6d5735c1cb
Register C is used in the extensive metadata mode number 1 and its
width can vary from 0 to 32 bits depending on the kernel usage of it.
There are several issues associated with this mode (dv_xmeta_en=1):
1. The metadata setting assumes that the width is always 16 bits,
which is the most common case in this mode. Use the proper mask.
2. The same is true for the modify_field Flow API. 16-bits width
is hardcoded for dv_xmeta_en=1. Switch to the register C mask width.
3. Metadata is stored in the most significant bits in CQE in this
mode because the registers copy code was not updated during the
metadata conversion to the big-endian format. Update this code to
avoid shifting the metadata in the datapath.
Fixes: b57e414b48
("net/mlx5: convert meta register to big-endian")
Cc: stable@dpdk.org
Signed-off-by: Alexander Kozyrev <akozyrev@nvidia.com>
Acked-by: Viacheslav Ovsiienko <viacheslavo@nvidia.com>
818 lines
29 KiB
C
818 lines
29 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright 2017 6WIND S.A.
|
|
* Copyright 2017 Mellanox Technologies, Ltd
|
|
*/
|
|
|
|
#ifndef RTE_PMD_MLX5_RXTX_VEC_SSE_H_
|
|
#define RTE_PMD_MLX5_RXTX_VEC_SSE_H_
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <smmintrin.h>
|
|
|
|
#include <rte_mbuf.h>
|
|
#include <rte_mempool.h>
|
|
#include <rte_prefetch.h>
|
|
|
|
#include <mlx5_prm.h>
|
|
|
|
#include "mlx5_defs.h"
|
|
#include "mlx5.h"
|
|
#include "mlx5_utils.h"
|
|
#include "mlx5_rxtx.h"
|
|
#include "mlx5_rxtx_vec.h"
|
|
#include "mlx5_autoconf.h"
|
|
|
|
#ifndef __INTEL_COMPILER
|
|
#pragma GCC diagnostic ignored "-Wcast-qual"
|
|
#endif
|
|
|
|
/**
|
|
* Store free buffers to RX SW ring.
|
|
*
|
|
* @param elts
|
|
* Pointer to SW ring to be filled.
|
|
* @param pkts
|
|
* Pointer to array of packets to be stored.
|
|
* @param pkts_n
|
|
* Number of packets to be stored.
|
|
*/
|
|
static inline void
|
|
rxq_copy_mbuf_v(struct rte_mbuf **elts, struct rte_mbuf **pkts, uint16_t n)
|
|
{
|
|
unsigned int pos;
|
|
uint16_t p = n & -2;
|
|
|
|
for (pos = 0; pos < p; pos += 2) {
|
|
__m128i mbp;
|
|
|
|
mbp = _mm_loadu_si128((__m128i *)&elts[pos]);
|
|
_mm_storeu_si128((__m128i *)&pkts[pos], mbp);
|
|
}
|
|
if (n & 1)
|
|
pkts[pos] = elts[pos];
|
|
}
|
|
|
|
/**
|
|
* Decompress a compressed completion and fill in mbufs in RX SW ring with data
|
|
* extracted from the title completion descriptor.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param cq
|
|
* Pointer to completion array having a compressed completion at first.
|
|
* @param elts
|
|
* Pointer to SW ring to be filled. The first mbuf has to be pre-built from
|
|
* the title completion descriptor to be copied to the rest of mbufs.
|
|
*
|
|
* @return
|
|
* Number of mini-CQEs successfully decompressed.
|
|
*/
|
|
static inline uint16_t
|
|
rxq_cq_decompress_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
|
|
struct rte_mbuf **elts)
|
|
{
|
|
volatile struct mlx5_mini_cqe8 *mcq = (void *)(cq + 1);
|
|
struct rte_mbuf *t_pkt = elts[0]; /* Title packet is pre-built. */
|
|
unsigned int pos;
|
|
unsigned int i;
|
|
unsigned int inv = 0;
|
|
/* Mask to shuffle from extracted mini CQE to mbuf. */
|
|
const __m128i shuf_mask1 =
|
|
_mm_set_epi8(0, 1, 2, 3, /* rss, bswap32 */
|
|
-1, -1, /* skip vlan_tci */
|
|
6, 7, /* data_len, bswap16 */
|
|
-1, -1, 6, 7, /* pkt_len, bswap16 */
|
|
-1, -1, -1, -1 /* skip packet_type */);
|
|
const __m128i shuf_mask2 =
|
|
_mm_set_epi8(8, 9, 10, 11, /* rss, bswap32 */
|
|
-1, -1, /* skip vlan_tci */
|
|
14, 15, /* data_len, bswap16 */
|
|
-1, -1, 14, 15, /* pkt_len, bswap16 */
|
|
-1, -1, -1, -1 /* skip packet_type */);
|
|
/* Restore the compressed count. Must be 16 bits. */
|
|
const uint16_t mcqe_n = t_pkt->data_len +
|
|
(rxq->crc_present * RTE_ETHER_CRC_LEN);
|
|
const __m128i rearm =
|
|
_mm_loadu_si128((__m128i *)&t_pkt->rearm_data);
|
|
const __m128i rxdf =
|
|
_mm_loadu_si128((__m128i *)&t_pkt->rx_descriptor_fields1);
|
|
const __m128i crc_adj =
|
|
_mm_set_epi16(0, 0, 0,
|
|
rxq->crc_present * RTE_ETHER_CRC_LEN,
|
|
0,
|
|
rxq->crc_present * RTE_ETHER_CRC_LEN,
|
|
0, 0);
|
|
__m128i ol_flags = _mm_setzero_si128();
|
|
__m128i ol_flags_mask = _mm_setzero_si128();
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i ones = _mm_cmpeq_epi32(zero, zero);
|
|
uint32_t rcvd_byte = 0;
|
|
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
|
|
const __m128i len_shuf_mask =
|
|
_mm_set_epi8(-1, -1, -1, -1,
|
|
-1, -1, -1, -1,
|
|
14, 15, 6, 7,
|
|
10, 11, 2, 3);
|
|
#endif
|
|
/*
|
|
* A. load mCQEs into a 128bit register.
