numam-dpdk/app/test-pmd/config.c
Satha Rao 3a26e41e68 ethdev: increase queue rate parameter from 16b to 32b
The rate parameter modified to uint32_t, so that it can work
for more than 64 Gbps.

Signed-off-by: Satha Rao <skoteshwar@marvell.com>
Reviewed-by: Andrew Rybchenko <andrew.rybchenko@oktetlabs.ru>
2022-10-04 13:52:05 +02:00

6289 lines
158 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2016 Intel Corporation.
* Copyright 2013-2014 6WIND S.A.
*/
#include <ctype.h>
#include <stdarg.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <rte_common.h>
#include <rte_byteorder.h>
#include <rte_debug.h>
#include <rte_log.h>
#include <rte_memory.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_launch.h>
#include <rte_bus.h>
#include <rte_eal.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_branch_prediction.h>
#include <rte_mempool.h>
#include <rte_mbuf.h>
#include <rte_interrupts.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_string_fns.h>
#include <rte_cycles.h>
#include <rte_flow.h>
#include <rte_mtr.h>
#include <rte_errno.h>
#ifdef RTE_NET_IXGBE
#include <rte_pmd_ixgbe.h>
#endif
#ifdef RTE_NET_I40E
#include <rte_pmd_i40e.h>
#endif
#ifdef RTE_NET_BNXT
#include <rte_pmd_bnxt.h>
#endif
#ifdef RTE_LIB_GRO
#include <rte_gro.h>
#endif
#include <rte_hexdump.h>
#include "testpmd.h"
#include "cmdline_mtr.h"
#define ETHDEV_FWVERS_LEN 32
#ifdef CLOCK_MONOTONIC_RAW /* Defined in glibc bits/time.h */
#define CLOCK_TYPE_ID CLOCK_MONOTONIC_RAW
#else
#define CLOCK_TYPE_ID CLOCK_MONOTONIC
#endif
#define NS_PER_SEC 1E9
static const struct {
enum tx_pkt_split split;
const char *name;
} tx_split_name[] = {
{
.split = TX_PKT_SPLIT_OFF,
.name = "off",
},
{
.split = TX_PKT_SPLIT_ON,
.name = "on",
},
{
.split = TX_PKT_SPLIT_RND,
.name = "rand",
},
};
const struct rss_type_info rss_type_table[] = {
/* Group types */
{ "all", RTE_ETH_RSS_ETH | RTE_ETH_RSS_VLAN | RTE_ETH_RSS_IP | RTE_ETH_RSS_TCP |
RTE_ETH_RSS_UDP | RTE_ETH_RSS_SCTP | RTE_ETH_RSS_L2_PAYLOAD |
RTE_ETH_RSS_L2TPV3 | RTE_ETH_RSS_ESP | RTE_ETH_RSS_AH | RTE_ETH_RSS_PFCP |
RTE_ETH_RSS_GTPU | RTE_ETH_RSS_ECPRI | RTE_ETH_RSS_MPLS | RTE_ETH_RSS_L2TPV2},
{ "none", 0 },
{ "ip", RTE_ETH_RSS_IP },
{ "udp", RTE_ETH_RSS_UDP },
{ "tcp", RTE_ETH_RSS_TCP },
{ "sctp", RTE_ETH_RSS_SCTP },
{ "tunnel", RTE_ETH_RSS_TUNNEL },
{ "vlan", RTE_ETH_RSS_VLAN },
/* Individual type */
{ "ipv4", RTE_ETH_RSS_IPV4 },
{ "ipv4-frag", RTE_ETH_RSS_FRAG_IPV4 },
{ "ipv4-tcp", RTE_ETH_RSS_NONFRAG_IPV4_TCP },
{ "ipv4-udp", RTE_ETH_RSS_NONFRAG_IPV4_UDP },
{ "ipv4-sctp", RTE_ETH_RSS_NONFRAG_IPV4_SCTP },
{ "ipv4-other", RTE_ETH_RSS_NONFRAG_IPV4_OTHER },
{ "ipv6", RTE_ETH_RSS_IPV6 },
{ "ipv6-frag", RTE_ETH_RSS_FRAG_IPV6 },
{ "ipv6-tcp", RTE_ETH_RSS_NONFRAG_IPV6_TCP },
