Shijith Thotton 37a725d66d net/liquidio: support queue re-configuration
Support for re-configuration of number of queues per port and descriptor
size. Renamed variable representing number of descriptors as nb_desc
from max_count.

Signed-off-by: Shijith Thotton <shijith.thotton@caviumnetworks.com>
2018-01-16 18:47:49 +01:00

662 lines
16 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Cavium, Inc
*/
#ifndef _LIO_STRUCT_H_
#define _LIO_STRUCT_H_
#include <stdio.h>
#include <stdint.h>
#include <sys/queue.h>
#include <rte_spinlock.h>
#include <rte_atomic.h>
#include "lio_hw_defs.h"
struct lio_stailq_node {
STAILQ_ENTRY(lio_stailq_node) entries;
};
STAILQ_HEAD(lio_stailq_head, lio_stailq_node);
struct lio_version {
uint16_t major;
uint16_t minor;
uint16_t micro;
uint16_t reserved;
};
/** Input Queue statistics. Each input queue has four stats fields. */
struct lio_iq_stats {
uint64_t instr_posted; /**< Instructions posted to this queue. */
uint64_t instr_processed; /**< Instructions processed in this queue. */
uint64_t instr_dropped; /**< Instructions that could not be processed */
uint64_t bytes_sent; /**< Bytes sent through this queue. */
uint64_t tx_done; /**< Num of packets sent to network. */
uint64_t tx_iq_busy; /**< Num of times this iq was found to be full. */
uint64_t tx_dropped; /**< Num of pkts dropped due to xmitpath errors. */
uint64_t tx_tot_bytes; /**< Total count of bytes sent to network. */
};
/** Output Queue statistics. Each output queue has four stats fields. */
struct lio_droq_stats {
/** Number of packets received in this queue. */
uint64_t pkts_received;
/** Bytes received by this queue. */
uint64_t bytes_received;
/** Packets dropped due to no memory available. */
uint64_t dropped_nomem;
/** Packets dropped due to large number of pkts to process. */
uint64_t dropped_toomany;
/** Number of packets sent to stack from this queue. */
uint64_t rx_pkts_received;
/** Number of Bytes sent to stack from this queue. */
uint64_t rx_bytes_received;
/** Num of Packets dropped due to receive path failures. */
uint64_t rx_dropped;
/** Num of vxlan packets received; */
uint64_t rx_vxlan;
/** Num of failures of rte_pktmbuf_alloc() */
uint64_t rx_alloc_failure;
};
/** The Descriptor Ring Output Queue structure.
* This structure has all the information required to implement a
* DROQ.
*/
struct lio_droq {
/** A spinlock to protect access to this ring. */
rte_spinlock_t lock;
uint32_t q_no;
uint32_t pkt_count;
struct lio_device *lio_dev;
/** The 8B aligned descriptor ring starts at this address. */
struct lio_droq_desc *desc_ring;
/** Index in the ring where the driver should read the next packet */
uint32_t read_idx;
/** Index in the ring where Octeon will write the next packet */
uint32_t write_idx;
/** Index in the ring where the driver will refill the descriptor's
* buffer
*/
uint32_t refill_idx;
/** Packets pending to be processed */
rte_atomic64_t pkts_pending;
/** Number of descriptors in this ring. */
uint32_t nb_desc;
/** The number of descriptors pending refill. */
uint32_t refill_count;
uint32_t refill_threshold;
/** The 8B aligned info ptrs begin from this address. */
struct lio_droq_info *info_list;
/** The receive buffer list. This list has the virtual addresses of the
* buffers.
*/
struct lio_recv_buffer *recv_buf_list;
/** The size of each buffer pointed by the buffer pointer. */
uint32_t buffer_size;
/** Pointer to the mapped packet credit register.
* Host writes number of info/buffer ptrs available to this register
*/
void *pkts_credit_reg;
/** Pointer to the mapped packet sent register.
* Octeon writes the number of packets DMA'ed to host memory
* in this register.