|
|
* B. store rearm data to mbuf.
|
|
* C. combine data from mCQEs with rx_descriptor_fields1.
|
|
* D. store rx_descriptor_fields1.
|
|
* E. store flow tag (rte_flow mark).
|
|
*/
|
|
for (pos = 0; pos < mcqe_n; ) {
|
|
__m128i mcqe1, mcqe2;
|
|
__m128i rxdf1, rxdf2;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
__m128i byte_cnt, invalid_mask;
|
|
#endif
|
|
|
|
for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
|
|
if (likely(pos + i < mcqe_n))
|
|
rte_prefetch0((void *)(cq + pos + i));
|
|
/* A.1 load mCQEs into a 128bit register. */
|
|
mcqe1 = _mm_loadu_si128((__m128i *)&mcq[pos % 8]);
|
|
mcqe2 = _mm_loadu_si128((__m128i *)&mcq[pos % 8 + 2]);
|
|
/* B.1 store rearm data to mbuf. */
|
|
_mm_storeu_si128((__m128i *)&elts[pos]->rearm_data, rearm);
|
|
_mm_storeu_si128((__m128i *)&elts[pos + 1]->rearm_data, rearm);
|
|
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
|
|
rxdf1 = _mm_shuffle_epi8(mcqe1, shuf_mask1);
|
|
rxdf2 = _mm_shuffle_epi8(mcqe1, shuf_mask2);
|
|
rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
|
|
rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
|
|
rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
|
|
rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
|
|
/* D.1 store rx_descriptor_fields1. */
|
|
_mm_storeu_si128((__m128i *)
|
|
&elts[pos]->rx_descriptor_fields1,
|
|
rxdf1);
|
|
_mm_storeu_si128((__m128i *)
|
|
&elts[pos + 1]->rx_descriptor_fields1,
|
|
rxdf2);
|
|
/* B.1 store rearm data to mbuf. */
|
|
_mm_storeu_si128((__m128i *)&elts[pos + 2]->rearm_data, rearm);
|
|
_mm_storeu_si128((__m128i *)&elts[pos + 3]->rearm_data, rearm);
|
|
/* C.1 combine data from mCQEs with rx_descriptor_fields1. */
|
|
rxdf1 = _mm_shuffle_epi8(mcqe2, shuf_mask1);
|
|
rxdf2 = _mm_shuffle_epi8(mcqe2, shuf_mask2);
|
|
rxdf1 = _mm_sub_epi16(rxdf1, crc_adj);
|
|
rxdf2 = _mm_sub_epi16(rxdf2, crc_adj);
|
|
rxdf1 = _mm_blend_epi16(rxdf1, rxdf, 0x23);
|
|
rxdf2 = _mm_blend_epi16(rxdf2, rxdf, 0x23);
|
|
/* D.1 store rx_descriptor_fields1. */
|
|
_mm_storeu_si128((__m128i *)
|
|
&elts[pos + 2]->rx_descriptor_fields1,
|
|
rxdf1);
|
|
_mm_storeu_si128((__m128i *)
|
|
&elts[pos + 3]->rx_descriptor_fields1,
|
|
rxdf2);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
invalid_mask = _mm_set_epi64x(0,
|
|
(mcqe_n - pos) *
|
|
sizeof(uint16_t) * 8);
|
|
invalid_mask = _mm_sll_epi64(ones, invalid_mask);
|
|
byte_cnt = _mm_blend_epi16(_mm_srli_si128(mcqe1, 4),
|
|
mcqe2, 0xcc);
|
|
byte_cnt = _mm_shuffle_epi8(byte_cnt, len_shuf_mask);
|
|
byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
|
|
byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
|
|
rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
|
|
#endif
|
|
if (rxq->mark) {
|
|
if (rxq->mcqe_format !=
|
|
MLX5_CQE_RESP_FORMAT_FTAG_STRIDX) {
|
|
const uint32_t flow_tag = t_pkt->hash.fdir.hi;
|
|
|
|
/* E.1 store flow tag (rte_flow mark). */
|
|
elts[pos]->hash.fdir.hi = flow_tag;
|
|
elts[pos + 1]->hash.fdir.hi = flow_tag;
|
|
elts[pos + 2]->hash.fdir.hi = flow_tag;
|
|
elts[pos + 3]->hash.fdir.hi = flow_tag;
|
|
} else {
|
|
const __m128i flow_mark_adj =
|
|
_mm_set_epi32(-1, -1, -1, -1);
|
|
const __m128i flow_mark_shuf =
|
|
_mm_set_epi8(-1, 9, 8, 12,
|
|
-1, 1, 0, 4,
|
|
-1, -1, -1, -1,
|
|
-1, -1, -1, -1);
|
|
const __m128i ft_mask =
|
|
_mm_set1_epi32(0xffffff00);
|
|
const __m128i fdir_flags =
|
|
_mm_set1_epi32(PKT_RX_FDIR);
|
|
const __m128i fdir_all_flags =
|
|
_mm_set1_epi32(PKT_RX_FDIR |
|
|
PKT_RX_FDIR_ID);
|
|
__m128i fdir_id_flags =
|
|
_mm_set1_epi32(PKT_RX_FDIR_ID);
|
|
|
|
/* Extract flow_tag field. */
