numam-dpdk/drivers/net/ice/ice_generic_flow.c
Qiming Yang d76116a467 net/ice: add generic flow API
This patch adds ice_flow_create, ice_flow_destroy,
ice_flow_flush and ice_flow_validate support,
these are used to handle all the generic filters.

Signed-off-by: Qiming Yang <qiming.yang@intel.com>
Acked-by: Beilei Xing <beilei.xing@intel.com>
2019-07-03 12:57:30 +02:00

697 lines
18 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2019 Intel Corporation
*/
#include <sys/queue.h>
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <stdarg.h>
#include <rte_ether.h>
#include <rte_ethdev_driver.h>
#include <rte_malloc.h>
#include "ice_ethdev.h"
#include "ice_generic_flow.h"
#include "ice_switch_filter.h"
static int ice_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error);
static struct rte_flow *ice_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error);
static int ice_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error);
static int ice_flow_flush(struct rte_eth_dev *dev,
struct rte_flow_error *error);
const struct rte_flow_ops ice_flow_ops = {
.validate = ice_flow_validate,
.create = ice_flow_create,
.destroy = ice_flow_destroy,
.flush = ice_flow_flush,
};
static int
ice_flow_valid_attr(const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
/* Must be input direction */
if (!attr->ingress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
attr, "Only support ingress.");
return -rte_errno;
}
/* Not supported */
if (attr->egress) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
attr, "Not support egress.");
return -rte_errno;
}
/* Not supported */
if (attr->priority) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
attr, "Not support priority.");
return -rte_errno;
}
/* Not supported */
if (attr->group) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
attr, "Not support group.");
return -rte_errno;
}
return 0;
}
/* Find the first VOID or non-VOID item pointer */
static const struct rte_flow_item *
ice_find_first_item(const struct rte_flow_item *item, bool is_void)
{
bool is_find;
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
if (is_void)
is_find = item->type == RTE_FLOW_ITEM_TYPE_VOID;
else
is_find = item->type != RTE_FLOW_ITEM_TYPE_VOID;
if (is_find)
break;
item++;
}
return item;
}
/* Skip all VOID items of the pattern */
static void
ice_pattern_skip_void_item(struct rte_flow_item *items,
const struct rte_flow_item *pattern)
{
uint32_t cpy_count = 0;
const struct rte_flow_item *pb = pattern, *pe = pattern;
for (;;) {
/* Find a non-void item first */
pb = ice_find_first_item(pb, false);
if (pb->type == RTE_FLOW_ITEM_TYPE_END) {
pe = pb;
break;
}
/* Find a void item */
pe = ice_find_first_item(pb + 1, true);
cpy_count = pe - pb;
rte_memcpy(items, pb, sizeof(struct rte_flow_item) * cpy_count);
items += cpy_count;
if (pe->type == RTE_FLOW_ITEM_TYPE_END) {
pb = pe;
break;
}
pb = pe + 1;
}
/* Copy the END item. */
rte_memcpy(items, pe, sizeof(struct rte_flow_item));
}
/* Check if the pattern matches a supported item type array */
static bool
ice_match_pattern(enum rte_flow_item_type *item_array,
const struct rte_flow_item *pattern)
{
const struct rte_flow_item *item = pattern;
while ((*item_array == item->type) &&
(*item_array != RTE_FLOW_ITEM_TYPE_END)) {
item_array++;
item++;
}
return (*item_array == RTE_FLOW_ITEM_TYPE_END &&
item->type == RTE_FLOW_ITEM_TYPE_END);
}
static uint64_t ice_flow_valid_pattern(const struct rte_flow_item pattern[],
struct rte_flow_error *error)
{
uint16_t i = 0;
uint64_t inset;
struct rte_flow_item *items; /* used for pattern without VOID items */
uint32_t item_num = 0; /* non-void item number */
/* Get the non-void item number of pattern */
while ((pattern + i)->type != RTE_FLOW_ITEM_TYPE_END) {
if ((pattern + i)->type != RTE_FLOW_ITEM_TYPE_VOID)
item_num++;
i++;
}
item_num++;
items = rte_zmalloc("ice_pattern",
