numam-dpdk/drivers/common/cnxk/roc_se.c
Volodymyr Fialko 87d396163c crypto/cnxk: support DOCSIS
Add support for offloading RTE_CRYPTO_CIPHER_AES_DOCSISBPI and
RTE_CRYPTO_CIPHER_DES_DOCSISBPI algorithms to symmetric crypto session.

Signed-off-by: Volodymyr Fialko <vfialko@marvell.com>
Acked-by: Akhil Goyal <gakhil@marvell.com>
2022-09-27 17:18:45 +02:00

676 lines
17 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#include "roc_api.h"
static uint8_t zuc_key128[32] = {
0x44, 0xD7, 0x26, 0xBC, 0x62, 0x6B, 0x13, 0x5E, 0x57, 0x89, 0x35,
0xE2, 0x71, 0x35, 0x09, 0xAF, 0x4D, 0x78, 0x2F, 0x13, 0x6B, 0xC4,
0x1A, 0xF1, 0x5E, 0x26, 0x3C, 0x4D, 0x78, 0x9A, 0x47, 0xAC};
static uint8_t zuc_key256[16] = {0x22, 0x2f, 0x24, 0x2a, 0x6d, 0x40,
0x40, 0x40, 0x40, 0x40, 0x40, 0x40,
0x40, 0x52, 0x10, 0x30};
static uint8_t zuc_key256_mac4[16] = {0x22, 0x2f, 0x25, 0x2a, 0x6d, 0x40,
0x40, 0x40, 0x40, 0x40, 0x40, 0x40,
0x40, 0x52, 0x10, 0x30};
static uint8_t zuc_key256_mac8[16] = {0x23, 0x2f, 0x24, 0x2a, 0x6d, 0x40,
0x40, 0x40, 0x40, 0x40, 0x40, 0x40,
0x40, 0x52, 0x10, 0x30};
static uint8_t zuc_key256_mac16[16] = {0x23, 0x2f, 0x25, 0x2a, 0x6d, 0x40,
0x40, 0x40, 0x40, 0x40, 0x40, 0x40,
0x40, 0x52, 0x10, 0x30};
static inline void
cpt_snow3g_key_gen(const uint8_t *ck, uint32_t *keyx)
{
int i, base;
for (i = 0; i < 4; i++) {
base = 4 * i;
keyx[3 - i] = (ck[base] << 24) | (ck[base + 1] << 16) |
(ck[base + 2] << 8) | (ck[base + 3]);
keyx[3 - i] = plt_cpu_to_be_32(keyx[3 - i]);
}
}
static inline int
cpt_ciph_aes_key_validate(uint16_t key_len)
{
switch (key_len) {
case 16:
case 24:
case 32:
return 0;
default:
return -1;
}
}
static inline int
cpt_ciph_type_set(roc_se_cipher_type type, struct roc_se_ctx *ctx,
uint16_t key_len)
{
int fc_type = 0;
switch (type) {
case ROC_SE_PASSTHROUGH:
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_DES3_CBC:
case ROC_SE_DES3_ECB:
case ROC_SE_DES_DOCSISBPI:
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_AES_CBC:
case ROC_SE_AES_ECB:
case ROC_SE_AES_CFB:
case ROC_SE_AES_CTR:
case ROC_SE_AES_GCM:
case ROC_SE_AES_DOCSISBPI:
if (unlikely(cpt_ciph_aes_key_validate(key_len) != 0))
return -1;
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_CHACHA20:
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_AES_XTS:
key_len = key_len / 2;
if (unlikely(key_len == 24)) {
plt_err("Invalid AES key len for XTS");
return -1;
}
if (unlikely(cpt_ciph_aes_key_validate(key_len) != 0))
return -1;
fc_type = ROC_SE_FC_GEN;
break;
case ROC_SE_ZUC_EEA3:
if (ctx->hash_type)
fc_type = ROC_SE_PDCP_CHAIN;
else
fc_type = ROC_SE_PDCP;
break;
case ROC_SE_SNOW3G_UEA2:
if (unlikely(key_len != 16))
return -1;
if (ctx->hash_type)
fc_type = ROC_SE_PDCP_CHAIN;
else
fc_type = ROC_SE_PDCP;
break;
case ROC_SE_AES_CTR_EEA2:
if (ctx->hash_type)