|
|
__m128i ftag0 =
|
|
_mm_shuffle_epi8(mcqe1, flow_mark_shuf);
|
|
__m128i ftag1 =
|
|
_mm_shuffle_epi8(mcqe2, flow_mark_shuf);
|
|
__m128i ftag =
|
|
_mm_unpackhi_epi64(ftag0, ftag1);
|
|
__m128i invalid_mask =
|
|
_mm_cmpeq_epi32(ftag, zero);
|
|
|
|
ol_flags_mask = _mm_or_si128(ol_flags_mask,
|
|
fdir_all_flags);
|
|
/* Set PKT_RX_FDIR if flow tag is non-zero. */
|
|
ol_flags = _mm_or_si128(ol_flags,
|
|
_mm_andnot_si128(invalid_mask,
|
|
fdir_flags));
|
|
/* Mask out invalid entries. */
|
|
fdir_id_flags = _mm_andnot_si128(invalid_mask,
|
|
fdir_id_flags);
|
|
/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
|
|
ol_flags = _mm_or_si128(ol_flags,
|
|
_mm_andnot_si128(_mm_cmpeq_epi32(ftag,
|
|
ft_mask),
|
|
fdir_id_flags));
|
|
ftag = _mm_add_epi32(ftag, flow_mark_adj);
|
|
elts[pos]->hash.fdir.hi =
|
|
_mm_extract_epi32(ftag, 0);
|
|
elts[pos + 1]->hash.fdir.hi =
|
|
_mm_extract_epi32(ftag, 1);
|
|
elts[pos + 2]->hash.fdir.hi =
|
|
_mm_extract_epi32(ftag, 2);
|
|
elts[pos + 3]->hash.fdir.hi =
|
|
_mm_extract_epi32(ftag, 3);
|
|
}
|
|
}
|
|
if (unlikely(rxq->mcqe_format != MLX5_CQE_RESP_FORMAT_HASH)) {
|
|
if (rxq->mcqe_format ==
|
|
MLX5_CQE_RESP_FORMAT_L34H_STRIDX) {
|
|
const uint8_t pkt_info =
|
|
(cq->pkt_info & 0x3) << 6;
|
|
const uint8_t pkt_hdr0 =
|
|
_mm_extract_epi8(mcqe1, 0);
|
|
const uint8_t pkt_hdr1 =
|
|
_mm_extract_epi8(mcqe1, 8);
|
|
const uint8_t pkt_hdr2 =
|
|
_mm_extract_epi8(mcqe2, 0);
|
|
const uint8_t pkt_hdr3 =
|
|
_mm_extract_epi8(mcqe2, 8);
|
|
const __m128i vlan_mask =
|
|
_mm_set1_epi32(PKT_RX_VLAN |
|
|
PKT_RX_VLAN_STRIPPED);
|
|
const __m128i cv_mask =
|
|
_mm_set1_epi32(MLX5_CQE_VLAN_STRIPPED);
|
|
const __m128i pkt_cv =
|
|
_mm_set_epi32(pkt_hdr0 & 0x1,
|
|
pkt_hdr1 & 0x1,
|
|
pkt_hdr2 & 0x1,
|
|
pkt_hdr3 & 0x1);
|
|
|
|
ol_flags_mask = _mm_or_si128(ol_flags_mask,
|
|
vlan_mask);
|
|
ol_flags = _mm_or_si128(ol_flags,
|
|
_mm_and_si128(_mm_cmpeq_epi32(pkt_cv,
|
|
cv_mask), vlan_mask));
|
|
elts[pos]->packet_type =
|
|
mlx5_ptype_table[(pkt_hdr0 >> 2) |
|
|
pkt_info];
|
|
elts[pos + 1]->packet_type =
|
|
mlx5_ptype_table[(pkt_hdr1 >> 2) |
|
|
pkt_info];
|
|
elts[pos + 2]->packet_type =
|
|
mlx5_ptype_table[(pkt_hdr2 >> 2) |
|
|
pkt_info];
|
|
elts[pos + 3]->packet_type =
|
|
mlx5_ptype_table[(pkt_hdr3 >> 2) |
|
|
pkt_info];
|
|
if (rxq->tunnel) {
|
|
elts[pos]->packet_type |=
|
|
!!(((pkt_hdr0 >> 2) |
|
|
pkt_info) & (1 << 6));
|
|
elts[pos + 1]->packet_type |=
|
|
!!(((pkt_hdr1 >> 2) |
|
|
pkt_info) & (1 << 6));
|
|
elts[pos + 2]->packet_type |=
|
|
!!(((pkt_hdr2 >> 2) |
|
|
pkt_info) & (1 << 6));
|
|
elts[pos + 3]->packet_type |=
|
|
!!(((pkt_hdr3 >> 2) |
|
|
pkt_info) & (1 << 6));
|
|
}
|
|
}
|
|
const __m128i hash_flags =
|
|
_mm_set1_epi32(PKT_RX_RSS_HASH);
|
|
const __m128i rearm_flags =
|
|
_mm_set1_epi32((uint32_t)t_pkt->ol_flags);
|
|
|
|
ol_flags_mask = _mm_or_si128(ol_flags_mask, hash_flags);
|
|
ol_flags = _mm_or_si128(ol_flags,
|
|
_mm_andnot_si128(ol_flags_mask, rearm_flags));
|
|
elts[pos]->ol_flags =
|
|
_mm_extract_epi32(ol_flags, 0);
|
|
elts[pos + 1]->ol_flags =
|
|
_mm_extract_epi32(ol_flags, 1);
|
|
elts[pos + 2]->ol_flags =
|
|
_mm_extract_epi32(ol_flags, 2);
|
|
elts[pos + 3]->ol_flags =
|
|
_mm_extract_epi32(ol_flags, 3);
|
|
elts[pos]->hash.rss = 0;
|
|
elts[pos + 1]->hash.rss = 0;
|
|
elts[pos + 2]->hash.rss = 0;
|
|
elts[pos + 3]->hash.rss = 0;
|
|
}
|
|
if (rxq->dynf_meta) {
|
|
int32_t offs = rxq->flow_meta_offset;
|
|
const uint32_t meta =
|
|
*RTE_MBUF_DYNFIELD(t_pkt, offs, uint32_t *);
|
|
|
|
/* Check if title packet has valid metadata. */