{ "ipv6-udp", RTE_ETH_RSS_NONFRAG_IPV6_UDP },
{ "ipv6-sctp", RTE_ETH_RSS_NONFRAG_IPV6_SCTP },
{ "ipv6-other", RTE_ETH_RSS_NONFRAG_IPV6_OTHER },
{ "l2-payload", RTE_ETH_RSS_L2_PAYLOAD },
{ "ipv6-ex", RTE_ETH_RSS_IPV6_EX },
{ "ipv6-tcp-ex", RTE_ETH_RSS_IPV6_TCP_EX },
{ "ipv6-udp-ex", RTE_ETH_RSS_IPV6_UDP_EX },
{ "port", RTE_ETH_RSS_PORT },
{ "vxlan", RTE_ETH_RSS_VXLAN },
{ "geneve", RTE_ETH_RSS_GENEVE },
{ "nvgre", RTE_ETH_RSS_NVGRE },
{ "gtpu", RTE_ETH_RSS_GTPU },
{ "eth", RTE_ETH_RSS_ETH },
{ "s-vlan", RTE_ETH_RSS_S_VLAN },
{ "c-vlan", RTE_ETH_RSS_C_VLAN },
{ "esp", RTE_ETH_RSS_ESP },
{ "ah", RTE_ETH_RSS_AH },
{ "l2tpv3", RTE_ETH_RSS_L2TPV3 },
{ "pfcp", RTE_ETH_RSS_PFCP },
{ "pppoe", RTE_ETH_RSS_PPPOE },
{ "ecpri", RTE_ETH_RSS_ECPRI },
{ "mpls", RTE_ETH_RSS_MPLS },
{ "ipv4-chksum", RTE_ETH_RSS_IPV4_CHKSUM },
{ "l4-chksum", RTE_ETH_RSS_L4_CHKSUM },
{ "l2tpv2", RTE_ETH_RSS_L2TPV2 },
{ "l3-pre96", RTE_ETH_RSS_L3_PRE96 },
{ "l3-pre64", RTE_ETH_RSS_L3_PRE64 },
{ "l3-pre56", RTE_ETH_RSS_L3_PRE56 },
{ "l3-pre48", RTE_ETH_RSS_L3_PRE48 },
{ "l3-pre40", RTE_ETH_RSS_L3_PRE40 },
{ "l3-pre32", RTE_ETH_RSS_L3_PRE32 },
{ "l2-dst-only", RTE_ETH_RSS_L2_DST_ONLY },
{ "l2-src-only", RTE_ETH_RSS_L2_SRC_ONLY },
{ "l4-dst-only", RTE_ETH_RSS_L4_DST_ONLY },
{ "l4-src-only", RTE_ETH_RSS_L4_SRC_ONLY },
{ "l3-dst-only", RTE_ETH_RSS_L3_DST_ONLY },
{ "l3-src-only", RTE_ETH_RSS_L3_SRC_ONLY },
{ NULL, 0},
};
static const struct {
enum rte_eth_fec_mode mode;
const char *name;
} fec_mode_name[] = {
{
.mode = RTE_ETH_FEC_NOFEC,
.name = "off",
},
{
.mode = RTE_ETH_FEC_AUTO,
.name = "auto",
},
{
.mode = RTE_ETH_FEC_BASER,
.name = "baser",
},
{
.mode = RTE_ETH_FEC_RS,
.name = "rs",
},
};
static const struct {
char str[32];
uint16_t ftype;
} flowtype_str_table[] = {
{"raw", RTE_ETH_FLOW_RAW},
{"ipv4", RTE_ETH_FLOW_IPV4},
{"ipv4-frag", RTE_ETH_FLOW_FRAG_IPV4},
{"ipv4-tcp", RTE_ETH_FLOW_NONFRAG_IPV4_TCP},
{"ipv4-udp", RTE_ETH_FLOW_NONFRAG_IPV4_UDP},
{"ipv4-sctp", RTE_ETH_FLOW_NONFRAG_IPV4_SCTP},
{"ipv4-other", RTE_ETH_FLOW_NONFRAG_IPV4_OTHER},
{"ipv6", RTE_ETH_FLOW_IPV6},
{"ipv6-frag", RTE_ETH_FLOW_FRAG_IPV6},
{"ipv6-tcp", RTE_ETH_FLOW_NONFRAG_IPV6_TCP},
{"ipv6-udp", RTE_ETH_FLOW_NONFRAG_IPV6_UDP},
{"ipv6-sctp", RTE_ETH_FLOW_NONFRAG_IPV6_SCTP},
{"ipv6-other", RTE_ETH_FLOW_NONFRAG_IPV6_OTHER},
{"l2_payload", RTE_ETH_FLOW_L2_PAYLOAD},
{"ipv6-ex", RTE_ETH_FLOW_IPV6_EX},
{"ipv6-tcp-ex", RTE_ETH_FLOW_IPV6_TCP_EX},
{"ipv6-udp-ex", RTE_ETH_FLOW_IPV6_UDP_EX},
{"port", RTE_ETH_FLOW_PORT},
{"vxlan", RTE_ETH_FLOW_VXLAN},
{"geneve", RTE_ETH_FLOW_GENEVE},
{"nvgre", RTE_ETH_FLOW_NVGRE},
{"vxlan-gpe", RTE_ETH_FLOW_VXLAN_GPE},
{"gtpu", RTE_ETH_FLOW_GTPU},
};
static void