fc_type = ROC_SE_PDCP_CHAIN;
else
fc_type = ROC_SE_PDCP;
break;
case ROC_SE_KASUMI_F8_CBC:
case ROC_SE_KASUMI_F8_ECB:
if (unlikely(key_len != 16))
return -1;
/* No support for AEAD yet */
if (unlikely(ctx->hash_type))
return -1;
fc_type = ROC_SE_KASUMI;
break;
default:
return -1;
}
ctx->fc_type = fc_type;
return 0;
}
static inline void
cpt_ciph_aes_key_type_set(struct roc_se_context *fctx, uint16_t key_len)
{
roc_se_aes_type aes_key_type = 0;
switch (key_len) {
case 16:
aes_key_type = ROC_SE_AES_128_BIT;
break;
case 24:
aes_key_type = ROC_SE_AES_192_BIT;
break;
case 32:
aes_key_type = ROC_SE_AES_256_BIT;
break;
default:
/* This should not happen */
plt_err("Invalid AES key len");
return;
}
fctx->enc.aes_key = aes_key_type;
}
static int
cpt_pdcp_key_type_set(struct roc_se_zuc_snow3g_ctx *zs_ctx, uint16_t key_len)
{
roc_se_aes_type key_type = 0;
if (roc_model_is_cn9k()) {
if (key_len != 16) {
plt_err("Only key len 16 is supported on cn9k");
return -ENOTSUP;
}
}
switch (key_len) {
case 16:
key_type = ROC_SE_AES_128_BIT;
break;
case 32:
key_type = ROC_SE_AES_256_BIT;
break;
default:
plt_err("Invalid AES key len");
return -ENOTSUP;
}
zs_ctx->zuc.otk_ctx.w0.s.key_len = key_type;
return 0;
}
static int
cpt_pdcp_chain_key_type_get(uint16_t key_len)
{
roc_se_aes_type key_type;
switch (key_len) {
case 16:
key_type = ROC_SE_AES_128_BIT;
break;
case 24:
key_type = ROC_SE_AES_192_BIT;
break;
case 32:
key_type = ROC_SE_AES_256_BIT;
break;
default:
plt_err("Invalid key len");
return -ENOTSUP;
}
return key_type;
}
static int
cpt_pdcp_mac_len_set(struct roc_se_zuc_snow3g_ctx *zs_ctx, uint16_t mac_len)
{
roc_se_pdcp_mac_len_type mac_type = 0;
if (roc_model_is_cn9k()) {
if (mac_len != 4) {
plt_err("Only mac len 4 is supported on cn9k");
return -ENOTSUP;
}
}
switch (mac_len) {
case 4:
mac_type = ROC_SE_PDCP_MAC_LEN_32_BIT;
break;
case 8:
mac_type = ROC_SE_PDCP_MAC_LEN_64_BIT;
break;
case 16:
mac_type = ROC_SE_PDCP_MAC_LEN_128_BIT;
break;
default:
plt_err("Invalid ZUC MAC len");
return -ENOTSUP;
}
zs_ctx->zuc.otk_ctx.w0.s.mac_len = mac_type;
return 0;
}
static void
cpt_zuc_const_update(uint8_t *zuc_const, int key_len, int mac_len)
{
if (key_len == 16) {
memcpy(zuc_const, zuc_key128, 32);
} else if (key_len == 32) {
switch (mac_len) {
case 4:
memcpy(zuc_const, zuc_key256_mac4, 16);
break;
case 8:
memcpy(zuc_const, zuc_key256_mac8, 16);
break;
case 16:
memcpy(zuc_const, zuc_key256_mac16, 16);
break;
default:
plt_err("Unsupported mac len");
}
}
}
int
roc_se_auth_key_set(struct roc_se_ctx *se_ctx, roc_se_auth_type type,
const uint8_t *key, uint16_t key_len, uint16_t mac_len)
{
struct roc_se_zuc_snow3g_chain_ctx *zs_ch_ctx;
struct roc_se_zuc_snow3g_ctx *zs_ctx;
struct roc_se_kasumi_ctx *k_ctx;
struct roc_se_context *fctx;
uint8_t opcode_minor;
uint8_t pdcp_alg;
int ret;