|
|
if (meta) {
|
|
MLX5_ASSERT(t_pkt->ol_flags &
|
|
rxq->flow_meta_mask);
|
|
*RTE_MBUF_DYNFIELD(elts[pos], offs,
|
|
uint32_t *) = meta;
|
|
*RTE_MBUF_DYNFIELD(elts[pos + 1], offs,
|
|
uint32_t *) = meta;
|
|
*RTE_MBUF_DYNFIELD(elts[pos + 2], offs,
|
|
uint32_t *) = meta;
|
|
*RTE_MBUF_DYNFIELD(elts[pos + 3], offs,
|
|
uint32_t *) = meta;
|
|
}
|
|
}
|
|
pos += MLX5_VPMD_DESCS_PER_LOOP;
|
|
/* Move to next CQE and invalidate consumed CQEs. */
|
|
if (!(pos & 0x7) && pos < mcqe_n) {
|
|
if (pos + 8 < mcqe_n)
|
|
rte_prefetch0((void *)(cq + pos + 8));
|
|
mcq = (void *)(cq + pos);
|
|
for (i = 0; i < 8; ++i)
|
|
cq[inv++].op_own = MLX5_CQE_INVALIDATE;
|
|
}
|
|
}
|
|
/* Invalidate the rest of CQEs. */
|
|
for (; inv < mcqe_n; ++inv)
|
|
cq[inv].op_own = MLX5_CQE_INVALIDATE;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
rxq->stats.ipackets += mcqe_n;
|
|
rxq->stats.ibytes += rcvd_byte;
|
|
#endif
|
|
return mcqe_n;
|
|
}
|
|
|
|
/**
|
|
* Calculate packet type and offload flag for mbuf and store it.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param cqes[4]
|
|
* Array of four 16bytes completions extracted from the original completion
|
|
* descriptor.
|
|
* @param op_err
|
|
* Opcode vector having responder error status. Each field is 4B.
|
|
* @param pkts
|
|
* Pointer to array of packets to be filled.
|
|
*/
|
|
static inline void
|
|
rxq_cq_to_ptype_oflags_v(struct mlx5_rxq_data *rxq, __m128i cqes[4],
|
|
__m128i op_err, struct rte_mbuf **pkts)
|
|
{
|
|
__m128i pinfo0, pinfo1;
|
|
__m128i pinfo, ptype;
|
|
__m128i ol_flags = _mm_set1_epi32(rxq->rss_hash * PKT_RX_RSS_HASH |
|
|
rxq->hw_timestamp * rxq->timestamp_rx_flag);
|
|
__m128i cv_flags;
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i ptype_mask = _mm_set1_epi32(0xfd06);
|
|
const __m128i ptype_ol_mask = _mm_set1_epi32(0x106);
|
|
const __m128i pinfo_mask = _mm_set1_epi32(0x3);
|
|
const __m128i cv_flag_sel =
|
|
_mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
(uint8_t)((PKT_RX_IP_CKSUM_GOOD |
|
|
PKT_RX_L4_CKSUM_GOOD) >> 1),
|
|
0,
|
|
(uint8_t)(PKT_RX_L4_CKSUM_GOOD >> 1),
|
|
0,
|
|
(uint8_t)(PKT_RX_IP_CKSUM_GOOD >> 1),
|
|
(uint8_t)(PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED),
|
|
0);
|
|
const __m128i cv_mask =
|
|
_mm_set1_epi32(PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD |
|
|
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED);
|
|
const __m128i mbuf_init =
|
|
_mm_load_si128((__m128i *)&rxq->mbuf_initializer);
|
|
__m128i rearm0, rearm1, rearm2, rearm3;
|
|
uint8_t pt_idx0, pt_idx1, pt_idx2, pt_idx3;
|
|
|
|
/* Extract pkt_info field. */
|
|
pinfo0 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
|
|
pinfo1 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
|
|
pinfo = _mm_unpacklo_epi64(pinfo0, pinfo1);
|
|
/* Extract hdr_type_etc field. */
|
|
pinfo0 = _mm_unpackhi_epi32(cqes[0], cqes[1]);
|
|
pinfo1 = _mm_unpackhi_epi32(cqes[2], cqes[3]);
|
|
ptype = _mm_unpacklo_epi64(pinfo0, pinfo1);
|
|
if (rxq->mark) {
|
|
const __m128i pinfo_ft_mask = _mm_set1_epi32(0xffffff00);
|
|
const __m128i fdir_flags = _mm_set1_epi32(PKT_RX_FDIR);
|
|
__m128i fdir_id_flags = _mm_set1_epi32(PKT_RX_FDIR_ID);
|
|
__m128i flow_tag, invalid_mask;
|
|
|
|
flow_tag = _mm_and_si128(pinfo, pinfo_ft_mask);
|
|
/* Check if flow tag is non-zero then set PKT_RX_FDIR. */
|
|
invalid_mask = _mm_cmpeq_epi32(flow_tag, zero);
|
|
ol_flags = _mm_or_si128(ol_flags,
|
|
_mm_andnot_si128(invalid_mask,
|
|
fdir_flags));
|
|
/* Mask out invalid entries. */
|
|
fdir_id_flags = _mm_andnot_si128(invalid_mask, fdir_id_flags);
