe_dseg *__rte_restrict dseg;
struct mlx5_wqe *__rte_restrict wqe;
unsigned int ds, nseg;
MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
if (MLX5_TXOFF_CONFIG(TXPP)) {
enum mlx5_txcmp_code wret;
/* Generate WAIT for scheduling if requested. */
wret = mlx5_tx_schedule_send(txq, loc, olx);
if (wret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (wret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
}
/*
* No inline at all, it means the CPU cycles saving is prioritized at
* configuration, we should not copy any packet data to WQE.
*/
nseg = NB_SEGS(loc->mbuf);
ds = 2 + nseg;
if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
/* Check for maximal WQE size. */
if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_ERROR;
/*
* Some Tx offloads may cause an error if packet is not long enough,
* check against assumed minimal length.
*/
if (rte_pktmbuf_pkt_len(loc->mbuf) <= MLX5_ESEG_MIN_INLINE_SIZE)
return MLX5_TXCMP_CODE_ERROR;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += rte_pktmbuf_pkt_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
txq->stats.obytes += sizeof(struct rte_vlan_hdr);
#endif
/*
* SEND WQE, one WQEBB:
* - Control Segment, SEND opcode
* - Ethernet Segment, optional VLAN, no inline
* - Data Segments, pointer only type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, ds, MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_none(txq, loc, wqe, olx);
dseg = &wqe->dseg[0];
do {
if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
struct rte_mbuf *mbuf;
/*
* Zero length segment found, have to correct total
* size of WQE in segments.
* It is supposed to be rare occasion, so in normal
* case (no zero length segments) we avoid extra
* writing to the Control Segment.
*/
--ds;
wqe->cseg.sq_ds -= RTE_BE32(1);
mbuf = loc->mbuf;
loc->mbuf = mbuf->next;
rte_pktmbuf_free_seg(mbuf);
if (--nseg == 0)
break;
} else {
mlx5_tx_dseg_ptr
(txq, loc, dseg,
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
rte_pktmbuf_data_len(loc->mbuf), olx);
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
if (--nseg == 0)
break;
++dseg;
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
loc->mbuf = loc->mbuf->next;
}
} while (true);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
return MLX5_TXCMP_CODE_MULTI;
}
/**
* Tx one packet function for multi-segment SEND. Supports all
* types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
* sends one packet per WQE, with data inlining in
* Ethernet Segment and minimal Data Segments.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_inline(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
struct mlx5_wqe *__rte_restrict wqe;
unsigned int ds, inlen, dlen, vlan = 0;
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
if (MLX5_TXOFF_CONFIG(TXPP)) {
enum mlx5_txcmp_code wret;
/* Generate WAIT for scheduling if requested. */
wret = mlx5_tx_schedule_send(txq, loc, olx);
if (wret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (wret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
}
/*
* First calculate data length to be inlined
* to estimate the required space for WQE.
*/
dlen = rte_pktmbuf_pkt_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
vlan = sizeof(struct rte_vlan_hdr);
inlen = dlen + vlan;
/* Check against minimal length. */
if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
return MLX5_TXCMP_CODE_ERROR;
MLX5_ASSERT(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
if (inlen > txq->inlen_send ||
loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE) {
struct rte_mbuf *mbuf;
unsigned int nxlen;
uintptr_t start;
/*
* Packet length exceeds the allowed inline data length,
* check whether the minimal inlining is required.
*/
if (txq->inlen_mode) {
MLX5_ASSERT(txq->inlen_mode >=
MLX5_ESEG_MIN_INLINE_SIZE);
MLX5_ASSERT(txq->inlen_mode <= txq->inlen_send);
inlen = txq->inlen_mode;
} else {
if (loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE ||
!vlan || txq->vlan_en) {
/*
* VLAN insertion will be done inside by HW.
* It is not utmost effective - VLAN flag is
* checked twice, but we should proceed the
* inlining length correctly and take into
* account the VLAN header being inserted.
*/
return mlx5_tx_packet_multi_send
(txq, loc, olx);
}
inlen = MLX5_ESEG_MIN_INLINE_SIZE;
}
/*
* Now we know the minimal amount of data is requested
* to inline. Check whether we should inline the buffers
* from the chain beginning to eliminate some mbufs.
*/
mbuf = loc->mbuf;
nxlen = rte_pktmbuf_data_len(mbuf);
if (unlikely(nxlen <= txq->inlen_send)) {
/* We can inline first mbuf at least. */
if (nxlen < inlen) {
unsigned int smlen;
/* Scan mbufs till inlen filled. */
do {
smlen = nxlen;
mbuf = NEXT(mbuf);
MLX5_ASSERT(mbuf);
nxlen = rte_pktmbuf_data_len(mbuf);
nxlen += smlen;
} while (unlikely(nxlen < inlen));
if (unlikely(nxlen > txq->inlen_send)) {
/* We cannot inline entire mbuf. */
smlen = inlen - smlen;
start = rte_pktmbuf_mtod_offset
(mbuf, uintptr_t, smlen);
goto do_align;
}
}
do {
inlen = nxlen;
mbuf = NEXT(mbuf);
/* There should be not end of packet. */
MLX5_ASSERT(mbuf);
nxlen = inlen + rte_pktmbuf_data_len(mbuf);
} while (unlikely(nxlen < txq->inlen_send));
}
start = rte_pktmbuf_mtod(mbuf, uintptr_t);
/*
* Check whether we can do inline to align start
* address of data buffer to cacheline.
*/
do_align:
start = (~start + 1) & (RTE_CACHE_LINE_SIZE - 1);
if (unlikely(start)) {
start += inlen;
if (start <= txq->inlen_send)
inlen = start;
}
}
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Data Segments of pointer/min inline type
*
* Estimate the number of Data Segments conservatively,
* supposing no any mbufs is being freed during inlining.
*/
MLX5_ASSERT(inlen <= txq->inlen_send);
ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
/* Check for maximal WQE size. */
if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_ERROR;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes/packets counters. */
txq->stats.obytes += dlen + vlan;
#endif
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_SEND, olx);
ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 0, olx);
wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
return MLX5_TXCMP_CODE_MULTI;
}
/**
* Tx burst function for multi-segment packets. Supports all
* types of Tx offloads, uses MLX5_OPCODE_SEND/TSO to build WQEs,
* sends one packet per WQE. Function stops sending if it
* encounters the single-segment packet.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
* MLX5_TXCMP_CODE_TSO - TSO single-segment packet encountered.