if (se_ctx == NULL)
return -1;
zs_ctx = &se_ctx->se_ctx.zs_ctx;
zs_ch_ctx = &se_ctx->se_ctx.zs_ch_ctx;
k_ctx = &se_ctx->se_ctx.k_ctx;
fctx = &se_ctx->se_ctx.fctx;
if ((type >= ROC_SE_ZUC_EIA3) && (type <= ROC_SE_KASUMI_F9_ECB)) {
uint8_t *zuc_const;
uint32_t keyx[4];
uint8_t *ci_key;
bool chained_op =
se_ctx->ciph_then_auth || se_ctx->auth_then_ciph;
if (!key_len)
return -1;
if (roc_model_is_cn9k()) {
ci_key = zs_ctx->zuc.onk_ctx.ci_key;
zuc_const = zs_ctx->zuc.onk_ctx.zuc_const;
} else {
ci_key = zs_ctx->zuc.otk_ctx.ci_key;
zuc_const = zs_ctx->zuc.otk_ctx.zuc_const;
}
/* For ZUC/SNOW3G/Kasumi */
switch (type) {
case ROC_SE_SNOW3G_UIA2:
if (chained_op) {
struct roc_se_onk_zuc_chain_ctx *ctx =
&zs_ch_ctx->zuc.onk_ctx;
zs_ch_ctx->zuc.onk_ctx.w0.s.state_conf =
ROC_SE_PDCP_CHAIN_CTX_KEY_IV;
ctx->w0.s.auth_type =
ROC_SE_PDCP_CHAIN_ALG_TYPE_SNOW3G;
ctx->w0.s.mac_len = mac_len;
ctx->w0.s.auth_key_len = key_len;
se_ctx->fc_type = ROC_SE_PDCP_CHAIN;
cpt_snow3g_key_gen(key, keyx);
memcpy(ctx->st.auth_key, keyx, key_len);
} else {
zs_ctx->zuc.otk_ctx.w0.s.alg_type =
ROC_SE_PDCP_ALG_TYPE_SNOW3G;
zs_ctx->zuc.otk_ctx.w0.s.mac_len =
ROC_SE_PDCP_MAC_LEN_32_BIT;
cpt_snow3g_key_gen(key, keyx);
memcpy(ci_key, keyx, key_len);
se_ctx->fc_type = ROC_SE_PDCP;
}
se_ctx->pdcp_auth_alg = ROC_SE_PDCP_ALG_TYPE_SNOW3G;
se_ctx->zsk_flags = 0x1;
break;
case ROC_SE_ZUC_EIA3:
if (chained_op) {
struct roc_se_onk_zuc_chain_ctx *ctx =
&zs_ch_ctx->zuc.onk_ctx;
ctx->w0.s.state_conf =
ROC_SE_PDCP_CHAIN_CTX_KEY_IV;
ctx->w0.s.auth_type =
ROC_SE_PDCP_CHAIN_ALG_TYPE_ZUC;
ctx->w0.s.mac_len = mac_len;
ctx->w0.s.auth_key_len = key_len;
memcpy(ctx->st.auth_key, key, key_len);
cpt_zuc_const_update(ctx->st.auth_zuc_const,
key_len, mac_len);
se_ctx->fc_type = ROC_SE_PDCP_CHAIN;
} else {
zs_ctx->zuc.otk_ctx.w0.s.alg_type =
ROC_SE_PDCP_ALG_TYPE_ZUC;
ret = cpt_pdcp_key_type_set(zs_ctx, key_len);
if (ret)
return ret;
ret = cpt_pdcp_mac_len_set(zs_ctx, mac_len);
if (ret)
return ret;
memcpy(ci_key, key, key_len);
if (key_len == 32)
roc_se_zuc_bytes_swap(ci_key, key_len);
cpt_zuc_const_update(zuc_const, key_len,
mac_len);
se_ctx->fc_type = ROC_SE_PDCP;
}
se_ctx->pdcp_auth_alg = ROC_SE_PDCP_ALG_TYPE_ZUC;
se_ctx->zsk_flags = 0x1;
break;
case ROC_SE_AES_CMAC_EIA2:
if (chained_op) {
struct roc_se_onk_zuc_chain_ctx *ctx =
&zs_ch_ctx->zuc.onk_ctx;
int key_type;
key_type = cpt_pdcp_chain_key_type_get(key_len);
if (key_type < 0)
return key_type;
ctx->w0.s.auth_key_len = key_type;
ctx->w0.s.state_conf =
ROC_SE_PDCP_CHAIN_CTX_KEY_IV;
ctx->w0.s.auth_type =
ROC_SE_PDCP_ALG_TYPE_AES_CTR;
ctx->w0.s.mac_len = mac_len;
memcpy(ctx->st.auth_key, key, key_len);
se_ctx->fc_type = ROC_SE_PDCP_CHAIN;
} else {
zs_ctx->zuc.otk_ctx.w0.s.alg_type =
ROC_SE_PDCP_ALG_TYPE_AES_CTR;
zs_ctx->zuc.otk_ctx.w0.s.mac_len =