|
|
/* Check if flow tag MLX5_FLOW_MARK_DEFAULT. */
|
|
ol_flags = _mm_or_si128(ol_flags,
|
|
_mm_andnot_si128(
|
|
_mm_cmpeq_epi32(flow_tag,
|
|
pinfo_ft_mask),
|
|
fdir_id_flags));
|
|
}
|
|
/*
|
|
* Merge the two fields to generate the following:
|
|
* bit[1] = l3_ok
|
|
* bit[2] = l4_ok
|
|
* bit[8] = cv
|
|
* bit[11:10] = l3_hdr_type
|
|
* bit[14:12] = l4_hdr_type
|
|
* bit[15] = ip_frag
|
|
* bit[16] = tunneled
|
|
* bit[17] = outer_l3_type
|
|
*/
|
|
ptype = _mm_and_si128(ptype, ptype_mask);
|
|
pinfo = _mm_and_si128(pinfo, pinfo_mask);
|
|
pinfo = _mm_slli_epi32(pinfo, 16);
|
|
/* Make pinfo has merged fields for ol_flags calculation. */
|
|
pinfo = _mm_or_si128(ptype, pinfo);
|
|
ptype = _mm_srli_epi32(pinfo, 10);
|
|
ptype = _mm_packs_epi32(ptype, zero);
|
|
/* Errored packets will have RTE_PTYPE_ALL_MASK. */
|
|
op_err = _mm_srli_epi16(op_err, 8);
|
|
ptype = _mm_or_si128(ptype, op_err);
|
|
pt_idx0 = _mm_extract_epi8(ptype, 0);
|
|
pt_idx1 = _mm_extract_epi8(ptype, 2);
|
|
pt_idx2 = _mm_extract_epi8(ptype, 4);
|
|
pt_idx3 = _mm_extract_epi8(ptype, 6);
|
|
pkts[0]->packet_type = mlx5_ptype_table[pt_idx0] |
|
|
!!(pt_idx0 & (1 << 6)) * rxq->tunnel;
|
|
pkts[1]->packet_type = mlx5_ptype_table[pt_idx1] |
|
|
!!(pt_idx1 & (1 << 6)) * rxq->tunnel;
|
|
pkts[2]->packet_type = mlx5_ptype_table[pt_idx2] |
|
|
!!(pt_idx2 & (1 << 6)) * rxq->tunnel;
|
|
pkts[3]->packet_type = mlx5_ptype_table[pt_idx3] |
|
|
!!(pt_idx3 & (1 << 6)) * rxq->tunnel;
|
|
/* Fill flags for checksum and VLAN. */
|
|
pinfo = _mm_and_si128(pinfo, ptype_ol_mask);
|
|
pinfo = _mm_shuffle_epi8(cv_flag_sel, pinfo);
|
|
/* Locate checksum flags at byte[2:1] and merge with VLAN flags. */
|
|
cv_flags = _mm_slli_epi32(pinfo, 9);
|
|
cv_flags = _mm_or_si128(pinfo, cv_flags);
|
|
/* Move back flags to start from byte[0]. */
|
|
cv_flags = _mm_srli_epi32(cv_flags, 8);
|
|
/* Mask out garbage bits. */
|
|
cv_flags = _mm_and_si128(cv_flags, cv_mask);
|
|
/* Merge to ol_flags. */
|
|
ol_flags = _mm_or_si128(ol_flags, cv_flags);
|
|
/* Merge mbuf_init and ol_flags. */
|
|
rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 8), 0x30);
|
|
rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(ol_flags, 4), 0x30);
|
|
rearm2 = _mm_blend_epi16(mbuf_init, ol_flags, 0x30);
|
|
rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(ol_flags, 4), 0x30);
|
|
/* Write 8B rearm_data and 8B ol_flags. */
|
|
_mm_store_si128((__m128i *)&pkts[0]->rearm_data, rearm0);
|
|
_mm_store_si128((__m128i *)&pkts[1]->rearm_data, rearm1);
|
|
_mm_store_si128((__m128i *)&pkts[2]->rearm_data, rearm2);
|
|
_mm_store_si128((__m128i *)&pkts[3]->rearm_data, rearm3);
|
|
}
|
|
|
|
/**
|
|
* Process a non-compressed completion and fill in mbufs in RX SW ring
|
|
* with data extracted from the title completion descriptor.
|
|
*
|
|
* @param rxq
|
|
* Pointer to RX queue structure.
|
|
* @param cq
|
|
* Pointer to completion array having a non-compressed completion at first.
|
|
* @param elts
|
|
* Pointer to SW ring to be filled. The first mbuf has to be pre-built from
|
|
* the title completion descriptor to be copied to the rest of mbufs.
|
|
* @param[out] pkts
|
|
* Array to store received packets.
|
|
* @param pkts_n
|
|
* Maximum number of packets in array.
|
|
* @param[out] err
|
|
* Pointer to a flag. Set non-zero value if pkts array has at least one error
|
|
* packet to handle.
|
|
* @param[out] comp
|
|
* Pointer to a index. Set it to the first compressed completion if any.
|
|
*
|
|
* @return
|
|
* Number of CQEs successfully processed.