*/
void *pkts_sent_reg;
/** Statistics for this DROQ. */
struct lio_droq_stats stats;
/** DMA mapped address of the DROQ descriptor ring. */
size_t desc_ring_dma;
/** Info ptr list are allocated at this virtual address. */
size_t info_base_addr;
/** DMA mapped address of the info list */
size_t info_list_dma;
/** Allocated size of info list. */
uint32_t info_alloc_size;
/** Memory zone **/
const struct rte_memzone *desc_ring_mz;
const struct rte_memzone *info_mz;
struct rte_mempool *mpool;
};
/** Receive Header */
union octeon_rh {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint64_t rh64;
struct {
uint64_t opcode : 4;
uint64_t subcode : 8;
uint64_t len : 3; /** additional 64-bit words */
uint64_t reserved : 17;
uint64_t ossp : 32; /** opcode/subcode specific parameters */
} r;
struct {
uint64_t opcode : 4;
uint64_t subcode : 8;
uint64_t len : 3; /** additional 64-bit words */
uint64_t extra : 28;
uint64_t vlan : 12;
uint64_t priority : 3;
uint64_t csum_verified : 3; /** checksum verified. */
uint64_t has_hwtstamp : 1; /** Has hardware timestamp.1 = yes.*/
uint64_t encap_on : 1;
uint64_t has_hash : 1; /** Has hash (rth or rss). 1 = yes. */
} r_dh;
struct {
uint64_t opcode : 4;
uint64_t subcode : 8;
uint64_t len : 3; /** additional 64-bit words */
uint64_t reserved : 8;
uint64_t extra : 25;
uint64_t gmxport : 16;
} r_nic_info;
#else
uint64_t rh64;
struct {
uint64_t ossp : 32; /** opcode/subcode specific parameters */
uint64_t reserved : 17;
uint64_t len : 3; /** additional 64-bit words */
uint64_t subcode : 8;
uint64_t opcode : 4;
} r;
struct {
uint64_t has_hash : 1; /** Has hash (rth or rss). 1 = yes. */
uint64_t encap_on : 1;
uint64_t has_hwtstamp : 1; /** 1 = has hwtstamp */
uint64_t csum_verified : 3; /** checksum verified. */
uint64_t priority : 3;
uint64_t vlan : 12;
uint64_t extra : 28;
uint64_t len : 3; /** additional 64-bit words */
uint64_t subcode : 8;
uint64_t opcode : 4;
} r_dh;
struct {
uint64_t gmxport : 16;
uint64_t extra : 25;
uint64_t reserved : 8;
uint64_t len : 3; /** additional 64-bit words */
uint64_t subcode : 8;
uint64_t opcode : 4;
} r_nic_info;
#endif
};
#define OCTEON_RH_SIZE (sizeof(union octeon_rh))
/** The txpciq info passed to host from the firmware */
union octeon_txpciq {
uint64_t txpciq64;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint64_t q_no : 8;
uint64_t port : 8;
uint64_t pkind : 6;
uint64_t use_qpg : 1;
uint64_t qpg : 11;
uint64_t aura_num : 10;
uint64_t reserved : 20;
#else
uint64_t reserved : 20;
uint64_t aura_num : 10;
uint64_t qpg : 11;
uint64_t use_qpg : 1;
uint64_t pkind : 6;
uint64_t port : 8;
uint64_t q_no : 8;
#endif
} s;
};
/** The instruction (input) queue.
* The input queue is used to post raw (instruction) mode data or packet
* data to Octeon device from the host. Each input queue for
* a LIO device has one such structure to represent it.
*/
struct lio_instr_queue {
/** A spinlock to protect access to the input ring. */
rte_spinlock_t lock;
rte_spinlock_t post_lock;
struct lio_device *lio_dev;
uint32_t pkt_in_done;
rte_atomic64_t iq_flush_running;
/** Flag that indicates if the queue uses 64 byte commands. */
uint32_t iqcmd_64B:1;
/** Queue info. */
union octeon_txpciq txpciq;
uint32_t rsvd:17;
uint32_t status:8;
/** Number of descriptors in this ring. */
uint32_t nb_desc;
/** Index in input ring where the driver should write the next packet */
uint32_t host_write_index;
/** Index in input ring where Octeon is expected to read the next
* packet.
*/
uint32_t lio_read_index;
/** This index aids in finding the window in the queue where Octeon
* has read the commands.
*/
uint32_t flush_index;
/** This field keeps track of the instructions pending in this queue. */
rte_atomic64_t instr_pending;
/** Pointer to the Virtual Base addr of the input ring. */
uint8_t *base_addr;
struct lio_request_list *request_list;
/** Octeon doorbell register for the ring. */
void *doorbell_reg;
/** Octeon instruction count register for this ring. */
void *inst_cnt_reg;
/** Number of instructions pending to be posted to Octeon. */
uint32_t fill_cnt;
/** Statistics for this input queue. */
struct lio_iq_stats stats;
/** DMA mapped base address of the input descriptor ring. */
uint64_t base_addr_dma;
/** Application context */
void *app_ctx;
/* network stack queue index */
int q_index;
/* Memory zone */
const struct rte_memzone *iq_mz;
};
/** This structure is used by driver to store information required
* to free the mbuff when the packet has been fetched by Octeon.