ROC_SE_PDCP_MAC_LEN_32_BIT;
memcpy(ci_key, key, key_len);
se_ctx->fc_type = ROC_SE_PDCP;
}
se_ctx->pdcp_auth_alg = ROC_SE_PDCP_ALG_TYPE_AES_CMAC;
se_ctx->zsk_flags = 0x1;
break;
case ROC_SE_KASUMI_F9_ECB:
/* Kasumi ECB mode */
se_ctx->k_ecb = 1;
memcpy(k_ctx->ci_key, key, key_len);
se_ctx->fc_type = ROC_SE_KASUMI;
se_ctx->zsk_flags = 0x1;
break;
case ROC_SE_KASUMI_F9_CBC:
memcpy(k_ctx->ci_key, key, key_len);
se_ctx->fc_type = ROC_SE_KASUMI;
se_ctx->zsk_flags = 0x1;
break;
default:
return -1;
}
se_ctx->mac_len = mac_len;
se_ctx->hash_type = type;
pdcp_alg = zs_ctx->zuc.otk_ctx.w0.s.alg_type;
if (roc_model_is_cn9k())
if (chained_op == true)
opcode_minor = se_ctx->ciph_then_auth ? 2 : 3;
else
opcode_minor = ((1 << 7) | (pdcp_alg << 5) | 1);
else
opcode_minor = ((1 << 4) | 1);
se_ctx->template_w4.s.opcode_minor = opcode_minor;
return 0;
}
if (!se_ctx->fc_type ||
(type && type != ROC_SE_GMAC_TYPE && !se_ctx->enc_cipher))
se_ctx->fc_type = ROC_SE_HASH_HMAC;
if (se_ctx->fc_type == ROC_SE_FC_GEN && key_len > 64)
return -1;
/* For GMAC auth, cipher must be NULL */
if (type == ROC_SE_GMAC_TYPE)
fctx->enc.enc_cipher = 0;
fctx->enc.hash_type = type;
se_ctx->hash_type = type;
fctx->enc.mac_len = mac_len;
se_ctx->mac_len = mac_len;
if (key_len) {
se_ctx->hmac = 1;
se_ctx->auth_key = plt_zmalloc(key_len, 8);
if (se_ctx->auth_key == NULL)
return -1;
memcpy(se_ctx->auth_key, key, key_len);
se_ctx->auth_key_len = key_len;
memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
memset(fctx->hmac.opad, 0, sizeof(fctx->hmac.opad));
if (key_len <= 64)
memcpy(fctx->hmac.opad, key, key_len);
fctx->enc.auth_input_type = 1;
}
return 0;
}
int
roc_se_ciph_key_set(struct roc_se_ctx *se_ctx, roc_se_cipher_type type,
const uint8_t *key, uint16_t key_len, uint8_t *salt)
{
bool chained_op = se_ctx->ciph_then_auth || se_ctx->auth_then_ciph;
struct roc_se_zuc_snow3g_ctx *zs_ctx = &se_ctx->se_ctx.zs_ctx;
struct roc_se_context *fctx = &se_ctx->se_ctx.fctx;
struct roc_se_zuc_snow3g_chain_ctx *zs_ch_ctx;
uint8_t opcode_minor;
uint8_t *zuc_const;
uint32_t keyx[4];
uint8_t *ci_key;
int i, ret;
zs_ch_ctx = &se_ctx->se_ctx.zs_ch_ctx;
if (roc_model_is_cn9k()) {
ci_key = zs_ctx->zuc.onk_ctx.ci_key;
zuc_const = zs_ctx->zuc.onk_ctx.zuc_const;
} else {
ci_key = zs_ctx->zuc.otk_ctx.ci_key;
zuc_const = zs_ctx->zuc.otk_ctx.zuc_const;
}
/* For AES-GCM, salt is taken from ctx even if IV source
* is from DPTR
*/
if ((salt != NULL) && (type == ROC_SE_AES_GCM)) {
memcpy(fctx->enc.encr_iv, salt, 4);
/* Assuming it was just salt update
* and nothing else
*/
if (key == NULL)
return 0;
}
ret = cpt_ciph_type_set(type, se_ctx, key_len);
if (unlikely(ret))
return -1;
if (se_ctx->fc_type == ROC_SE_FC_GEN) {
/*
* We need to always say IV is from DPTR as user can
* sometimes override IV per operation.