|
|
*/
|
|
static inline uint16_t
|
|
rxq_cq_process_v(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cq,
|
|
struct rte_mbuf **elts, struct rte_mbuf **pkts,
|
|
uint16_t pkts_n, uint64_t *err, uint64_t *comp)
|
|
{
|
|
const uint16_t q_n = 1 << rxq->cqe_n;
|
|
const uint16_t q_mask = q_n - 1;
|
|
unsigned int pos;
|
|
uint64_t n = 0;
|
|
uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
|
|
uint16_t nocmp_n = 0;
|
|
unsigned int ownership = !!(rxq->cq_ci & (q_mask + 1));
|
|
const __m128i owner_check = _mm_set1_epi64x(0x0100000001000000LL);
|
|
const __m128i opcode_check = _mm_set1_epi64x(0xf0000000f0000000LL);
|
|
const __m128i format_check = _mm_set1_epi64x(0x0c0000000c000000LL);
|
|
const __m128i resp_err_check = _mm_set1_epi64x(0xe0000000e0000000LL);
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
uint32_t rcvd_byte = 0;
|
|
/* Mask to shuffle byte_cnt to add up stats. Do bswap16 for all. */
|
|
const __m128i len_shuf_mask =
|
|
_mm_set_epi8(-1, -1, -1, -1,
|
|
-1, -1, -1, -1,
|
|
12, 13, 8, 9,
|
|
4, 5, 0, 1);
|
|
#endif
|
|
/* Mask to shuffle from extracted CQE to mbuf. */
|
|
const __m128i shuf_mask =
|
|
_mm_set_epi8(-1, 3, 2, 1, /* fdir.hi */
|
|
12, 13, 14, 15, /* rss, bswap32 */
|
|
10, 11, /* vlan_tci, bswap16 */
|
|
4, 5, /* data_len, bswap16 */
|
|
-1, -1, /* zero out 2nd half of pkt_len */
|
|
4, 5 /* pkt_len, bswap16 */);
|
|
/* Mask to blend from the last Qword to the first DQword. */
|
|
const __m128i blend_mask =
|
|
_mm_set_epi8(-1, -1, -1, -1,
|
|
-1, -1, -1, -1,
|
|
0, 0, 0, 0,
|
|
0, 0, 0, -1);
|
|
const __m128i zero = _mm_setzero_si128();
|
|
const __m128i ones = _mm_cmpeq_epi32(zero, zero);
|
|
const __m128i crc_adj =
|
|
_mm_set_epi16(0, 0, 0, 0, 0,
|
|
rxq->crc_present * RTE_ETHER_CRC_LEN,
|
|
0,
|
|
rxq->crc_present * RTE_ETHER_CRC_LEN);
|
|
const __m128i flow_mark_adj = _mm_set_epi32(rxq->mark * (-1), 0, 0, 0);
|
|
/*
|
|
* A. load first Qword (8bytes) in one loop.
|
|
* B. copy 4 mbuf pointers from elts ring to returning pkts.
|
|
* C. load remained CQE data and extract necessary fields.
|
|
* Final 16bytes cqes[] extracted from original 64bytes CQE has the
|
|
* following structure:
|
|
* struct {
|
|
* uint8_t pkt_info;
|
|
* uint8_t flow_tag[3];
|
|
* uint16_t byte_cnt;
|
|
* uint8_t rsvd4;
|
|
* uint8_t op_own;
|
|
* uint16_t hdr_type_etc;
|
|
* uint16_t vlan_info;
|
|
* uint32_t rx_has_res;
|
|
* } c;
|
|
* D. fill in mbuf.
|
|
* E. get valid CQEs.
|
|
* F. find compressed CQE.
|
|
*/
|
|
for (pos = 0;
|
|
pos < pkts_n;
|
|
pos += MLX5_VPMD_DESCS_PER_LOOP) {
|
|
__m128i cqes[MLX5_VPMD_DESCS_PER_LOOP];
|
|
__m128i cqe_tmp1, cqe_tmp2;
|
|
__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
|
|
__m128i op_own, op_own_tmp1, op_own_tmp2;
|
|
__m128i opcode, owner_mask, invalid_mask;
|
|
__m128i comp_mask;
|
|
__m128i mask;
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
__m128i byte_cnt;
|
|
#endif
|
|
__m128i mbp1, mbp2;
|
|
__m128i p = _mm_set_epi16(0, 0, 0, 0, 3, 2, 1, 0);
|
|
unsigned int p1, p2, p3;
|
|
|
|
/* Prefetch next 4 CQEs. */
|
|
if (pkts_n - pos >= 2 * MLX5_VPMD_DESCS_PER_LOOP) {
|
|
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP]);
|
|
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 1]);
|
|
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 2]);
|
|
rte_prefetch0(&cq[pos + MLX5_VPMD_DESCS_PER_LOOP + 3]);
|
|
}
|
|
/* A.0 do not cross the end of CQ. */
|
|
mask = _mm_set_epi64x(0, (pkts_n - pos) * sizeof(uint16_t) * 8);
|
|
mask = _mm_sll_epi64(ones, mask);
|
|
p = _mm_andnot_si128(mask, p);
|
|
/* A.1 load cqes. */
|
|
p3 = _mm_extract_epi16(p, 3);
|
|
cqes[3] = _mm_loadl_epi64((__m128i *)
|
|
&cq[pos + p3].sop_drop_qpn);
|
|
rte_compiler_barrier();
|
|
p2 = _mm_extract_epi16(p, 2);
|
|
cqes[2] = _mm_loadl_epi64((__m128i *)
|
|
&cq[pos + p2].sop_drop_qpn);
|
|
rte_compiler_barrier();
|
|
/* B.1 load mbuf pointers. */
|
|
mbp1 = _mm_loadu_si128((__m128i *)&elts[pos]);
|
|
mbp2 = _mm_loadu_si128((__m128i *)&elts[pos + 2]);
|
|
/* A.1 load a block having op_own. */
|
|
p1 = _mm_extract_epi16(p, 1);
|
|
cqes[1] = _mm_loadl_epi64((__m128i *)
|
|
&cq[pos + p1].sop_drop_qpn);
|
|
rte_compiler_barrier();
|
|
cqes[0] = _mm_loadl_epi64((__m128i *)
|
|
&cq[pos].sop_drop_qpn);
|
|
/* B.2 copy mbuf pointers. */
|
|
_mm_storeu_si128((__m128i *)&pkts[pos], mbp1);
|