* Bytes offset below assume worst-case of a 64-bit system.
*/
struct lio_buf_free_info {
/** Bytes 1-8. Pointer to network device private structure. */
struct lio_device *lio_dev;
/** Bytes 9-16. Pointer to mbuff. */
struct rte_mbuf *mbuf;
/** Bytes 17-24. Pointer to gather list. */
struct lio_gather *g;
/** Bytes 25-32. Physical address of mbuf->data or gather list. */
uint64_t dptr;
/** Bytes 33-47. Piggybacked soft command, if any */
struct lio_soft_command *sc;
/** Bytes 48-63. iq no */
uint64_t iq_no;
};
/* The Scatter-Gather List Entry. The scatter or gather component used with
* input instruction has this format.
*/
struct lio_sg_entry {
/** The first 64 bit gives the size of data in each dptr. */
union {
uint16_t size[4];
uint64_t size64;
} u;
/** The 4 dptr pointers for this entry. */
uint64_t ptr[4];
};
#define LIO_SG_ENTRY_SIZE (sizeof(struct lio_sg_entry))
/** Structure of a node in list of gather components maintained by
* driver for each network device.
*/
struct lio_gather {
/** List manipulation. Next and prev pointers. */
struct lio_stailq_node list;
/** Size of the gather component at sg in bytes. */
int sg_size;
/** Number of bytes that sg was adjusted to make it 8B-aligned. */
int adjust;
/** Gather component that can accommodate max sized fragment list
* received from the IP layer.
*/
struct lio_sg_entry *sg;
};
struct lio_rss_ctx {
uint16_t hash_key_size;
uint8_t hash_key[LIO_RSS_MAX_KEY_SZ];
/* Ideally a factor of number of queues */
uint8_t itable[LIO_RSS_MAX_TABLE_SZ];
uint8_t itable_size;
uint8_t ip;
uint8_t tcp_hash;
uint8_t ipv6;
uint8_t ipv6_tcp_hash;
uint8_t ipv6_ex;
uint8_t ipv6_tcp_ex_hash;
uint8_t hash_disable;
};
struct lio_io_enable {
uint64_t iq;
uint64_t oq;
uint64_t iq64B;
};
struct lio_fn_list {
void (*setup_iq_regs)(struct lio_device *, uint32_t);
void (*setup_oq_regs)(struct lio_device *, uint32_t);
int (*setup_mbox)(struct lio_device *);
void (*free_mbox)(struct lio_device *);
int (*setup_device_regs)(struct lio_device *);
int (*enable_io_queues)(struct lio_device *);
void (*disable_io_queues)(struct lio_device *);
};
struct lio_pf_vf_hs_word {
#if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
/** PKIND value assigned for the DPI interface */
uint64_t pkind : 8;
/** OCTEON core clock multiplier */
uint64_t core_tics_per_us : 16;
/** OCTEON coprocessor clock multiplier */
uint64_t coproc_tics_per_us : 16;
/** app that currently running on OCTEON */
uint64_t app_mode : 8;
/** RESERVED */
uint64_t reserved : 16;
#elif RTE_BYTE_ORDER == RTE_BIG_ENDIAN
/** RESERVED */
uint64_t reserved : 16;
/** app that currently running on OCTEON */
uint64_t app_mode : 8;
/** OCTEON coprocessor clock multiplier */
uint64_t coproc_tics_per_us : 16;
/** OCTEON core clock multiplier */
uint64_t core_tics_per_us : 16;
/** PKIND value assigned for the DPI interface */
uint64_t pkind : 8;
#endif
};
struct lio_sriov_info {
/** Number of rings assigned to VF */
uint32_t rings_per_vf;
/** Number of VF devices enabled */
uint32_t num_vfs;
};
/* Head of a response list */
struct lio_response_list {
/** List structure to add delete pending entries to */
struct lio_stailq_head head;
/** A lock for this response list */
rte_spinlock_t lock;
rte_atomic64_t pending_req_count;
};
/* Structure to define the configuration attributes for each Input queue. */
struct lio_iq_config {
/* Max number of IQs available */
uint8_t max_iqs;
/** Pending list size (usually set to the sum of the size of all Input
* queues)
*/
uint32_t pending_list_size;
/** Command size - 32 or 64 bytes */
uint32_t instr_type;
};
/* Structure to define the configuration attributes for each Output queue. */
struct lio_oq_config {
/* Max number of OQs available */
uint8_t max_oqs;
/** If set, the Output queue uses info-pointer mode. (Default: 1 ) */
uint32_t info_ptr;
/** The number of buffers that were consumed during packet processing by
* the driver on this Output queue before the driver attempts to
* replenish the descriptor ring with new buffers.
