numam-dpdk/app/test/test_memzone.c
Bruce Richardson 013615a784 mem: add bounded reserve function
For certain functionality, e.g. Xen Dom0 support, it is required that
we can guarantee that memzones for descriptor rings won't cross 2M
boundaries. So add new memzone reserve function where we can pass in a
boundary condition parameter.

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
2014-02-25 21:29:19 +01:00

1049 lines
29 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <cmdline_parse.h>
#include <rte_random.h>
#include <rte_cycles.h>
#include <rte_memory.h>
#include <rte_memzone.h>
#include <rte_tailq.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include "test.h"
/*
* Memzone
* =======
*
* - Search for three reserved zones or reserve them if they do not exist:
*
* - One is on any socket id.
* - The second is on socket 0.
* - The last one is on socket 1 (if socket 1 exists).
*
* - Check that the zones exist.
*
* - Check that the zones are cache-aligned.
*
* - Check that zones do not overlap.
*
* - Check that the zones are on the correct socket id.
*
* - Check that a lookup of the first zone returns the same pointer.
*
* - Check that it is not possible to create another zone with the
* same name as an existing zone.
*
* - Check flags for specific huge page size reservation
*/
/* Test if memory overlaps: return 1 if true, or 0 if false. */
static int
is_memory_overlap(phys_addr_t ptr1, size_t len1, phys_addr_t ptr2, size_t len2)
{
if (ptr2 >= ptr1 && (ptr2 - ptr1) < len1)
return 1;
else if (ptr2 < ptr1 && (ptr1 - ptr2) < len2)
return 1;
return 0;
}
static int
test_memzone_invalid_alignment(void)
{
const struct rte_memzone * mz;
mz = rte_memzone_lookup("invalid_alignment");
if (mz != NULL) {
printf("Zone with invalid alignment has been reserved\n");
return -1;
}
mz = rte_memzone_reserve_aligned("invalid_alignment", 100,
SOCKET_ID_ANY, 0, 100);
if (mz != NULL) {
printf("Zone with invalid alignment has been reserved\n");
return -1;
}
return 0;
}
static int
test_memzone_reserving_zone_size_bigger_than_the_maximum(void)
{
const struct rte_memzone * mz;
mz = rte_memzone_lookup("zone_size_bigger_than_the_maximum");
if (mz != NULL) {
printf("zone_size_bigger_than_the_maximum has been reserved\n");
return -1;
}
mz = rte_memzone_reserve("zone_size_bigger_than_the_maximum", (size_t)-1,
SOCKET_ID_ANY, 0);
if (mz != NULL) {
printf("It is impossible to reserve such big a memzone\n");
return -1;
}
return 0;
}
static int
test_memzone_reserve_flags(void)
{
const struct rte_memzone *mz;
const struct rte_memseg *ms;
int hugepage_2MB_avail = 0;
int hugepage_1GB_avail = 0;
const size_t size = 100;
int i = 0;
ms = rte_eal_get_physmem_layout();
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
if (ms[i].hugepage_sz == RTE_PGSIZE_2M)
hugepage_2MB_avail = 1;
if (ms[i].hugepage_sz == RTE_PGSIZE_1G)
hugepage_1GB_avail = 1;
}
/* Display the availability of 2MB and 1GB pages */
if (hugepage_2MB_avail)
printf("2MB Huge pages available\n");
if (hugepage_1GB_avail)
printf("1GB Huge pages available\n");
/*
* If 2MB pages available, check that a small memzone is correctly
* reserved from 2MB huge pages when requested by the RTE_MEMZONE_2MB flag.
* Also check that RTE_MEMZONE_SIZE_HINT_ONLY flag only defaults to an
* available page size (i.e 1GB ) when 2MB pages are unavailable.