item_num * sizeof(struct rte_flow_item), 0);
if (!items) {
rte_flow_error_set(error, ENOMEM, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "No memory for PMD internal items.");
return -ENOMEM;
}
ice_pattern_skip_void_item(items, pattern);
for (i = 0; i < RTE_DIM(ice_supported_patterns); i++)
if (ice_match_pattern(ice_supported_patterns[i].items,
items)) {
inset = ice_supported_patterns[i].sw_fields;
rte_free(items);
return inset;
}
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM,
pattern, "Unsupported pattern");
rte_free(items);
return 0;
}
static uint64_t ice_get_flow_field(const struct rte_flow_item pattern[],
struct rte_flow_error *error)
{
const struct rte_flow_item *item = pattern;
const struct rte_flow_item_eth *eth_spec, *eth_mask;
const struct rte_flow_item_ipv4 *ipv4_spec, *ipv4_mask;
const struct rte_flow_item_ipv6 *ipv6_spec, *ipv6_mask;
const struct rte_flow_item_tcp *tcp_spec, *tcp_mask;
const struct rte_flow_item_udp *udp_spec, *udp_mask;
const struct rte_flow_item_sctp *sctp_spec, *sctp_mask;
const struct rte_flow_item_icmp *icmp_mask;
const struct rte_flow_item_icmp6 *icmp6_mask;
const struct rte_flow_item_vxlan *vxlan_spec, *vxlan_mask;
const struct rte_flow_item_nvgre *nvgre_spec, *nvgre_mask;
enum rte_flow_item_type item_type;
uint8_t ipv6_addr_mask[16] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
uint64_t input_set = ICE_INSET_NONE;
bool outer_ip = true;
bool outer_l4 = true;
for (; item->type != RTE_FLOW_ITEM_TYPE_END; item++) {
if (item->last) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Not support range");
return 0;
}
item_type = item->type;
switch (item_type) {
case RTE_FLOW_ITEM_TYPE_ETH:
eth_spec = item->spec;
eth_mask = item->mask;
if (eth_spec && eth_mask) {
if (rte_is_broadcast_ether_addr(&eth_mask->src))
input_set |= ICE_INSET_SMAC;
if (rte_is_broadcast_ether_addr(&eth_mask->dst))
input_set |= ICE_INSET_DMAC;
if (eth_mask->type == RTE_BE16(0xffff))
input_set |= ICE_INSET_ETHERTYPE;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ipv4_spec = item->spec;
ipv4_mask = item->mask;
if (!(ipv4_spec && ipv4_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv4 spec or mask.");
return 0;
}
/* Check IPv4 mask and update input set */
if (ipv4_mask->hdr.version_ihl ||
ipv4_mask->hdr.total_length ||
ipv4_mask->hdr.packet_id ||
ipv4_mask->hdr.hdr_checksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv4 mask.");
return 0;
}
if (outer_ip) {
if (ipv4_mask->hdr.src_addr == UINT32_MAX)
input_set |= ICE_INSET_IPV4_SRC;
if (ipv4_mask->hdr.dst_addr == UINT32_MAX)
input_set |= ICE_INSET_IPV4_DST;
if (ipv4_mask->hdr.type_of_service == UINT8_MAX)
input_set |= ICE_INSET_IPV4_TOS;
if (ipv4_mask->hdr.time_to_live == UINT8_MAX)
input_set |= ICE_INSET_IPV4_TTL;
if (ipv4_mask->hdr.next_proto_id == UINT8_MAX)
input_set |= ICE_INSET_IPV4_PROTO;
outer_ip = false;
} else {
if (ipv4_mask->hdr.src_addr == UINT32_MAX)
input_set |= ICE_INSET_TUN_IPV4_SRC;
if (ipv4_mask->hdr.dst_addr == UINT32_MAX)
input_set |= ICE_INSET_TUN_IPV4_DST;
if (ipv4_mask->hdr.time_to_live == UINT8_MAX)
input_set |= ICE_INSET_TUN_IPV4_TTL;
if (ipv4_mask->hdr.next_proto_id == UINT8_MAX)
input_set |= ICE_INSET_TUN_IPV4_PROTO;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ipv6_spec = item->spec;
ipv6_mask = item->mask;
if (!(ipv6_spec && ipv6_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid IPv6 spec or mask");
return 0;
}
if (ipv6_mask->hdr.payload_len ||
ipv6_mask->hdr.vtc_flow) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid IPv6 mask");
return 0;
}
if (outer_ip) {
if (!memcmp(ipv6_mask->hdr.src_addr,
ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.src_addr)))
input_set |= ICE_INSET_IPV6_SRC;
if (!memcmp(ipv6_mask->hdr.dst_addr,
ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.dst_addr)))
input_set |= ICE_INSET_IPV6_DST;
if (ipv6_mask->hdr.proto == UINT8_MAX)