|
_mm_storeu_si128((__m128i *)&pkts[pos + 2], mbp2);
|
|
rte_io_rmb();
|
|
/* C.1 load remained CQE data and extract necessary fields. */
|
|
cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p3]);
|
|
cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos + p2]);
|
|
cqes[3] = _mm_blendv_epi8(cqes[3], cqe_tmp2, blend_mask);
|
|
cqes[2] = _mm_blendv_epi8(cqes[2], cqe_tmp1, blend_mask);
|
|
cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p3].csum);
|
|
cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos + p2].csum);
|
|
cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x30);
|
|
cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x30);
|
|
cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p3].rsvd4[2]);
|
|
cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos + p2].rsvd4[2]);
|
|
cqes[3] = _mm_blend_epi16(cqes[3], cqe_tmp2, 0x04);
|
|
cqes[2] = _mm_blend_epi16(cqes[2], cqe_tmp1, 0x04);
|
|
/* C.2 generate final structure for mbuf with swapping bytes. */
|
|
pkt_mb3 = _mm_shuffle_epi8(cqes[3], shuf_mask);
|
|
pkt_mb2 = _mm_shuffle_epi8(cqes[2], shuf_mask);
|
|
/* C.3 adjust CRC length. */
|
|
pkt_mb3 = _mm_sub_epi16(pkt_mb3, crc_adj);
|
|
pkt_mb2 = _mm_sub_epi16(pkt_mb2, crc_adj);
|
|
/* C.4 adjust flow mark. */
|
|
pkt_mb3 = _mm_add_epi32(pkt_mb3, flow_mark_adj);
|
|
pkt_mb2 = _mm_add_epi32(pkt_mb2, flow_mark_adj);
|
|
/* D.1 fill in mbuf - rx_descriptor_fields1. */
|
|
_mm_storeu_si128((void *)&pkts[pos + 3]->pkt_len, pkt_mb3);
|
|
_mm_storeu_si128((void *)&pkts[pos + 2]->pkt_len, pkt_mb2);
|
|
/* E.1 extract op_own field. */
|
|
op_own_tmp2 = _mm_unpacklo_epi32(cqes[2], cqes[3]);
|
|
/* C.1 load remained CQE data and extract necessary fields. */
|
|
cqe_tmp2 = _mm_load_si128((__m128i *)&cq[pos + p1]);
|
|
cqe_tmp1 = _mm_load_si128((__m128i *)&cq[pos]);
|
|
cqes[1] = _mm_blendv_epi8(cqes[1], cqe_tmp2, blend_mask);
|
|
cqes[0] = _mm_blendv_epi8(cqes[0], cqe_tmp1, blend_mask);
|
|
cqe_tmp2 = _mm_loadu_si128((__m128i *)&cq[pos + p1].csum);
|
|
cqe_tmp1 = _mm_loadu_si128((__m128i *)&cq[pos].csum);
|
|
cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x30);
|
|
cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x30);
|
|
cqe_tmp2 = _mm_loadl_epi64((__m128i *)&cq[pos + p1].rsvd4[2]);
|
|
cqe_tmp1 = _mm_loadl_epi64((__m128i *)&cq[pos].rsvd4[2]);
|
|
cqes[1] = _mm_blend_epi16(cqes[1], cqe_tmp2, 0x04);
|
|
cqes[0] = _mm_blend_epi16(cqes[0], cqe_tmp1, 0x04);
|
|
/* C.2 generate final structure for mbuf with swapping bytes. */
|
|
pkt_mb1 = _mm_shuffle_epi8(cqes[1], shuf_mask);
|
|
pkt_mb0 = _mm_shuffle_epi8(cqes[0], shuf_mask);
|
|
/* C.3 adjust CRC length. */
|
|
pkt_mb1 = _mm_sub_epi16(pkt_mb1, crc_adj);
|
|
pkt_mb0 = _mm_sub_epi16(pkt_mb0, crc_adj);
|
|
/* C.4 adjust flow mark. */
|
|
pkt_mb1 = _mm_add_epi32(pkt_mb1, flow_mark_adj);
|
|
pkt_mb0 = _mm_add_epi32(pkt_mb0, flow_mark_adj);
|
|
/* E.1 extract op_own byte. */
|
|
op_own_tmp1 = _mm_unpacklo_epi32(cqes[0], cqes[1]);
|
|
op_own = _mm_unpackhi_epi64(op_own_tmp1, op_own_tmp2);
|
|
/* D.1 fill in mbuf - rx_descriptor_fields1. */
|
|
_mm_storeu_si128((void *)&pkts[pos + 1]->pkt_len, pkt_mb1);
|
|
_mm_storeu_si128((void *)&pkts[pos]->pkt_len, pkt_mb0);
|
|
/* E.2 flip owner bit to mark CQEs from last round. */
|
|
owner_mask = _mm_and_si128(op_own, owner_check);
|
|
if (ownership)
|
|
owner_mask = _mm_xor_si128(owner_mask, owner_check);
|
|
owner_mask = _mm_cmpeq_epi32(owner_mask, owner_check);
|
|
owner_mask = _mm_packs_epi32(owner_mask, zero);
|
|
/* E.3 get mask for invalidated CQEs. */
|
|
opcode = _mm_and_si128(op_own, opcode_check);
|
|
invalid_mask = _mm_cmpeq_epi32(opcode_check, opcode);
|
|
invalid_mask = _mm_packs_epi32(invalid_mask, zero);
|
|
/* E.4 mask out beyond boundary. */
|
|
invalid_mask = _mm_or_si128(invalid_mask, mask);
|
|
/* E.5 merge invalid_mask with invalid owner. */
|
|
invalid_mask = _mm_or_si128(invalid_mask, owner_mask);
|
|
/* F.1 find compressed CQE format. */
|
|
comp_mask = _mm_and_si128(op_own, format_check);
|
|
comp_mask = _mm_cmpeq_epi32(comp_mask, format_check);
|
|
comp_mask = _mm_packs_epi32(comp_mask, zero);
|
|
/* F.2 mask out invalid entries. */
|
|
comp_mask = _mm_andnot_si128(invalid_mask, comp_mask);
|
|
comp_idx = _mm_cvtsi128_si64(comp_mask);
|
|
/* F.3 get the first compressed CQE. */
|
|
comp_idx = comp_idx ?