*/
if (hugepage_2MB_avail) {
mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails unless
* HINT flag is indicated
*/
if (!hugepage_1GB_avail) {
mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_2M) {
printf("hugepage_sz not equal 2M\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB);
if (mz != NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
}
}
/*As with 2MB tests above for 1GB huge page requests*/
if (hugepage_1GB_avail) {
mz = rte_memzone_reserve("flag_zone_1G", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_1G_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_1GB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL) {
printf("MEMZONE FLAG 1GB\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
/* Check if 1GB huge pages are unavailable, that function fails unless
* HINT flag is indicated
*/
if (!hugepage_2MB_avail) {
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_SIZE_HINT_ONLY);
if (mz == NULL){
printf("MEMZONE FLAG 2MB & HINT\n");
return -1;
}
if (mz->hugepage_sz != RTE_PGSIZE_1G) {
printf("hugepage_sz not equal 1G\n");
return -1;
}
mz = rte_memzone_reserve("flag_zone_2M", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB);
if (mz != NULL) {
printf("MEMZONE FLAG 2MB\n");
return -1;
}
}
if (hugepage_2MB_avail && hugepage_1GB_avail) {
mz = rte_memzone_reserve("flag_zone_2M_HINT", size, SOCKET_ID_ANY,
RTE_MEMZONE_2MB|RTE_MEMZONE_1GB);
if (mz != NULL) {
printf("BOTH SIZES SET\n");
return -1;
}
}
}
return 0;
}
static int
test_memzone_reserve_max(void)
{
const struct rte_memzone *mz;
const struct rte_config *config;
const struct rte_memseg *ms;
int memseg_idx = 0;
int memzone_idx = 0;
size_t len = 0;
void* last_addr;
size_t maxlen = 0;
/* get pointer to global configuration */
config = rte_eal_get_configuration();
ms = rte_eal_get_physmem_layout();
for (memseg_idx = 0; memseg_idx < RTE_MAX_MEMSEG; memseg_idx++){
/* ignore smaller memsegs as they can only get smaller */
if (ms[memseg_idx].len < maxlen)
continue;
/* align everything */
last_addr = RTE_PTR_ALIGN_CEIL(ms[memseg_idx].addr, CACHE_LINE_SIZE);
len = ms[memseg_idx].len - RTE_PTR_DIFF(last_addr, ms[memseg_idx].addr);
len &= ~((size_t) CACHE_LINE_MASK);
/* cycle through all memzones */
for (memzone_idx = 0; memzone_idx < RTE_MAX_MEMZONE; memzone_idx++) {
/* stop when reaching last allocated memzone */
if (config->mem_config->memzone[memzone_idx].addr == NULL)
break;
/* check if the memzone is in our memseg and subtract length */
if ((config->mem_config->memzone[memzone_idx].addr >=
ms[memseg_idx].addr) &&
(config->mem_config->memzone[memzone_idx].addr <
(RTE_PTR_ADD(ms[memseg_idx].addr, ms[memseg_idx].len)))) {
/* since the zones can now be aligned and occasionally skip
* some space, we should calculate the length based on
* reported length and start addresses difference. Addresses
* are allocated sequentially so we don't need to worry about
* them being in the right order.
*/
len -= RTE_PTR_DIFF(
config->mem_config->memzone[memzone_idx].addr,
last_addr);
len -= config->mem_config->memzone[memzone_idx].len;
last_addr = RTE_PTR_ADD(config->mem_config->memzone[memzone_idx].addr,
(size_t) config->mem_config->memzone[memzone_idx].len);
}
}
/* we don't need to calculate offset here since length
* is always cache-aligned */
if (len > maxlen)
maxlen = len;
}
if (maxlen == 0) {
printf("There is no space left!\n");
return 0;
}
mz = rte_memzone_reserve("max_zone", 0, SOCKET_ID_ANY, 0);
if (mz == NULL){
printf("Failed to reserve a big chunk of memory\n");
rte_dump_physmem_layout();
rte_memzone_dump();
return -1;
}