* Local context variables updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_mseg(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
enum mlx5_txcmp_code ret;
MLX5_ASSERT(NB_SEGS(loc->mbuf) > 1);
/*
* Estimate the number of free elts quickly but conservatively.
* Some segment may be fully inlined and freed,
* ignore this here - precise estimation is costly.
*/
if (loc->elts_free < NB_SEGS(loc->mbuf))
return MLX5_TXCMP_CODE_EXIT;
if (MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)) {
/* Proceed with multi-segment TSO. */
ret = mlx5_tx_packet_multi_tso(txq, loc, olx);
} else if (MLX5_TXOFF_CONFIG(INLINE)) {
/* Proceed with multi-segment SEND with inlining. */
ret = mlx5_tx_packet_multi_inline(txq, loc, olx);
} else {
/* Proceed with multi-segment SEND w/o inlining. */
ret = mlx5_tx_packet_multi_send(txq, loc, olx);
}
if (ret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (ret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
/* WQE is built, go to the next packet. */
++loc->pkts_sent;
--pkts_n;
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
if (pkts_n > 1)
rte_prefetch0(*pkts);
if (likely(NB_SEGS(loc->mbuf) > 1))
continue;
/* Here ends the series of multi-segment packets. */
if (MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
return MLX5_TXCMP_CODE_TSO;
return MLX5_TXCMP_CODE_SINGLE;
}
MLX5_ASSERT(false);
}
/**
* Tx burst function for single-segment packets with TSO.
* Supports all types of Tx offloads, except multi-packets.
* Uses MLX5_OPCODE_TSO to build WQEs, sends one packet per WQE.
* Function stops sending if it encounters the multi-segment
* packet or packet without TSO requested.
*
* The routine is responsible for storing processed mbuf into elts ring buffer
* and update elts_head if inline offloads is requested due to possible early
* freeing of the inlined mbufs (can not store pkts array in elts as a batch).
*
* @param txq
* Pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
* MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
* Local context variables updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_tso(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe_dseg *__rte_restrict dseg;
struct mlx5_wqe *__rte_restrict wqe;
unsigned int ds, dlen, hlen, ntcp, vlan = 0;
uint8_t *dptr;
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
if (MLX5_TXOFF_CONFIG(TXPP)) {
enum mlx5_txcmp_code wret;
/* Generate WAIT for scheduling if requested. */
wret = mlx5_tx_schedule_send(txq, loc, olx);
if (wret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (wret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
}
dlen = rte_pktmbuf_data_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
vlan = sizeof(struct rte_vlan_hdr);
}
/*
* First calculate the WQE size to check
* whether we have enough space in ring buffer.
*/
hlen = loc->mbuf->l2_len + vlan +
loc->mbuf->l3_len + loc->mbuf->l4_len;
if (unlikely((!hlen || !loc->mbuf->tso_segsz)))
return MLX5_TXCMP_CODE_ERROR;
if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
hlen += loc->mbuf->outer_l2_len +
loc->mbuf->outer_l3_len;
/* Segment must contain all TSO headers. */
if (unlikely(hlen > MLX5_MAX_TSO_HEADER ||
hlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
hlen > (dlen + vlan)))
return MLX5_TXCMP_CODE_ERROR;
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Finishing Data Segment of pointer type
*/
ds = 4 + (hlen - MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (loc->wqe_free < ((ds + 3) / 4))
return MLX5_TXCMP_CODE_EXIT;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes/packets counters. */
ntcp = (dlen + vlan - hlen +
loc->mbuf->tso_segsz - 1) /
loc->mbuf->tso_segsz;
/*
* One will be added for mbuf itself at the end
* of the mlx5_tx_burst from loc->pkts_sent field.
*/
--ntcp;
txq->stats.opackets += ntcp;
txq->stats.obytes += dlen + vlan + ntcp * hlen;
#endif
/*
* Build the TSO WQE:
* - Control Segment
* - Ethernet Segment with hlen bytes inlined
* - Data Segment of pointer type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, ds,
MLX5_OPCODE_TSO, olx);
dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan, hlen, 1, olx);
dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) + hlen - vlan;
dlen -= hlen - vlan;
mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
/*
* WQE is built, update the loop parameters
* and go to the next packet.
*/
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
if (MLX5_TXOFF_CONFIG(INLINE))
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
++loc->pkts_sent;
--pkts_n;
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
if (pkts_n > 1)
rte_prefetch0(*pkts);
if (MLX5_TXOFF_CONFIG(MULTI) &&
unlikely(NB_SEGS(loc->mbuf) > 1))
return MLX5_TXCMP_CODE_MULTI;
if (likely(!(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)))
return MLX5_TXCMP_CODE_SINGLE;
/* Continue with the next TSO packet. */
}
MLX5_ASSERT(false);
}
/**
* Analyze the packet and select the best method to send.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
* @param newp
* The predefined flag whether do complete check for
* multi-segment packets and TSO.
*
* @return
* MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
* MLX5_TXCMP_CODE_TSO - TSO required, use TSO/LSO.
* MLX5_TXCMP_CODE_SINGLE - single-segment packet, use SEND.
* MLX5_TXCMP_CODE_EMPW - single-segment packet, use MPW.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_able_to_empw(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx,
bool newp)
{
/* Check for multi-segment packet. */
if (newp &&
MLX5_TXOFF_CONFIG(MULTI) &&
unlikely(NB_SEGS(loc->mbuf) > 1))
return MLX5_TXCMP_CODE_MULTI;
/* Check for TSO packet. */
if (newp &&
MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
return MLX5_TXCMP_CODE_TSO;
/* Check if eMPW is enabled at all. */
if (!MLX5_TXOFF_CONFIG(EMPW))
return MLX5_TXCMP_CODE_SINGLE;
/* Check if eMPW can be engaged. */
if (MLX5_TXOFF_CONFIG(VLAN) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) &&
(!MLX5_TXOFF_CONFIG(INLINE) ||
unlikely((rte_pktmbuf_data_len(loc->mbuf) +
sizeof(struct rte_vlan_hdr)) > txq->inlen_empw))) {
/*
* eMPW does not support VLAN insertion offload, we have to
* inline the entire packet but packet is too long for inlining.