|
|
__builtin_ctzll(comp_idx) /
|
|
(sizeof(uint16_t) * 8) :
|
|
MLX5_VPMD_DESCS_PER_LOOP;
|
|
/* E.6 mask out entries after the compressed CQE. */
|
|
mask = _mm_set_epi64x(0, comp_idx * sizeof(uint16_t) * 8);
|
|
mask = _mm_sll_epi64(ones, mask);
|
|
invalid_mask = _mm_or_si128(invalid_mask, mask);
|
|
/* E.7 count non-compressed valid CQEs. */
|
|
n = _mm_cvtsi128_si64(invalid_mask);
|
|
n = n ? __builtin_ctzll(n) / (sizeof(uint16_t) * 8) :
|
|
MLX5_VPMD_DESCS_PER_LOOP;
|
|
nocmp_n += n;
|
|
/* D.2 get the final invalid mask. */
|
|
mask = _mm_set_epi64x(0, n * sizeof(uint16_t) * 8);
|
|
mask = _mm_sll_epi64(ones, mask);
|
|
invalid_mask = _mm_or_si128(invalid_mask, mask);
|
|
/* D.3 check error in opcode. */
|
|
opcode = _mm_cmpeq_epi32(resp_err_check, opcode);
|
|
opcode = _mm_packs_epi32(opcode, zero);
|
|
opcode = _mm_andnot_si128(invalid_mask, opcode);
|
|
/* D.4 mark if any error is set */
|
|
*err |= _mm_cvtsi128_si64(opcode);
|
|
/* D.5 fill in mbuf - rearm_data and packet_type. */
|
|
rxq_cq_to_ptype_oflags_v(rxq, cqes, opcode, &pkts[pos]);
|
|
if (rxq->hw_timestamp) {
|
|
int offset = rxq->timestamp_offset;
|
|
if (rxq->rt_timestamp) {
|
|
struct mlx5_dev_ctx_shared *sh = rxq->sh;
|
|
uint64_t ts;
|
|
|
|
ts = rte_be_to_cpu_64(cq[pos].timestamp);
|
|
mlx5_timestamp_set(pkts[pos], offset,
|
|
mlx5_txpp_convert_rx_ts(sh, ts));
|
|
ts = rte_be_to_cpu_64(cq[pos + p1].timestamp);
|
|
mlx5_timestamp_set(pkts[pos + 1], offset,
|
|
mlx5_txpp_convert_rx_ts(sh, ts));
|
|
ts = rte_be_to_cpu_64(cq[pos + p2].timestamp);
|
|
mlx5_timestamp_set(pkts[pos + 2], offset,
|
|
mlx5_txpp_convert_rx_ts(sh, ts));
|
|
ts = rte_be_to_cpu_64(cq[pos + p3].timestamp);
|
|
mlx5_timestamp_set(pkts[pos + 3], offset,
|
|
mlx5_txpp_convert_rx_ts(sh, ts));
|
|
} else {
|
|
mlx5_timestamp_set(pkts[pos], offset,
|
|
rte_be_to_cpu_64(cq[pos].timestamp));
|
|
mlx5_timestamp_set(pkts[pos + 1], offset,
|
|
rte_be_to_cpu_64(cq[pos + p1].timestamp));
|
|
mlx5_timestamp_set(pkts[pos + 2], offset,
|
|
rte_be_to_cpu_64(cq[pos + p2].timestamp));
|
|
mlx5_timestamp_set(pkts[pos + 3], offset,
|
|
rte_be_to_cpu_64(cq[pos + p3].timestamp));
|
|
}
|
|
}
|
|
if (rxq->dynf_meta) {
|
|
/* This code is subject for futher optimization. */
|
|
int32_t offs = rxq->flow_meta_offset;
|
|
uint32_t mask = rxq->flow_meta_port_mask;
|
|
|
|
*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *) =
|
|
rte_be_to_cpu_32
|
|
(cq[pos].flow_table_metadata) & mask;
|
|
*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *) =
|
|
rte_be_to_cpu_32
|
|
(cq[pos + p1].flow_table_metadata) & mask;
|
|
*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *) =
|
|
rte_be_to_cpu_32
|
|
(cq[pos + p2].flow_table_metadata) & mask;
|
|
*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *) =
|
|
rte_be_to_cpu_32
|
|
(cq[pos + p3].flow_table_metadata) & mask;
|
|
if (*RTE_MBUF_DYNFIELD(pkts[pos], offs, uint32_t *))
|
|
pkts[pos]->ol_flags |= rxq->flow_meta_mask;
|
|
if (*RTE_MBUF_DYNFIELD(pkts[pos + 1], offs, uint32_t *))
|
|
pkts[pos + 1]->ol_flags |= rxq->flow_meta_mask;
|
|
if (*RTE_MBUF_DYNFIELD(pkts[pos + 2], offs, uint32_t *))
|
|
pkts[pos + 2]->ol_flags |= rxq->flow_meta_mask;
|
|
if (*RTE_MBUF_DYNFIELD(pkts[pos + 3], offs, uint32_t *))
|
|
pkts[pos + 3]->ol_flags |= rxq->flow_meta_mask;
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
/* Add up received bytes count. */
|
|
byte_cnt = _mm_shuffle_epi8(op_own, len_shuf_mask);
|
|
byte_cnt = _mm_andnot_si128(invalid_mask, byte_cnt);
|
|
byte_cnt = _mm_hadd_epi16(byte_cnt, zero);
|
|
rcvd_byte += _mm_cvtsi128_si64(_mm_hadd_epi16(byte_cnt, zero));
|
|
#endif
|
|
/*
|
|
* Break the loop unless more valid CQE is expected, or if
|
|
* there's a compressed CQE.
|
|
*/
|
|
if (n != MLX5_VPMD_DESCS_PER_LOOP)
|
|
break;
|
|
}
|
|
#ifdef MLX5_PMD_SOFT_COUNTERS
|
|
rxq->stats.ipackets += nocmp_n;
|
|
rxq->stats.ibytes += rcvd_byte;
|
|
#endif
|
|
if (comp_idx == n)
|
|
*comp = comp_idx;
|
|
return nocmp_n;
|
|
}
|
|
|
|
#endif /* RTE_PMD_MLX5_RXTX_VEC_SSE_H_ */
|