if (mz->len != maxlen) {
printf("Memzone reserve with 0 size did not return bigest block\n");
printf("Expected size = %zu, actual size = %zu\n",
maxlen, mz->len);
rte_dump_physmem_layout();
rte_memzone_dump();
return -1;
}
return 0;
}
static int
test_memzone_reserve_max_aligned(void)
{
const struct rte_memzone *mz;
const struct rte_config *config;
const struct rte_memseg *ms;
int memseg_idx = 0;
int memzone_idx = 0;
uintptr_t addr_offset;
size_t len = 0;
void* last_addr;
size_t maxlen = 0;
/* random alignment */
rte_srand((unsigned)rte_rdtsc());
const unsigned align = 1 << ((rte_rand() % 8) + 5); /* from 128 up to 4k alignment */
/* get pointer to global configuration */
config = rte_eal_get_configuration();
ms = rte_eal_get_physmem_layout();
addr_offset = 0;
for (memseg_idx = 0; memseg_idx < RTE_MAX_MEMSEG; memseg_idx++){
/* ignore smaller memsegs as they can only get smaller */
if (ms[memseg_idx].len < maxlen)
continue;
/* align everything */
last_addr = RTE_PTR_ALIGN_CEIL(ms[memseg_idx].addr, CACHE_LINE_SIZE);
len = ms[memseg_idx].len - RTE_PTR_DIFF(last_addr, ms[memseg_idx].addr);
len &= ~((size_t) CACHE_LINE_MASK);
/* cycle through all memzones */
for (memzone_idx = 0; memzone_idx < RTE_MAX_MEMZONE; memzone_idx++) {
/* stop when reaching last allocated memzone */
if (config->mem_config->memzone[memzone_idx].addr == NULL)
break;
/* check if the memzone is in our memseg and subtract length */
if ((config->mem_config->memzone[memzone_idx].addr >=
ms[memseg_idx].addr) &&
(config->mem_config->memzone[memzone_idx].addr <
(RTE_PTR_ADD(ms[memseg_idx].addr, ms[memseg_idx].len)))) {
/* since the zones can now be aligned and occasionally skip
* some space, we should calculate the length based on
* reported length and start addresses difference.
*/
len -= (uintptr_t) RTE_PTR_SUB(
config->mem_config->memzone[memzone_idx].addr,
(uintptr_t) last_addr);
len -= config->mem_config->memzone[memzone_idx].len;
last_addr =
RTE_PTR_ADD(config->mem_config->memzone[memzone_idx].addr,
(size_t) config->mem_config->memzone[memzone_idx].len);
}
}
/* make sure we get the alignment offset */
if (len > maxlen) {
addr_offset = RTE_PTR_ALIGN_CEIL((uintptr_t) last_addr, align) - (uintptr_t) last_addr;
maxlen = len;
}
}
if (maxlen == 0 || maxlen == addr_offset) {
printf("There is no space left for biggest %u-aligned memzone!\n", align);
return 0;
}
maxlen -= addr_offset;
mz = rte_memzone_reserve_aligned("max_zone_aligned", 0,
SOCKET_ID_ANY, 0, align);
if (mz == NULL){
printf("Failed to reserve a big chunk of memory\n");
rte_dump_physmem_layout();
rte_memzone_dump();
return -1;
}
if (mz->len != maxlen) {
printf("Memzone reserve with 0 size and alignment %u did not return"
" bigest block\n", align);
printf("Expected size = %zu, actual size = %zu\n",
maxlen, mz->len);
rte_dump_physmem_layout();
rte_memzone_dump();
return -1;
}
return 0;
}
static int
test_memzone_aligned(void)
{
const struct rte_memzone *memzone_aligned_32;
const struct rte_memzone *memzone_aligned_128;
const struct rte_memzone *memzone_aligned_256;
const struct rte_memzone *memzone_aligned_512;
const struct rte_memzone *memzone_aligned_1024;
/* memzone that should automatically be adjusted to align on 64 bytes */
memzone_aligned_32 = rte_memzone_reserve_aligned("aligned_32", 100,
SOCKET_ID_ANY, 0, 32);
/* memzone that is supposed to be aligned on a 128 byte boundary */
memzone_aligned_128 = rte_memzone_reserve_aligned("aligned_128", 100,
SOCKET_ID_ANY, 0, 128);
/* memzone that is supposed to be aligned on a 256 byte boundary */
memzone_aligned_256 = rte_memzone_reserve_aligned("aligned_256", 100,