*/
return MLX5_TXCMP_CODE_SINGLE;
}
return MLX5_TXCMP_CODE_EMPW;
}
/**
* Check the next packet attributes to match with the eMPW batch ones.
* In addition, for legacy MPW the packet length is checked either.
*
* @param txq
* Pointer to TX queue structure.
* @param es
* Pointer to Ethernet Segment of eMPW batch.
* @param loc
* Pointer to burst routine local context.
* @param dlen
* Length of previous packet in MPW descriptor.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* true - packet match with eMPW batch attributes.
* false - no match, eMPW should be restarted.
*/
static __rte_always_inline bool
mlx5_tx_match_empw(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_wqe_eseg *__rte_restrict es,
struct mlx5_txq_local *__rte_restrict loc,
uint32_t dlen,
unsigned int olx)
{
uint8_t swp_flags = 0;
/* Compare the checksum flags, if any. */
if (MLX5_TXOFF_CONFIG(CSUM) &&
txq_ol_cksum_to_cs(loc->mbuf) != es->cs_flags)
return false;
/* Compare the Software Parser offsets and flags. */
if (MLX5_TXOFF_CONFIG(SWP) &&
(es->swp_offs != txq_mbuf_to_swp(loc, &swp_flags, olx) ||
es->swp_flags != swp_flags))
return false;
/* Fill metadata field if needed. */
if (MLX5_TXOFF_CONFIG(METADATA) &&
es->metadata != (loc->mbuf->ol_flags & PKT_TX_DYNF_METADATA ?
*RTE_FLOW_DYNF_METADATA(loc->mbuf) : 0))
return false;
/* Legacy MPW can send packets with the same length only. */
if (MLX5_TXOFF_CONFIG(MPW) &&
dlen != rte_pktmbuf_data_len(loc->mbuf))
return false;
/* There must be no VLAN packets in eMPW loop. */
if (MLX5_TXOFF_CONFIG(VLAN))
MLX5_ASSERT(!(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT));
/* Check if the scheduling is requested. */
if (MLX5_TXOFF_CONFIG(TXPP) &&
loc->mbuf->ol_flags & txq->ts_mask)
return false;
return true;
}
/**
* Update send loop variables and WQE for eMPW loop without data inlining.
* Number of Data Segments is equal to the number of sent packets.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param ds
* Number of packets/Data Segments/Packets.
* @param slen
* Accumulated statistics, bytes sent.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* true - packet match with eMPW batch attributes.
* false - no match, eMPW should be restarted.
*/
static __rte_always_inline void
mlx5_tx_sdone_empw(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int ds,
unsigned int slen,
unsigned int olx __rte_unused)
{
MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += slen;
#else
(void)slen;
#endif
loc->elts_free -= ds;
loc->pkts_sent += ds;
ds += 2;
loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
}
/**
* Update send loop variables and WQE for eMPW loop with data inlining.
* Gets the size of pushed descriptors and data to the WQE.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param len
* Total size of descriptor/data in bytes.
* @param slen
* Accumulated statistics, data bytes sent.
* @param wqem
* The base WQE for the eMPW/MPW descriptor.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* true - packet match with eMPW batch attributes.
* false - no match, eMPW should be restarted.
*/
static __rte_always_inline void
mlx5_tx_idone_empw(struct mlx5_txq_data *__rte_restrict txq,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int len,
unsigned int slen,
struct mlx5_wqe *__rte_restrict wqem,
unsigned int olx __rte_unused)
{
struct mlx5_wqe_dseg *dseg = &wqem->dseg[0];
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += slen;
#else
(void)slen;
#endif
if (MLX5_TXOFF_CONFIG(MPW) && dseg->bcount == RTE_BE32(0)) {
/*
* If the legacy MPW session contains the inline packets
* we should set the only inline data segment length
* and align the total length to the segment size.
*/
MLX5_ASSERT(len > sizeof(dseg->bcount));
dseg->bcount = rte_cpu_to_be_32((len - sizeof(dseg->bcount)) |
MLX5_ETH_WQE_DATA_INLINE);
len = (len + MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE + 2;
} else {
/*
* The session is not legacy MPW or contains the
* data buffer pointer segments.
*/
MLX5_ASSERT((len % MLX5_WSEG_SIZE) == 0);
len = len / MLX5_WSEG_SIZE + 2;
}
wqem->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | len);
txq->wqe_ci += (len + 3) / 4;
loc->wqe_free -= (len + 3) / 4;
loc->wqe_last = wqem;
}
/**
* The set of Tx burst functions for single-segment packets without TSO
* and with Multi-Packet Writing feature support.
* Supports all types of Tx offloads, except multi-packets and TSO.
*
* Uses MLX5_OPCODE_EMPW to build WQEs if possible and sends as many packet
* per WQE as it can. If eMPW is not configured or packet can not be sent with
* eMPW (VLAN insertion) the ordinary SEND opcode is used and only one packet
* placed in WQE.
*
* Functions stop sending if it encounters the multi-segment packet or packet
* with TSO requested.
*
* The routines are responsible for storing processed mbuf into elts ring buffer
* and update elts_head if inlining offload is requested. Otherwise the copying
* mbufs to elts can be postponed and completed at the end of burst routine.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
* MLX5_TXCMP_CODE_TSO - TSO packet encountered.
* MLX5_TXCMP_CODE_SINGLE - used inside functions set.
* MLX5_TXCMP_CODE_EMPW - used inside functions set.
*
* Local context variables updated.
*
*
* The routine sends packets with MLX5_OPCODE_EMPW
* without inlining, this is dedicated optimized branch.
* No VLAN insertion is supported.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_empw_simple(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
/*
* Subroutine is the part of mlx5_tx_burst_single() and sends
* single-segment packet with eMPW opcode without data inlining.
*/
MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
MLX5_ASSERT(MLX5_TXOFF_CONFIG(EMPW));
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe_dseg *__rte_restrict dseg;
struct mlx5_wqe_eseg *__rte_restrict eseg;
enum mlx5_txcmp_code ret;
unsigned int part, loop;
unsigned int slen = 0;
next_empw:
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
if (MLX5_TXOFF_CONFIG(TXPP)) {
enum mlx5_txcmp_code wret;
/* Generate WAIT for scheduling if requested. */
wret = mlx5_tx_schedule_send(txq, loc, olx);
if (wret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (wret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
}
part = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ?