input_set |= ICE_INSET_IPV6_PROTO;
if (ipv6_mask->hdr.hop_limits == UINT8_MAX)
input_set |= ICE_INSET_IPV6_HOP_LIMIT;
outer_ip = false;
} else {
if (!memcmp(ipv6_mask->hdr.src_addr,
ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.src_addr)))
input_set |= ICE_INSET_TUN_IPV6_SRC;
if (!memcmp(ipv6_mask->hdr.dst_addr,
ipv6_addr_mask,
RTE_DIM(ipv6_mask->hdr.dst_addr)))
input_set |= ICE_INSET_TUN_IPV6_DST;
if (ipv6_mask->hdr.proto == UINT8_MAX)
input_set |= ICE_INSET_TUN_IPV6_PROTO;
if (ipv6_mask->hdr.hop_limits == UINT8_MAX)
input_set |= ICE_INSET_TUN_IPV6_TTL;
}
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp_spec = item->spec;
udp_mask = item->mask;
if (!(udp_spec && udp_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid UDP mask");
return 0;
}
/* Check UDP mask and update input set*/
if (udp_mask->hdr.dgram_len ||
udp_mask->hdr.dgram_cksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid UDP mask");
return 0;
}
if (outer_l4) {
if (udp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_SRC_PORT;
if (udp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_DST_PORT;
outer_l4 = false;
} else {
if (udp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_SRC_PORT;
if (udp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_DST_PORT;
}
break;
case RTE_FLOW_ITEM_TYPE_TCP:
tcp_spec = item->spec;
tcp_mask = item->mask;
if (!(tcp_spec && tcp_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid TCP mask");
return 0;
}
/* Check TCP mask and update input set */
if (tcp_mask->hdr.sent_seq ||
tcp_mask->hdr.recv_ack ||
tcp_mask->hdr.data_off ||
tcp_mask->hdr.tcp_flags ||
tcp_mask->hdr.rx_win ||
tcp_mask->hdr.cksum ||
tcp_mask->hdr.tcp_urp) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid TCP mask");
return 0;
}
if (outer_l4) {
if (tcp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_SRC_PORT;
if (tcp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_DST_PORT;
outer_l4 = false;
} else {
if (tcp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_SRC_PORT;
if (tcp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_DST_PORT;
}
break;
case RTE_FLOW_ITEM_TYPE_SCTP:
sctp_spec = item->spec;
sctp_mask = item->mask;
if (!(sctp_spec && sctp_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item, "Invalid SCTP mask");
return 0;
}
/* Check SCTP mask and update input set */
if (sctp_mask->hdr.cksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid SCTP mask");
return 0;
}
if (outer_l4) {
if (sctp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_SRC_PORT;
if (sctp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_DST_PORT;
outer_l4 = false;
} else {
if (sctp_mask->hdr.src_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_SRC_PORT;
if (sctp_mask->hdr.dst_port == UINT16_MAX)
input_set |= ICE_INSET_TUN_DST_PORT;
}
break;
case RTE_FLOW_ITEM_TYPE_ICMP:
icmp_mask = item->mask;
if (icmp_mask->hdr.icmp_code ||
icmp_mask->hdr.icmp_cksum ||
icmp_mask->hdr.icmp_ident ||
icmp_mask->hdr.icmp_seq_nb) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid ICMP mask");
return 0;
}
if (icmp_mask->hdr.icmp_type == UINT8_MAX)
input_set |= ICE_INSET_ICMP;
break;
case RTE_FLOW_ITEM_TYPE_ICMP6:
icmp6_mask = item->mask;
if (icmp6_mask->code ||
icmp6_mask->checksum) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid ICMP6 mask");
return 0;
}
if (icmp6_mask->type == UINT8_MAX)
input_set |= ICE_INSET_ICMP6;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
vxlan_spec = item->spec;
vxlan_mask = item->mask;
/* Check if VXLAN item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!vxlan_spec && vxlan_mask) ||
(vxlan_spec && !vxlan_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid VXLAN item");
return 0;
}
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
nvgre_spec = item->spec;
nvgre_mask = item->mask;
/* Check if VXLAN item is used to describe protocol.