SOCKET_ID_ANY, 0, 256);
/* memzone that is supposed to be aligned on a 512 byte boundary */
memzone_aligned_512 = rte_memzone_reserve_aligned("aligned_512", 100,
SOCKET_ID_ANY, 0, 512);
/* memzone that is supposed to be aligned on a 1024 byte boundary */
memzone_aligned_1024 = rte_memzone_reserve_aligned("aligned_1024", 100,
SOCKET_ID_ANY, 0, 1024);
printf("check alignments and lengths\n");
if (memzone_aligned_32 == NULL) {
printf("Unable to reserve 64-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_32->phys_addr & CACHE_LINE_MASK) != 0)
return -1;
if (((uintptr_t) memzone_aligned_32->addr & CACHE_LINE_MASK) != 0)
return -1;
if ((memzone_aligned_32->len & CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_128 == NULL) {
printf("Unable to reserve 128-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_128->phys_addr & 127) != 0)
return -1;
if (((uintptr_t) memzone_aligned_128->addr & 127) != 0)
return -1;
if ((memzone_aligned_128->len & CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_256 == NULL) {
printf("Unable to reserve 256-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_256->phys_addr & 255) != 0)
return -1;
if (((uintptr_t) memzone_aligned_256->addr & 255) != 0)
return -1;
if ((memzone_aligned_256->len & CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_512 == NULL) {
printf("Unable to reserve 512-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_512->phys_addr & 511) != 0)
return -1;
if (((uintptr_t) memzone_aligned_512->addr & 511) != 0)
return -1;
if ((memzone_aligned_512->len & CACHE_LINE_MASK) != 0)
return -1;
if (memzone_aligned_1024 == NULL) {
printf("Unable to reserve 1024-byte aligned memzone!\n");
return -1;
}
if ((memzone_aligned_1024->phys_addr & 1023) != 0)
return -1;
if (((uintptr_t) memzone_aligned_1024->addr & 1023) != 0)
return -1;
if ((memzone_aligned_1024->len & CACHE_LINE_MASK) != 0)
return -1;
/* check that zones don't overlap */
printf("check overlapping\n");
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_128->phys_addr, memzone_aligned_128->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_256->phys_addr, memzone_aligned_256->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_32->phys_addr, memzone_aligned_32->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
memzone_aligned_256->phys_addr, memzone_aligned_256->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_128->phys_addr, memzone_aligned_128->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
memzone_aligned_512->phys_addr, memzone_aligned_512->len))
return -1;
if (is_memory_overlap(memzone_aligned_256->phys_addr, memzone_aligned_256->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
if (is_memory_overlap(memzone_aligned_512->phys_addr, memzone_aligned_512->len,
memzone_aligned_1024->phys_addr, memzone_aligned_1024->len))
return -1;
return 0;
}
static int
check_memzone_bounded(const char *name, uint32_t len, uint32_t align,
uint32_t bound)
{
const struct rte_memzone *mz;
phys_addr_t bmask;
bmask = ~((phys_addr_t)bound - 1);
if ((mz = rte_memzone_reserve_bounded(name, len, SOCKET_ID_ANY, 0,
align, bound)) == NULL) {
printf("%s(%s): memzone creation failed\n",
__func__, name);
return (-1);
}
if ((mz->phys_addr & ((phys_addr_t)align - 1)) != 0) {
printf("%s(%s): invalid phys addr alignment\n",
__func__, mz->name);
return (-1);
}
if (((uintptr_t) mz->addr & ((uintptr_t)align - 1)) != 0) {
printf("%s(%s): invalid virtual addr alignment\n",
__func__, mz->name);
return (-1);
}
if ((mz->len & CACHE_LINE_MASK) != 0 || mz->len < len ||
mz->len < CACHE_LINE_SIZE) {