MLX5_MPW_MAX_PACKETS :
MLX5_EMPW_MAX_PACKETS);
if (unlikely(loc->elts_free < part)) {
/* We have no enough elts to save all mbufs. */
if (unlikely(loc->elts_free < MLX5_EMPW_MIN_PACKETS))
return MLX5_TXCMP_CODE_EXIT;
/* But we still able to send at least minimal eMPW. */
part = loc->elts_free;
}
/* Check whether we have enough WQEs */
if (unlikely(loc->wqe_free < ((2 + part + 3) / 4))) {
if (unlikely(loc->wqe_free <
((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
part = (loc->wqe_free * 4) - 2;
}
if (likely(part > 1))
rte_prefetch0(*pkts);
loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m);
/*
* Build eMPW title WQEBB:
* - Control Segment, eMPW opcode
* - Ethernet Segment, no inline
*/
mlx5_tx_cseg_init(txq, loc, loc->wqe_last, part + 2,
MLX5_OPCODE_ENHANCED_MPSW, olx);
mlx5_tx_eseg_none(txq, loc, loc->wqe_last,
olx & ~MLX5_TXOFF_CONFIG_VLAN);
eseg = &loc->wqe_last->eseg;
dseg = &loc->wqe_last->dseg[0];
loop = part;
/* Store the packet length for legacy MPW. */
if (MLX5_TXOFF_CONFIG(MPW))
eseg->mss = rte_cpu_to_be_16
(rte_pktmbuf_data_len(loc->mbuf));
for (;;) {
uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
slen += dlen;
#endif
mlx5_tx_dseg_ptr
(txq, loc, dseg,
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
dlen, olx);
if (unlikely(--loop == 0))
break;
loc->mbuf = *pkts++;
if (likely(loop > 1))
rte_prefetch0(*pkts);
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
/*
* Unroll the completion code to avoid
* returning variable value - it results in
* unoptimized sequent checking in caller.
*/
if (ret == MLX5_TXCMP_CODE_MULTI) {
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_MULTI;
}
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
if (ret == MLX5_TXCMP_CODE_TSO) {
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_TSO;
}
if (ret == MLX5_TXCMP_CODE_SINGLE) {
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_SINGLE;
}
if (ret != MLX5_TXCMP_CODE_EMPW) {
MLX5_ASSERT(false);
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
return MLX5_TXCMP_CODE_ERROR;
}
/*
* Check whether packet parameters coincide
* within assumed eMPW batch:
* - check sum settings
* - metadata value
* - software parser settings
* - packets length (legacy MPW only)
* - scheduling is not required
*/
if (!mlx5_tx_match_empw(txq, eseg, loc, dlen, olx)) {
MLX5_ASSERT(loop);
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
pkts_n -= part;
goto next_empw;
}
/* Packet attributes match, continue the same eMPW. */
++dseg;
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
}
/* eMPW is built successfully, update loop parameters. */
MLX5_ASSERT(!loop);
MLX5_ASSERT(pkts_n >= part);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += slen;
#endif
loc->elts_free -= part;
loc->pkts_sent += part;
txq->wqe_ci += (2 + part + 3) / 4;
loc->wqe_free -= (2 + part + 3) / 4;
pkts_n -= part;
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
if (unlikely(ret != MLX5_TXCMP_CODE_EMPW))
return ret;
/* Continue sending eMPW batches. */
}
MLX5_ASSERT(false);
}
/**
* The routine sends packets with MLX5_OPCODE_EMPW
* with inlining, optionally supports VLAN insertion.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_empw_inline(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
/*
* Subroutine is the part of mlx5_tx_burst_single() and sends
* single-segment packet with eMPW opcode with data inlining.
*/
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
MLX5_ASSERT(MLX5_TXOFF_CONFIG(EMPW));
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe_dseg *__rte_restrict dseg;
struct mlx5_wqe *__rte_restrict wqem;
enum mlx5_txcmp_code ret;
unsigned int room, part, nlim;
unsigned int slen = 0;
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
if (MLX5_TXOFF_CONFIG(TXPP)) {
enum mlx5_txcmp_code wret;
/* Generate WAIT for scheduling if requested. */
wret = mlx5_tx_schedule_send(txq, loc, olx);
if (wret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (wret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
}
/*
* Limits the amount of packets in one WQE
* to improve CQE latency generation.
*/
nlim = RTE_MIN(pkts_n, MLX5_TXOFF_CONFIG(MPW) ?
MLX5_MPW_INLINE_MAX_PACKETS :
MLX5_EMPW_MAX_PACKETS);
/* Check whether we have minimal amount WQEs */
if (unlikely(loc->wqe_free <
((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
if (likely(pkts_n > 1))
rte_prefetch0(*pkts);
wqem = txq->wqes + (txq->wqe_ci & txq->wqe_m);
/*
* Build eMPW title WQEBB:
* - Control Segment, eMPW opcode, zero DS
* - Ethernet Segment, no inline
*/
mlx5_tx_cseg_init(txq, loc, wqem, 0,
MLX5_OPCODE_ENHANCED_MPSW, olx);
mlx5_tx_eseg_none(txq, loc, wqem,
olx & ~MLX5_TXOFF_CONFIG_VLAN);
dseg = &wqem->dseg[0];
/* Store the packet length for legacy MPW. */
if (MLX5_TXOFF_CONFIG(MPW))
wqem->eseg.mss = rte_cpu_to_be_16
(rte_pktmbuf_data_len(loc->mbuf));
room = RTE_MIN(MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE,
loc->wqe_free) * MLX5_WQE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE;
/* Limit the room for legacy MPW sessions for performance. */
if (MLX5_TXOFF_CONFIG(MPW))
room = RTE_MIN(room,
RTE_MAX(txq->inlen_empw +
sizeof(dseg->bcount) +
(MLX5_TXOFF_CONFIG(VLAN) ?
sizeof(struct rte_vlan_hdr) : 0),
MLX5_MPW_INLINE_MAX_PACKETS *
MLX5_WQE_DSEG_SIZE));
/* Build WQE till we have space, packets and resources. */
part = room;
for (;;) {
uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
uint8_t *dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
unsigned int tlen;
MLX5_ASSERT(room >= MLX5_WQE_DSEG_SIZE);
MLX5_ASSERT((room % MLX5_WQE_DSEG_SIZE) == 0);
MLX5_ASSERT((uintptr_t)dseg < (uintptr_t)txq->wqes_end);
/*
* Some Tx offloads may cause an error if packet is not
* long enough, check against assumed minimal length.