*/
fctx->enc.iv_source = ROC_SE_FROM_DPTR;
if (se_ctx->auth_key_len > 64)
return -1;
}
switch (type) {
case ROC_SE_PASSTHROUGH:
se_ctx->enc_cipher = 0;
fctx->enc.enc_cipher = 0;
goto success;
case ROC_SE_DES3_CBC:
/* CPT performs DES using 3DES with the 8B DES-key
* replicated 2 more times to match the 24B 3DES-key.
* Eg. If org. key is "0x0a 0x0b", then new key is
* "0x0a 0x0b 0x0a 0x0b 0x0a 0x0b"
*/
if (key_len == 8) {
/* Skipping the first 8B as it will be copied
* in the regular code flow
*/
memcpy(fctx->enc.encr_key + key_len, key, key_len);
memcpy(fctx->enc.encr_key + 2 * key_len, key, key_len);
}
break;
case ROC_SE_DES3_ECB:
/* For DES3_ECB IV need to be from CTX. */
fctx->enc.iv_source = ROC_SE_FROM_CTX;
break;
case ROC_SE_AES_CBC:
case ROC_SE_AES_ECB:
case ROC_SE_AES_CFB:
case ROC_SE_AES_CTR:
case ROC_SE_CHACHA20:
cpt_ciph_aes_key_type_set(fctx, key_len);
break;
case ROC_SE_AES_GCM:
cpt_ciph_aes_key_type_set(fctx, key_len);
break;
case ROC_SE_AES_XTS:
key_len = key_len / 2;
cpt_ciph_aes_key_type_set(fctx, key_len);
/* Copy key2 for XTS into ipad */
memset(fctx->hmac.ipad, 0, sizeof(fctx->hmac.ipad));
memcpy(fctx->hmac.ipad, &key[key_len], key_len);
break;
case ROC_SE_AES_DOCSISBPI:
/*
* DOCSIS uses the combination of AES-CBC and residual termination blocks that are
* less than 128. Pass it as regular AES-CBC cipher to CPT, but keep type in
* se_ctx as AES_DOCSISBPI to skip block size checks in instruction preparation.
*/
cpt_ciph_aes_key_type_set(fctx, key_len);
fctx->enc.enc_cipher = ROC_SE_AES_CBC;
memcpy(fctx->enc.encr_key, key, key_len);
goto success;
case ROC_SE_DES_DOCSISBPI:
/* See case ROC_SE_DES3_CBC: for explanation */
for (i = 0; i < 3; i++)
memcpy(fctx->enc.encr_key + key_len * i, key, key_len);
/*
* DOCSIS uses DES-CBC mode with special handling of residual termination blocks
* that are less than 64 bits. Pass it as regular DES-CBC, but keep type in
* se_ctx as DES_DOCSISBPI to skip block size checks in instruction preparation.