printf("%s(%s): invalid length\n",
__func__, mz->name);
return (-1);
}
if ((mz->phys_addr & bmask) !=
((mz->phys_addr + mz->len - 1) & bmask)) {
printf("%s(%s): invalid memzone boundary %u crossed\n",
__func__, mz->name, bound);
return (-1);
}
return (0);
}
static int
test_memzone_bounded(void)
{
const struct rte_memzone *memzone_err;
const char *name;
int rc;
/* should fail as boundary is not power of two */
name = "bounded_error_31";
if ((memzone_err = rte_memzone_reserve_bounded(name,
100, SOCKET_ID_ANY, 0, 32, UINT32_MAX)) != NULL) {
printf("%s(%s)created a memzone with invalid boundary "
"conditions\n", __func__, memzone_err->name);
return (-1);
}
/* should fail as len is greater then boundary */
name = "bounded_error_32";
if ((memzone_err = rte_memzone_reserve_bounded(name,
100, SOCKET_ID_ANY, 0, 32, 32)) != NULL) {
printf("%s(%s)created a memzone with invalid boundary "
"conditions\n", __func__, memzone_err->name);
return (-1);
}
if ((rc = check_memzone_bounded("bounded_128", 100, 128, 128)) != 0)
return (rc);
if ((rc = check_memzone_bounded("bounded_256", 100, 256, 128)) != 0)
return (rc);
if ((rc = check_memzone_bounded("bounded_1K", 100, 64, 1024)) != 0)
return (rc);
if ((rc = check_memzone_bounded("bounded_1K_MAX", 0, 64, 1024)) != 0)
return (rc);
return (0);
}
static int
test_memzone_reserve_memory_in_smallest_segment(void)
{
const struct rte_memzone *mz;
const struct rte_memseg *ms, *min_ms, *prev_min_ms;
size_t min_len, prev_min_len;
const struct rte_config *config;
int i;
config = rte_eal_get_configuration();
min_ms = NULL; /*< smallest segment */
prev_min_ms = NULL; /*< second smallest segment */
/* find two smallest segments */
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
ms = &config->mem_config->free_memseg[i];
if (ms->addr == NULL)
break;
if (ms->len == 0)
continue;
if (min_ms == NULL)
min_ms = ms;
else if (min_ms->len > ms->len) {
/* set last smallest to second last */
prev_min_ms = min_ms;
/* set new smallest */
min_ms = ms;
}
else if (prev_min_ms == NULL) {
prev_min_ms = ms;
}
}
if (min_ms == NULL || prev_min_ms == NULL) {
printf("Smallest segments not found!\n");
return -1;
}
min_len = min_ms->len;
prev_min_len = prev_min_ms->len;
/* try reserving a memzone in the smallest memseg */
mz = rte_memzone_reserve("smallest_mz", CACHE_LINE_SIZE,
SOCKET_ID_ANY, 0);
if (mz == NULL) {
printf("Failed to reserve memory from smallest memseg!\n");
return -1;
}
if (prev_min_ms->len != prev_min_len &&
min_ms->len != min_len - CACHE_LINE_SIZE) {
printf("Reserved memory from wrong memseg!\n");
return -1;
}
return 0;
}
/* this test is a bit tricky, and thus warrants explanation.
*
* first, we find two smallest memsegs to conduct our experiments on.
*
* then, we bring them within alignment from each other: if second segment is
* twice+ as big as the first, reserve memory from that segment; if second
* segment is comparable in length to the first, then cut the first segment
* down until it becomes less than half of second segment, and then cut down
* the second segment to be within alignment of the first.
*
* then, we have to pass the following test: if segments are within alignment
* of each other (that is, the difference is less than 256 bytes, which is what
* our alignment will be), segment with smallest offset should be picked.
*
* we know that min_ms will be our smallest segment, so we need to make sure
* that we adjust the alignments so that the bigger segment has smallest
* alignment (in our case, smallest segment will have 64-byte alignment, while
* bigger segment will have 128-byte alignment).