*/
if (unlikely(dlen <= MLX5_ESEG_MIN_INLINE_SIZE)) {
part -= room;
if (unlikely(!part))
return MLX5_TXCMP_CODE_ERROR;
/*
* We have some successfully built
* packet Data Segments to send.
*/
mlx5_tx_idone_empw(txq, loc, part,
slen, wqem, olx);
return MLX5_TXCMP_CODE_ERROR;
}
/* Inline or not inline - that's the Question. */
if (dlen > txq->inlen_empw ||
loc->mbuf->ol_flags & PKT_TX_DYNF_NOINLINE)
goto pointer_empw;
if (MLX5_TXOFF_CONFIG(MPW)) {
if (dlen > txq->inlen_send)
goto pointer_empw;
tlen = dlen;
if (part == room) {
/* Open new inline MPW session. */
tlen += sizeof(dseg->bcount);
dseg->bcount = RTE_BE32(0);
dseg = RTE_PTR_ADD
(dseg, sizeof(dseg->bcount));
} else {
/*
* No pointer and inline descriptor
* intermix for legacy MPW sessions.
*/
if (wqem->dseg[0].bcount)
break;
}
} else {
tlen = sizeof(dseg->bcount) + dlen;
}
/* Inline entire packet, optional VLAN insertion. */
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
/*
* The packet length must be checked in
* mlx5_tx_able_to_empw() and packet
* fits into inline length guaranteed.
*/
MLX5_ASSERT((dlen +
sizeof(struct rte_vlan_hdr)) <=
txq->inlen_empw);
tlen += sizeof(struct rte_vlan_hdr);
if (room < tlen)
break;
dseg = mlx5_tx_dseg_vlan(txq, loc, dseg,
dptr, dlen, olx);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
slen += sizeof(struct rte_vlan_hdr);
#endif
} else {
if (room < tlen)
break;
dseg = mlx5_tx_dseg_empw(txq, loc, dseg,
dptr, dlen, olx);
}
if (!MLX5_TXOFF_CONFIG(MPW))
tlen = RTE_ALIGN(tlen, MLX5_WSEG_SIZE);
MLX5_ASSERT(room >= tlen);
room -= tlen;
/*
* Packet data are completely inline,
* we can try to free the packet.
*/
if (likely(loc->pkts_sent == loc->mbuf_free)) {
/*
* All the packets from the burst beginning
* are inline, we can free mbufs directly
* from the origin array on tx_burst exit().
*/
loc->mbuf_free++;
goto next_mbuf;
}
/*
* In order no to call rte_pktmbuf_free_seg() here,
* in the most inner loop (that might be very
* expensive) we just save the mbuf in elts.
*/
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
loc->elts_free--;
goto next_mbuf;
pointer_empw:
/*
* No pointer and inline descriptor
* intermix for legacy MPW sessions.
*/
if (MLX5_TXOFF_CONFIG(MPW) &&
part != room &&
wqem->dseg[0].bcount == RTE_BE32(0))
break;
/*
* Not inlinable VLAN packets are
* proceeded outside of this routine.
*/
MLX5_ASSERT(room >= MLX5_WQE_DSEG_SIZE);
if (MLX5_TXOFF_CONFIG(VLAN))
MLX5_ASSERT(!(loc->mbuf->ol_flags &
PKT_TX_VLAN_PKT));
mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
/* We have to store mbuf in elts.*/
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
loc->elts_free--;
room -= MLX5_WQE_DSEG_SIZE;
/* Ring buffer wraparound is checked at the loop end.*/
++dseg;
next_mbuf:
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
slen += dlen;
#endif
loc->pkts_sent++;
pkts_n--;
if (unlikely(!pkts_n || !loc->elts_free)) {
/*
* We have no resources/packets to
* continue build descriptors.
*/
part -= room;
mlx5_tx_idone_empw(txq, loc, part,
slen, wqem, olx);
return MLX5_TXCMP_CODE_EXIT;
}
loc->mbuf = *pkts++;
if (likely(pkts_n > 1))
rte_prefetch0(*pkts);
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
/*
* Unroll the completion code to avoid
* returning variable value - it results in
* unoptimized sequent checking in caller.
*/
if (ret == MLX5_TXCMP_CODE_MULTI) {
part -= room;
mlx5_tx_idone_empw(txq, loc, part,
slen, wqem, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_MULTI;
}
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
if (ret == MLX5_TXCMP_CODE_TSO) {
part -= room;
mlx5_tx_idone_empw(txq, loc, part,
slen, wqem, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_TSO;
}
if (ret == MLX5_TXCMP_CODE_SINGLE) {
part -= room;
mlx5_tx_idone_empw(txq, loc, part,
slen, wqem, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_SINGLE;
}
if (ret != MLX5_TXCMP_CODE_EMPW) {
MLX5_ASSERT(false);
part -= room;
mlx5_tx_idone_empw(txq, loc, part,
slen, wqem, olx);
return MLX5_TXCMP_CODE_ERROR;
}
/* Check if we have minimal room left. */
nlim--;
if (unlikely(!nlim || room < MLX5_WQE_DSEG_SIZE))
break;
/*
* Check whether packet parameters coincide
* within assumed eMPW batch:
* - check sum settings
* - metadata value
* - software parser settings
* - packets length (legacy MPW only)
* - scheduling is not required
*/
if (!mlx5_tx_match_empw(txq, &wqem->eseg,
loc, dlen, olx))
break;
/* Packet attributes match, continue the same eMPW. */
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
}
/*
* We get here to close an existing eMPW
* session and start the new one.
*/
MLX5_ASSERT(pkts_n);
part -= room;
if (unlikely(!part))
return MLX5_TXCMP_CODE_EXIT;
mlx5_tx_idone_empw(txq, loc, part, slen, wqem, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
/* Continue the loop with new eMPW session. */
}
MLX5_ASSERT(false);
}
/**
* The routine sends packets with ordinary MLX5_OPCODE_SEND.