*/
uint32_t refill_threshold;
};
/* Structure to define the configuration. */
struct lio_config {
uint16_t card_type;
const char *card_name;
/** Input Queue attributes. */
struct lio_iq_config iq;
/** Output Queue attributes. */
struct lio_oq_config oq;
int num_nic_ports;
int num_def_tx_descs;
/* Num of desc for rx rings */
int num_def_rx_descs;
int def_rx_buf_size;
};
/** Status of a RGMII Link on Octeon as seen by core driver. */
union octeon_link_status {
uint64_t link_status64;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint64_t duplex : 8;
uint64_t mtu : 16;
uint64_t speed : 16;
uint64_t link_up : 1;
uint64_t autoneg : 1;
uint64_t if_mode : 5;
uint64_t pause : 1;
uint64_t flashing : 1;
uint64_t reserved : 15;
#else
uint64_t reserved : 15;
uint64_t flashing : 1;
uint64_t pause : 1;
uint64_t if_mode : 5;
uint64_t autoneg : 1;
uint64_t link_up : 1;
uint64_t speed : 16;
uint64_t mtu : 16;
uint64_t duplex : 8;
#endif
} s;
};
/** The rxpciq info passed to host from the firmware */
union octeon_rxpciq {
uint64_t rxpciq64;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint64_t q_no : 8;
uint64_t reserved : 56;
#else
uint64_t reserved : 56;
uint64_t q_no : 8;
#endif
} s;
};
/** Information for a OCTEON ethernet interface shared between core & host. */
struct octeon_link_info {
union octeon_link_status link;
uint64_t hw_addr;
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint64_t gmxport : 16;
uint64_t macaddr_is_admin_assigned : 1;
uint64_t vlan_is_admin_assigned : 1;
uint64_t rsvd : 30;
uint64_t num_txpciq : 8;
uint64_t num_rxpciq : 8;
#else
uint64_t num_rxpciq : 8;
uint64_t num_txpciq : 8;
uint64_t rsvd : 30;
uint64_t vlan_is_admin_assigned : 1;
uint64_t macaddr_is_admin_assigned : 1;
uint64_t gmxport : 16;
#endif
union octeon_txpciq txpciq[LIO_MAX_IOQS_PER_IF];
union octeon_rxpciq rxpciq[LIO_MAX_IOQS_PER_IF];
};
/* ----------------------- THE LIO DEVICE --------------------------- */
/** The lio device.
* Each lio device has this structure to represent all its
* components.
*/
struct lio_device {
/** PCI device pointer */
struct rte_pci_device *pci_dev;
/** Octeon Chip type */
uint16_t chip_id;
uint16_t pf_num;
uint16_t vf_num;
/** This device's PCIe port used for traffic. */
uint16_t pcie_port;
/** The state of this device */
rte_atomic64_t status;
uint8_t intf_open;
struct octeon_link_info linfo;
uint8_t *hw_addr;
struct lio_fn_list fn_list;
uint32_t num_iqs;
/** Guards each glist */
rte_spinlock_t *glist_lock;
/** Array of gather component linked lists */
struct lio_stailq_head *glist_head;
/* The pool containing pre allocated buffers used for soft commands */
struct rte_mempool *sc_buf_pool;
/** The input instruction queues */
struct lio_instr_queue *instr_queue[LIO_MAX_POSSIBLE_INSTR_QUEUES];
/** The singly-linked tail queues of instruction response */
struct lio_response_list response_list;
uint32_t num_oqs;
/** The DROQ output queues */
struct lio_droq *droq[LIO_MAX_POSSIBLE_OUTPUT_QUEUES];
struct lio_io_enable io_qmask;
struct lio_sriov_info sriov_info;
struct lio_pf_vf_hs_word pfvf_hsword;
/** Mail Box details of each lio queue. */
struct lio_mbox **mbox;
char dev_string[LIO_DEVICE_NAME_LEN]; /* Device print string */
const struct lio_config *default_config;
struct rte_eth_dev *eth_dev;
uint64_t ifflags;
uint8_t max_rx_queues;
uint8_t max_tx_queues;
uint8_t nb_rx_queues;
uint8_t nb_tx_queues;
uint8_t port_configured;
struct lio_rss_ctx rss_state;
uint16_t port_id;
char firmware_version[LIO_FW_VERSION_LENGTH];
};
#endif /* _LIO_STRUCT_H_ */