* If yes, both spec and mask should be NULL.
* If no, both spec and mask shouldn't be NULL.
*/
if ((!nvgre_spec && nvgre_mask) ||
(nvgre_spec && !nvgre_mask)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid NVGRE item");
return 0;
}
break;
default:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM,
item,
"Invalid mask no exist");
break;
}
}
return input_set;
}
static int ice_flow_valid_inset(const struct rte_flow_item pattern[],
uint64_t inset, struct rte_flow_error *error)
{
uint64_t fields;
/* get valid field */
fields = ice_get_flow_field(pattern, error);
if (!fields || fields & (~inset)) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
pattern,
"Invalid input set");
return -rte_errno;
}
return 0;
}
static int ice_flow_valid_action(struct rte_eth_dev *dev,
const struct rte_flow_action *actions,
struct rte_flow_error *error)
{
const struct rte_flow_action_queue *act_q;
uint16_t queue;
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_QUEUE:
act_q = actions->conf;
queue = act_q->index;
if (queue >= dev->data->nb_rx_queues) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
actions, "Invalid queue ID for"
" ethertype_filter.");
return -rte_errno;
}
break;
case RTE_FLOW_ACTION_TYPE_DROP:
break;
default:
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"Invalid action.");
return -rte_errno;
}
return 0;
}
static int
ice_flow_validate(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
uint64_t inset = 0;
int ret = ICE_ERR_NOT_SUPPORTED;
if (!pattern) {
rte_flow_error_set(error, EINVAL, RTE_FLOW_ERROR_TYPE_ITEM_NUM,
NULL, "NULL pattern.");
return -rte_errno;
}
if (!actions) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION_NUM,
NULL, "NULL action.");
return -rte_errno;
}
if (!attr) {
rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ATTR,
NULL, "NULL attribute.");
return -rte_errno;
}
ret = ice_flow_valid_attr(attr, error);
if (!ret)
return ret;
inset = ice_flow_valid_pattern(pattern, error);
if (!inset)
return -rte_errno;
ret = ice_flow_valid_inset(pattern, inset, error);
if (ret)
return ret;
ret = ice_flow_valid_action(dev, actions, error);
if (ret)
return ret;
return 0;
}
static struct rte_flow *
ice_flow_create(struct rte_eth_dev *dev,
const struct rte_flow_attr *attr,
const struct rte_flow_item pattern[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_flow *flow = NULL;
int ret;
flow = rte_zmalloc("ice_flow", sizeof(struct rte_flow), 0);
if (!flow) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to allocate memory");
return flow;
}
ret = ice_flow_validate(dev, attr, pattern, actions, error);
if (ret < 0)
goto free_flow;
ret = ice_create_switch_filter(pf, pattern, actions, flow, error);
if (ret)
goto free_flow;
TAILQ_INSERT_TAIL(&pf->flow_list, flow, node);
return flow;
free_flow:
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to create flow.");
rte_free(flow);
return NULL;
}
static int
ice_flow_destroy(struct rte_eth_dev *dev,
struct rte_flow *flow,
struct rte_flow_error *error)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
int ret = 0;
ret = ice_destroy_switch_filter(pf, flow, error);
if (!ret) {
TAILQ_REMOVE(&pf->flow_list, flow, node);
rte_free(flow);
} else {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to destroy flow.");
}
return ret;
}
static int
ice_flow_flush(struct rte_eth_dev *dev,
struct rte_flow_error *error)
{
struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
struct rte_flow *p_flow;
int ret = 0;
TAILQ_FOREACH(p_flow, &pf->flow_list, node) {
ret = ice_flow_destroy(dev, p_flow, error);
if (ret) {
rte_flow_error_set(error, -ret,
RTE_FLOW_ERROR_TYPE_HANDLE, NULL,
"Failed to flush SW flows.");
return -rte_errno;
}
}
return ret;
}