* Data inlining and VLAN insertion are supported.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_single_send(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
/*
* Subroutine is the part of mlx5_tx_burst_single()
* and sends single-segment packet with SEND opcode.
*/
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
MLX5_ASSERT(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe *__rte_restrict wqe;
enum mlx5_txcmp_code ret;
MLX5_ASSERT(NB_SEGS(loc->mbuf) == 1);
if (MLX5_TXOFF_CONFIG(TXPP)) {
enum mlx5_txcmp_code wret;
/* Generate WAIT for scheduling if requested. */
wret = mlx5_tx_schedule_send(txq, loc, olx);
if (wret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (wret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
}
if (MLX5_TXOFF_CONFIG(INLINE)) {
unsigned int inlen, vlan = 0;
inlen = rte_pktmbuf_data_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
vlan = sizeof(struct rte_vlan_hdr);
inlen += vlan;
}
/*
* If inlining is enabled at configuration time
* the limit must be not less than minimal size.
* Otherwise we would do extra check for data
* size to avoid crashes due to length overflow.
*/
MLX5_ASSERT(txq->inlen_send >=
MLX5_ESEG_MIN_INLINE_SIZE);
if (inlen <= txq->inlen_send) {
unsigned int seg_n, wqe_n;
rte_prefetch0(rte_pktmbuf_mtod
(loc->mbuf, uint8_t *));
/* Check against minimal length. */
if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
return MLX5_TXCMP_CODE_ERROR;
if (loc->mbuf->ol_flags &
PKT_TX_DYNF_NOINLINE) {
/*
* The hint flag not to inline packet
* data is set. Check whether we can
* follow the hint.
*/
if ((!MLX5_TXOFF_CONFIG(EMPW) &&
txq->inlen_mode) ||
(MLX5_TXOFF_CONFIG(MPW) &&
txq->inlen_mode)) {
if (inlen <= txq->inlen_send)
goto single_inline;
/*
* The hardware requires the
* minimal inline data header.
*/
goto single_min_inline;
}
if (MLX5_TXOFF_CONFIG(VLAN) &&
vlan && !txq->vlan_en) {
/*
* We must insert VLAN tag
* by software means.
*/
goto single_part_inline;
}
goto single_no_inline;
}
single_inline:
/*
* Completely inlined packet data WQE:
* - Control Segment, SEND opcode
* - Ethernet Segment, no VLAN insertion
* - Data inlined, VLAN optionally inserted
* - Alignment to MLX5_WSEG_SIZE
* Have to estimate amount of WQEBBs
*/
seg_n = (inlen + 3 * MLX5_WSEG_SIZE -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
/* Check if there are enough WQEBBs. */
wqe_n = (seg_n + 3) / 4;
if (wqe_n > loc->wqe_free)
return MLX5_TXCMP_CODE_EXIT;
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, seg_n,
MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_data(txq, loc, wqe,
vlan, inlen, 0, olx);
txq->wqe_ci += wqe_n;
loc->wqe_free -= wqe_n;
/*
* Packet data are completely inlined,
* free the packet immediately.
*/
rte_pktmbuf_free_seg(loc->mbuf);
} else if ((!MLX5_TXOFF_CONFIG(EMPW) ||
MLX5_TXOFF_CONFIG(MPW)) &&
txq->inlen_mode) {
/*
* If minimal inlining is requested the eMPW
* feature should be disabled due to data is
* inlined into Ethernet Segment, which can
* not contain inlined data for eMPW due to
* segment shared for all packets.
*/
struct mlx5_wqe_dseg *__rte_restrict dseg;
unsigned int ds;
uint8_t *dptr;
/*
* The inline-mode settings require
* to inline the specified amount of
* data bytes to the Ethernet Segment.
* We should check the free space in
* WQE ring buffer to inline partially.
*/
single_min_inline:
MLX5_ASSERT(txq->inlen_send >= txq->inlen_mode);
MLX5_ASSERT(inlen > txq->inlen_mode);
MLX5_ASSERT(txq->inlen_mode >=
MLX5_ESEG_MIN_INLINE_SIZE);
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Finishing Data Segment of pointer type
*/
ds = (MLX5_WQE_CSEG_SIZE +
MLX5_WQE_ESEG_SIZE +
MLX5_WQE_DSEG_SIZE +
txq->inlen_mode -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WQE_DSEG_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (loc->wqe_free < ((ds + 3) / 4))
return MLX5_TXCMP_CODE_EXIT;
/*
* Build the ordinary SEND WQE:
* - Control Segment
* - Ethernet Segment, inline inlen_mode bytes
* - Data Segment of pointer type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, ds,
MLX5_OPCODE_SEND, olx);
dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan,
txq->inlen_mode,
0, olx);
dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
txq->inlen_mode - vlan;
inlen -= txq->inlen_mode;
mlx5_tx_dseg_ptr(txq, loc, dseg,
dptr, inlen, olx);
/*
* WQE is built, update the loop parameters
* and got to the next packet.
*/
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
/* We have to store mbuf in elts.*/
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
txq->elts[txq->elts_head++ & txq->elts_m] =
loc->mbuf;
--loc->elts_free;
} else {
uint8_t *dptr;
unsigned int dlen;
/*
* Partially inlined packet data WQE, we have
* some space in title WQEBB, we can fill it
* with some packet data. It takes one WQEBB,
* it is available, no extra space check:
* - Control Segment, SEND opcode
* - Ethernet Segment, no VLAN insertion
* - MLX5_ESEG_MIN_INLINE_SIZE bytes of Data
* - Data Segment, pointer type
*
* We also get here if VLAN insertion is not
* supported by HW, the inline is enabled.
*/
single_part_inline:
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 4,
MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_dmin(txq, loc, wqe, vlan, olx);
dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
MLX5_ESEG_MIN_INLINE_SIZE - vlan;
/*
* The length check is performed above, by
* comparing with txq->inlen_send. We should
* not get overflow here.