*/
fctx->enc.enc_cipher = ROC_SE_DES3_CBC;
goto success;
case ROC_SE_SNOW3G_UEA2:
if (chained_op == true) {
struct roc_se_onk_zuc_chain_ctx *ctx =
&zs_ch_ctx->zuc.onk_ctx;
zs_ch_ctx->zuc.onk_ctx.w0.s.state_conf =
ROC_SE_PDCP_CHAIN_CTX_KEY_IV;
zs_ch_ctx->zuc.onk_ctx.w0.s.cipher_type =
ROC_SE_PDCP_CHAIN_ALG_TYPE_SNOW3G;
zs_ch_ctx->zuc.onk_ctx.w0.s.ci_key_len = key_len;
cpt_snow3g_key_gen(key, keyx);
memcpy(ctx->st.ci_key, keyx, key_len);
} else {
zs_ctx->zuc.otk_ctx.w0.s.key_len = ROC_SE_AES_128_BIT;
zs_ctx->zuc.otk_ctx.w0.s.alg_type =
ROC_SE_PDCP_ALG_TYPE_SNOW3G;
cpt_snow3g_key_gen(key, keyx);
memcpy(ci_key, keyx, key_len);
}
se_ctx->pdcp_ci_alg = ROC_SE_PDCP_ALG_TYPE_SNOW3G;
se_ctx->zsk_flags = 0;
goto success;
case ROC_SE_ZUC_EEA3:
if (chained_op == true) {
struct roc_se_onk_zuc_chain_ctx *ctx =
&zs_ch_ctx->zuc.onk_ctx;
zs_ch_ctx->zuc.onk_ctx.w0.s.state_conf =
ROC_SE_PDCP_CHAIN_CTX_KEY_IV;
zs_ch_ctx->zuc.onk_ctx.w0.s.cipher_type =
ROC_SE_PDCP_CHAIN_ALG_TYPE_ZUC;
memcpy(ctx->st.ci_key, key, key_len);
memcpy(ctx->st.ci_zuc_const, zuc_key128, 32);
zs_ch_ctx->zuc.onk_ctx.w0.s.ci_key_len = key_len;
} else {
ret = cpt_pdcp_key_type_set(zs_ctx, key_len);
if (ret)
return ret;
zs_ctx->zuc.otk_ctx.w0.s.alg_type =
ROC_SE_PDCP_ALG_TYPE_ZUC;
memcpy(ci_key, key, key_len);
if (key_len == 32) {
roc_se_zuc_bytes_swap(ci_key, key_len);
memcpy(zuc_const, zuc_key256, 16);
} else
memcpy(zuc_const, zuc_key128, 32);
}
se_ctx->pdcp_ci_alg = ROC_SE_PDCP_ALG_TYPE_ZUC;
se_ctx->zsk_flags = 0;
goto success;
case ROC_SE_AES_CTR_EEA2:
if (chained_op == true) {
struct roc_se_onk_zuc_chain_ctx *ctx =
&zs_ch_ctx->zuc.onk_ctx;
int key_type;
key_type = cpt_pdcp_chain_key_type_get(key_len);
if (key_type < 0)
return key_type;
ctx->w0.s.ci_key_len = key_type;
ctx->w0.s.state_conf = ROC_SE_PDCP_CHAIN_CTX_KEY_IV;
ctx->w0.s.cipher_type = ROC_SE_PDCP_ALG_TYPE_AES_CTR;
memcpy(ctx->st.ci_key, key, key_len);
} else {
zs_ctx->zuc.otk_ctx.w0.s.key_len = ROC_SE_AES_128_BIT;
zs_ctx->zuc.otk_ctx.w0.s.alg_type =
ROC_SE_PDCP_ALG_TYPE_AES_CTR;
memcpy(ci_key, key, key_len);
}
se_ctx->pdcp_ci_alg = ROC_SE_PDCP_ALG_TYPE_AES_CTR;
se_ctx->zsk_flags = 0;
goto success;
case ROC_SE_KASUMI_F8_ECB:
se_ctx->k_ecb = 1;
memcpy(se_ctx->se_ctx.k_ctx.ci_key, key, key_len);
se_ctx->zsk_flags = 0;
goto success;
case ROC_SE_KASUMI_F8_CBC:
memcpy(se_ctx->se_ctx.k_ctx.ci_key, key, key_len);
se_ctx->zsk_flags = 0;
goto success;
default:
return -1;
}
/* Only for ROC_SE_FC_GEN case */
/* For GMAC auth, cipher must be NULL */
if (se_ctx->hash_type != ROC_SE_GMAC_TYPE)
fctx->enc.enc_cipher = type;
memcpy(fctx->enc.encr_key, key, key_len);
success:
se_ctx->enc_cipher = type;
if (se_ctx->fc_type == ROC_SE_PDCP) {
if (roc_model_is_cn9k())
if (chained_op == true)
opcode_minor = se_ctx->ciph_then_auth ? 2 : 3;
else
opcode_minor =
((1 << 7) | (se_ctx->pdcp_ci_alg << 5) |
(se_ctx->zsk_flags & 0x7));
else
opcode_minor = ((1 << 4));
se_ctx->template_w4.s.opcode_minor = opcode_minor;
}
return 0;
}
void
roc_se_ctx_swap(struct roc_se_ctx *se_ctx)
{
struct roc_se_zuc_snow3g_ctx *zs_ctx = &se_ctx->se_ctx.zs_ctx;
if (roc_model_is_cn9k())
return;
zs_ctx->zuc.otk_ctx.w0.u64 = htobe64(zs_ctx->zuc.otk_ctx.w0.u64);
}