*/
static int
test_memzone_reserve_memory_with_smallest_offset(void)
{
const struct rte_memseg *ms, *min_ms, *prev_min_ms;
size_t len, min_len, prev_min_len;
const struct rte_config *config;
int i, align;
config = rte_eal_get_configuration();
min_ms = NULL; /*< smallest segment */
prev_min_ms = NULL; /*< second smallest segment */
align = CACHE_LINE_SIZE * 4;
/* find two smallest segments */
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
ms = &config->mem_config->free_memseg[i];
if (ms->addr == NULL)
break;
if (ms->len == 0)
continue;
if (min_ms == NULL)
min_ms = ms;
else if (min_ms->len > ms->len) {
/* set last smallest to second last */
prev_min_ms = min_ms;
/* set new smallest */
min_ms = ms;
}
else if (prev_min_ms == NULL) {
prev_min_ms = ms;
}
}
if (min_ms == NULL || prev_min_ms == NULL) {
printf("Smallest segments not found!\n");
return -1;
}
prev_min_len = prev_min_ms->len;
min_len = min_ms->len;
/* if smallest segment is bigger than half of bigger segment */
if (prev_min_ms->len - min_ms->len <= min_ms->len) {
len = (min_ms->len * 2) - prev_min_ms->len;
/* make sure final length is *not* aligned */
while (((min_ms->addr_64 + len) & (align-1)) == 0)
len += CACHE_LINE_SIZE;
if (rte_memzone_reserve("dummy_mz1", len, SOCKET_ID_ANY, 0) == NULL) {
printf("Cannot reserve memory!\n");
return -1;
}
/* check if we got memory from correct segment */
if (min_ms->len != min_len - len) {
printf("Reserved memory from wrong segment!\n");
return -1;
}
}
/* if we don't need to touch smallest segment but it's aligned */
else if ((min_ms->addr_64 & (align-1)) == 0) {
if (rte_memzone_reserve("align_mz1", CACHE_LINE_SIZE,
SOCKET_ID_ANY, 0) == NULL) {
printf("Cannot reserve memory!\n");
return -1;
}
if (min_ms->len != min_len - CACHE_LINE_SIZE) {
printf("Reserved memory from wrong segment!\n");
return -1;
}
}
/* if smallest segment is less than half of bigger segment */
if (prev_min_ms->len - min_ms->len > min_ms->len) {
len = prev_min_ms->len - min_ms->len - align;
/* make sure final length is aligned */
while (((prev_min_ms->addr_64 + len) & (align-1)) != 0)
len += CACHE_LINE_SIZE;
if (rte_memzone_reserve("dummy_mz2", len, SOCKET_ID_ANY, 0) == NULL) {
printf("Cannot reserve memory!\n");
return -1;
}
/* check if we got memory from correct segment */
if (prev_min_ms->len != prev_min_len - len) {
printf("Reserved memory from wrong segment!\n");
return -1;
}
}
len = CACHE_LINE_SIZE;
prev_min_len = prev_min_ms->len;
min_len = min_ms->len;
if (min_len >= prev_min_len || prev_min_len - min_len > (unsigned) align) {
printf("Segments are of wrong lengths!\n");
return -1;
}
/* try reserving from a bigger segment */
if (rte_memzone_reserve_aligned("smallest_offset", len, SOCKET_ID_ANY, 0, align) ==
NULL) {
printf("Cannot reserve memory!\n");
return -1;
}
/* check if we got memory from correct segment */
if (min_ms->len != min_len && prev_min_ms->len != (prev_min_len - len)) {
printf("Reserved memory from segment with smaller offset!\n");
return -1;
}
return 0;
}
static int
test_memzone_reserve_remainder(void)
{
const struct rte_memzone *mz1, *mz2;
const struct rte_memseg *ms, *min_ms = NULL;
size_t min_len;
const struct rte_config *config;
int i, align;
min_len = 0;
align = CACHE_LINE_SIZE;
config = rte_eal_get_configuration();
/* find minimum free contiguous length */
for (i = 0; i < RTE_MAX_MEMSEG; i++) {
ms = &config->mem_config->free_memseg[i];
if (ms->addr == NULL)
break;
if (ms->len == 0)
continue;
if (min_len == 0 || ms->len < min_len) {
min_len = ms->len;
min_ms = ms;
/* find maximum alignment this segment is able to hold */
align = CACHE_LINE_SIZE;
while ((ms->addr_64 & (align-1)) == 0) {
align <<= 1;
}
}
}
if (min_ms == NULL) {
printf("Minimal sized segment not found!\n");
return -1;
}
/* try reserving min_len bytes with alignment - this should not affect our
* memseg, the memory will be taken from a different one.
*/
mz1 = rte_memzone_reserve_aligned("reserve_remainder_1", min_len,
SOCKET_ID_ANY, 0, align);
if (mz1 == NULL) {
printf("Failed to reserve %zu bytes aligned on %i bytes\n", min_len,
align);
return -1;
}
if (min_ms->len != min_len) {
printf("Memseg memory should not have been reserved!\n");
return -1;
}
/* try reserving min_len bytes with less alignment - this should fill up
* the segment.