*/
MLX5_ASSERT(inlen > MLX5_ESEG_MIN_INLINE_SIZE);
dlen = inlen - MLX5_ESEG_MIN_INLINE_SIZE;
mlx5_tx_dseg_ptr(txq, loc, &wqe->dseg[1],
dptr, dlen, olx);
++txq->wqe_ci;
--loc->wqe_free;
/* We have to store mbuf in elts.*/
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE));
txq->elts[txq->elts_head++ & txq->elts_m] =
loc->mbuf;
--loc->elts_free;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += vlan +
rte_pktmbuf_data_len(loc->mbuf);
#endif
} else {
/*
* No inline at all, it means the CPU cycles saving
* is prioritized at configuration, we should not
* copy any packet data to WQE.
*
* SEND WQE, one WQEBB:
* - Control Segment, SEND opcode
* - Ethernet Segment, optional VLAN, no inline
* - Data Segment, pointer type
*/
single_no_inline:
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 3,
MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_none(txq, loc, wqe, olx);
mlx5_tx_dseg_ptr
(txq, loc, &wqe->dseg[0],
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
rte_pktmbuf_data_len(loc->mbuf), olx);
++txq->wqe_ci;
--loc->wqe_free;
/*
* We should not store mbuf pointer in elts
* if no inlining is configured, this is done
* by calling routine in a batch copy.
*/
MLX5_ASSERT(!MLX5_TXOFF_CONFIG(INLINE));
--loc->elts_free;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += rte_pktmbuf_data_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
txq->stats.obytes +=
sizeof(struct rte_vlan_hdr);
#endif
}
++loc->pkts_sent;
--pkts_n;
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
if (pkts_n > 1)
rte_prefetch0(*pkts);
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
if (unlikely(ret != MLX5_TXCMP_CODE_SINGLE))
return ret;
}
MLX5_ASSERT(false);
}
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_single(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *__rte_restrict loc,
unsigned int olx)
{
enum mlx5_txcmp_code ret;
ret = mlx5_tx_able_to_empw(txq, loc, olx, false);
if (ret == MLX5_TXCMP_CODE_SINGLE)
goto ordinary_send;
MLX5_ASSERT(ret == MLX5_TXCMP_CODE_EMPW);
for (;;) {
/* Optimize for inline/no inline eMPW send. */
ret = (MLX5_TXOFF_CONFIG(INLINE)) ?
mlx5_tx_burst_empw_inline
(txq, pkts, pkts_n, loc, olx) :
mlx5_tx_burst_empw_simple
(txq, pkts, pkts_n, loc, olx);
if (ret != MLX5_TXCMP_CODE_SINGLE)
return ret;
/* The resources to send one packet should remain. */
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
ordinary_send:
ret = mlx5_tx_burst_single_send(txq, pkts, pkts_n, loc, olx);
MLX5_ASSERT(ret != MLX5_TXCMP_CODE_SINGLE);
if (ret != MLX5_TXCMP_CODE_EMPW)
return ret;
/* The resources to send one packet should remain. */
MLX5_ASSERT(loc->elts_free && loc->wqe_free);
}
}
/**
* DPDK Tx callback template. This is configured template used to generate
* routines optimized for specified offload setup.
* One of this generated functions is chosen at SQ configuration time.
*
* @param txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param olx
* Configured offloads mask, presents the bits of MLX5_TXOFF_CONFIG_xxx
* values. Should be static to take compile time static configuration
* advantages.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static __rte_always_inline uint16_t
mlx5_tx_burst_tmpl(struct mlx5_txq_data *__rte_restrict txq,
struct rte_mbuf **__rte_restrict pkts,
uint16_t pkts_n,
unsigned int olx)
{
struct mlx5_txq_local loc;
enum mlx5_txcmp_code ret;
unsigned int part;
MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
if (unlikely(!pkts_n))
return 0;
if (MLX5_TXOFF_CONFIG(INLINE))
loc.mbuf_free = 0;
loc.pkts_sent = 0;
loc.pkts_copy = 0;
loc.wqe_last = NULL;
send_loop:
loc.pkts_loop = loc.pkts_sent;
/*
* Check if there are some CQEs, if any:
* - process an encountered errors
* - process the completed WQEs
* - free related mbufs
* - doorbell the NIC about processed CQEs
*/
rte_prefetch0(*(pkts + loc.pkts_sent));
mlx5_tx_handle_completion(txq, olx);
/*
* Calculate the number of available resources - elts and WQEs.
* There are two possible different scenarios:
* - no data inlining into WQEs, one WQEBB may contains up to
* four packets, in this case elts become scarce resource
* - data inlining into WQEs, one packet may require multiple
* WQEBBs, the WQEs become the limiting factor.
*/
MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
loc.elts_free = txq->elts_s -
(uint16_t)(txq->elts_head - txq->elts_tail);
MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
loc.wqe_free = txq->wqe_s -
(uint16_t)(txq->wqe_ci - txq->wqe_pi);
if (unlikely(!loc.elts_free || !loc.wqe_free))
goto burst_exit;
for (;;) {
/*
* Fetch the packet from array. Usually this is the first
* packet in series of multi/single segment packets.
*/
loc.mbuf = *(pkts + loc.pkts_sent);
/* Dedicated branch for multi-segment packets. */
if (MLX5_TXOFF_CONFIG(MULTI) &&
unlikely(NB_SEGS(loc.mbuf) > 1)) {
/*
* Multi-segment packet encountered.
* Hardware is able to process it only
* with SEND/TSO opcodes, one packet
* per WQE, do it in dedicated routine.
*/
enter_send_multi:
MLX5_ASSERT(loc.pkts_sent >= loc.pkts_copy);
part = loc.pkts_sent - loc.pkts_copy;
if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
/*
* There are some single-segment mbufs not
* stored in elts. The mbufs must be in the
* same order as WQEs, so we must copy the
* mbufs to elts here, before the coming
* multi-segment packet mbufs is appended.
*/
mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy,
part, olx);
loc.pkts_copy = loc.pkts_sent;
}
MLX5_ASSERT(pkts_n > loc.pkts_sent);
ret = mlx5_tx_burst_mseg(txq, pkts, pkts_n, &loc, olx);
if (!MLX5_TXOFF_CONFIG(INLINE))
loc.pkts_copy = loc.pkts_sent;
/*
* These returned code checks are supposed
* to be optimized out due to routine inlining.
*/
if (ret == MLX5_TXCMP_CODE_EXIT) {
/*
* The routine returns this code when
* all packets are sent or there is no
* enough resources to complete request.
*/
break;
}
if (ret == MLX5_TXCMP_CODE_ERROR) {
/*
* The routine returns this code when some error
* in the incoming packets format occurred.
*/
txq->stats.oerrors++;
break;
}
if (ret == MLX5_TXCMP_CODE_SINGLE) {
/*
* The single-segment packet was encountered
* in the array, try to send it with the
* best optimized way, possible engaging eMPW.
*/
goto enter_send_single;
}
if (MLX5_TXOFF_CONFIG(TSO) &&
ret == MLX5_TXCMP_CODE_TSO) {
/*
* The single-segment TSO packet was
* encountered in the array.
*/
goto enter_send_tso;
}
/* We must not get here. Something is going wrong. */
MLX5_ASSERT(false);
txq->stats.oerrors++;
break;
}
/* Dedicated branch for single-segment TSO packets. */
if (MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc.mbuf->ol_flags & PKT_TX_TCP_SEG)) {
/*
* TSO might require special way for inlining
* (dedicated parameters) and is sent with
* MLX5_OPCODE_TSO opcode only, provide this
* in dedicated branch.
*/
enter_send_tso:
MLX5_ASSERT(NB_SEGS(loc.mbuf) == 1);
MLX5_ASSERT(pkts_n > loc.pkts_sent);
ret = mlx5_tx_burst_tso(txq, pkts, pkts_n, &loc, olx);
/*
* These returned code checks are supposed
* to be optimized out due to routine inlining.
*/
if (ret == MLX5_TXCMP_CODE_EXIT)
break;
if (ret == MLX5_TXCMP_CODE_ERROR) {
txq->stats.oerrors++;
break;
}
if (ret == MLX5_TXCMP_CODE_SINGLE)
goto enter_send_single;
if (MLX5_TXOFF_CONFIG(MULTI) &&
ret == MLX5_TXCMP_CODE_MULTI) {
/*
* The multi-segment packet was
* encountered in the array.
*/
goto enter_send_multi;
}
/* We must not get here. Something is going wrong. */
MLX5_ASSERT(false);
txq->stats.oerrors++;
break;
}
/*
* The dedicated branch for the single-segment packets
* without TSO. Often these ones can be sent using
* MLX5_OPCODE_EMPW with multiple packets in one WQE.
* The routine builds the WQEs till it encounters
* the TSO or multi-segment packet (in case if these
* offloads are requested at SQ configuration time).
*/
enter_send_single:
MLX5_ASSERT(pkts_n > loc.pkts_sent);
ret = mlx5_tx_burst_single(txq, pkts, pkts_n, &loc, olx);
/*
* These returned code checks are supposed
* to be optimized out due to routine inlining.
*/
if (ret == MLX5_TXCMP_CODE_EXIT)
break;
if (ret == MLX5_TXCMP_CODE_ERROR) {
txq->stats.oerrors++;
break;
}
if (MLX5_TXOFF_CONFIG(MULTI) &&
ret == MLX5_TXCMP_CODE_MULTI) {
/*
* The multi-segment packet was
* encountered in the array.
*/
goto enter_send_multi;
}
if (MLX5_TXOFF_CONFIG(TSO) &&
ret == MLX5_TXCMP_CODE_TSO) {
/*
* The single-segment TSO packet was
* encountered in the array.
*/
goto enter_send_tso;
}
/* We must not get here. Something is going wrong. */
MLX5_ASSERT(false);
txq->stats.oerrors++;
break;
}
/*
* Main Tx loop is completed, do the rest:
* - set completion request if thresholds are reached
* - doorbell the hardware
* - copy the rest of mbufs to elts (if any)
*/
MLX5_ASSERT(MLX5_TXOFF_CONFIG(INLINE) ||
loc.pkts_sent >= loc.pkts_copy);
/* Take a shortcut if nothing is sent. */
if (unlikely(loc.pkts_sent == loc.pkts_loop))
goto burst_exit;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, &loc, olx);
/*
* Ring QP doorbell immediately after WQE building completion
* to improve latencies. The pure software related data treatment
* can be completed after doorbell. Tx CQEs for this SQ are
* processed in this thread only by the polling.
*
* The rdma core library can map doorbell register in two ways,
* depending on the environment variable "MLX5_SHUT_UP_BF":
*
* - as regular cached memory, the variable is either missing or
* set to zero. This type of mapping may cause the significant
* doorbell register writing latency and requires explicit memory
* write barrier to mitigate this issue and prevent write combining.
*
* - as non-cached memory, the variable is present and set to not "0"
* value. This type of mapping may cause performance impact under
* heavy loading conditions but the explicit write memory barrier is
* not required and it may improve core performance.
*
* - the legacy behaviour (prior 19.08 release) was to use some
* heuristics to decide whether write memory barrier should
* be performed. This behavior is supported with specifying
* tx_db_nc=2, write barrier is skipped if application provides
* the full recommended burst of packets, it supposes the next
* packets are coming and the write barrier will be issued on
* the next burst (after descriptor writing, at least).
*/
mlx5_tx_dbrec_cond_wmb(txq, loc.wqe_last, !txq->db_nc &&
(!txq->db_heu || pkts_n % MLX5_TX_DEFAULT_BURST));
/* Not all of the mbufs may be stored into elts yet. */
part = MLX5_TXOFF_CONFIG(INLINE) ? 0 : loc.pkts_sent - loc.pkts_copy;
if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
/*
* There are some single-segment mbufs not stored in elts.
* It can be only if the last packet was single-segment.
* The copying is gathered into one place due to it is
* a good opportunity to optimize that with SIMD.
* Unfortunately if inlining is enabled the gaps in pointer
* array may happen due to early freeing of the inlined mbufs.
*/
mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy, part, olx);
loc.pkts_copy = loc.pkts_sent;
}
MLX5_ASSERT(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
MLX5_ASSERT(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
if (pkts_n > loc.pkts_sent) {
/*
* If burst size is large there might be no enough CQE
* fetched from completion queue and no enough resources
* freed to send all the packets.
*/
goto send_loop;
}
burst_exit:
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += loc.pkts_sent;
#endif
if (MLX5_TXOFF_CONFIG(INLINE) && loc.mbuf_free)
__mlx5_tx_free_mbuf(txq, pkts, loc.mbuf_free, olx);
return loc.pkts_sent;
}
#endif /* RTE_PMD_MLX5_TX_H_ */