*/
mz2 = rte_memzone_reserve("reserve_remainder_2", min_len,
SOCKET_ID_ANY, 0);
if (mz2 == NULL) {
printf("Failed to reserve %zu bytes\n", min_len);
return -1;
}
if (min_ms->len != 0) {
printf("Memseg memory should have been reserved!\n");
return -1;
}
return 0;
}
int
test_memzone(void)
{
const struct rte_memzone *memzone1;
const struct rte_memzone *memzone2;
const struct rte_memzone *memzone3;
const struct rte_memzone *memzone4;
const struct rte_memzone *mz;
memzone1 = rte_memzone_reserve("testzone1", 100,
SOCKET_ID_ANY, 0);
memzone2 = rte_memzone_reserve("testzone2", 1000,
0, 0);
memzone3 = rte_memzone_reserve("testzone3", 1000,
1, 0);
memzone4 = rte_memzone_reserve("testzone4", 1024,
SOCKET_ID_ANY, 0);
/* memzone3 may be NULL if we don't have NUMA */
if (memzone1 == NULL || memzone2 == NULL || memzone4 == NULL)
return -1;
rte_memzone_dump();
/* check cache-line alignments */
printf("check alignments and lengths\n");
if ((memzone1->phys_addr & CACHE_LINE_MASK) != 0)
return -1;
if ((memzone2->phys_addr & CACHE_LINE_MASK) != 0)
return -1;
if (memzone3 != NULL && (memzone3->phys_addr & CACHE_LINE_MASK) != 0)
return -1;
if ((memzone1->len & CACHE_LINE_MASK) != 0 || memzone1->len == 0)
return -1;
if ((memzone2->len & CACHE_LINE_MASK) != 0 || memzone2->len == 0)
return -1;
if (memzone3 != NULL && ((memzone3->len & CACHE_LINE_MASK) != 0 ||
memzone3->len == 0))
return -1;
if (memzone4->len != 1024)
return -1;
/* check that zones don't overlap */
printf("check overlapping\n");
if (is_memory_overlap(memzone1->phys_addr, memzone1->len,
memzone2->phys_addr, memzone2->len))
return -1;
if (memzone3 != NULL &&
is_memory_overlap(memzone1->phys_addr, memzone1->len,
memzone3->phys_addr, memzone3->len))
return -1;
if (memzone3 != NULL &&
is_memory_overlap(memzone2->phys_addr, memzone2->len,
memzone3->phys_addr, memzone3->len))
return -1;
printf("check socket ID\n");
/* memzone2 must be on socket id 0 and memzone3 on socket 1 */
if (memzone2->socket_id != 0)
return -1;
if (memzone3 != NULL && memzone3->socket_id != 1)
return -1;
printf("test zone lookup\n");
mz = rte_memzone_lookup("testzone1");
if (mz != memzone1)
return -1;
printf("test duplcate zone name\n");
mz = rte_memzone_reserve("testzone1", 100,
SOCKET_ID_ANY, 0);
if (mz != NULL)
return -1;
printf("test reserving memzone with bigger size than the maximum\n");
if (test_memzone_reserving_zone_size_bigger_than_the_maximum() < 0)
return -1;
printf("test reserving memory in smallest segments\n");
if (test_memzone_reserve_memory_in_smallest_segment() < 0)
return -1;
printf("test reserving memory in segments with smallest offsets\n");
if (test_memzone_reserve_memory_with_smallest_offset() < 0)
return -1;
printf("test memzone_reserve flags\n");
if (test_memzone_reserve_flags() < 0)
return -1;
printf("test alignment for memzone_reserve\n");
if (test_memzone_aligned() < 0)
return -1;
printf("test boundary alignment for memzone_reserve\n");
if (test_memzone_bounded() < 0)
return -1;
printf("test invalid alignment for memzone_reserve\n");
if (test_memzone_invalid_alignment() < 0)
return -1;
printf("test reserving amounts of memory equal to segment's length\n");
if (test_memzone_reserve_remainder() < 0)
return -1;
printf("test reserving the largest size memzone possible\n");
if (test_memzone_reserve_max() < 0)
return -1;
printf("test reserving the largest size aligned memzone possible\n");
if (test_memzone_reserve_max_aligned() < 0)
return -1;
return 0;
}