print_ethaddr(const char *name, struct rte_ether_addr *eth_addr)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, eth_addr);
printf("%s%s", name, buf);
}
static void
nic_xstats_display_periodic(portid_t port_id)
{
struct xstat_display_info *xstats_info;
uint64_t *prev_values, *curr_values;
uint64_t diff_value, value_rate;
struct timespec cur_time;
uint64_t *ids_supp;
size_t ids_supp_sz;
uint64_t diff_ns;
unsigned int i;
int rc;
xstats_info = &ports[port_id].xstats_info;
ids_supp_sz = xstats_info->ids_supp_sz;
if (ids_supp_sz == 0)
return;
printf("\n");
ids_supp = xstats_info->ids_supp;
prev_values = xstats_info->prev_values;
curr_values = xstats_info->curr_values;
rc = rte_eth_xstats_get_by_id(port_id, ids_supp, curr_values,
ids_supp_sz);
if (rc != (int)ids_supp_sz) {
fprintf(stderr,
"Failed to get values of %zu xstats for port %u - return code %d\n",
ids_supp_sz, port_id, rc);
return;
}
diff_ns = 0;
if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
uint64_t ns;
ns = cur_time.tv_sec * NS_PER_SEC;
ns += cur_time.tv_nsec;
if (xstats_info->prev_ns != 0)
diff_ns = ns - xstats_info->prev_ns;
xstats_info->prev_ns = ns;
}
printf("%-31s%-17s%s\n", " ", "Value", "Rate (since last show)");
for (i = 0; i < ids_supp_sz; i++) {
diff_value = (curr_values[i] > prev_values[i]) ?
(curr_values[i] - prev_values[i]) : 0;
prev_values[i] = curr_values[i];
value_rate = diff_ns > 0 ?
(double)diff_value / diff_ns * NS_PER_SEC : 0;
printf(" %-25s%12"PRIu64" %15"PRIu64"\n",
xstats_display[i].name, curr_values[i], value_rate);
}
}
void
nic_stats_display(portid_t port_id)
{
static uint64_t prev_pkts_rx[RTE_MAX_ETHPORTS];
static uint64_t prev_pkts_tx[RTE_MAX_ETHPORTS];
static uint64_t prev_bytes_rx[RTE_MAX_ETHPORTS];
static uint64_t prev_bytes_tx[RTE_MAX_ETHPORTS];
static uint64_t prev_ns[RTE_MAX_ETHPORTS];
struct timespec cur_time;
uint64_t diff_pkts_rx, diff_pkts_tx, diff_bytes_rx, diff_bytes_tx,
diff_ns;
uint64_t mpps_rx, mpps_tx, mbps_rx, mbps_tx;
struct rte_eth_stats stats;
static const char *nic_stats_border = "########################";
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
ret = rte_eth_stats_get(port_id, &stats);
if (ret != 0) {
fprintf(stderr,
"%s: Error: failed to get stats (port %u): %d",
__func__, port_id, ret);
return;
}
printf("\n %s NIC statistics for port %-2d %s\n",
nic_stats_border, port_id, nic_stats_border);
printf(" RX-packets: %-10"PRIu64" RX-missed: %-10"PRIu64" RX-bytes: "
"%-"PRIu64"\n", stats.ipackets, stats.imissed, stats.ibytes);
printf(" RX-errors: %-"PRIu64"\n", stats.ierrors);
printf(" RX-nombuf: %-10"PRIu64"\n", stats.rx_nombuf);
printf(" TX-packets: %-10"PRIu64" TX-errors: %-10"PRIu64" TX-bytes: "
"%-"PRIu64"\n", stats.opackets, stats.oerrors, stats.obytes);
diff_ns = 0;
if (clock_gettime(CLOCK_TYPE_ID, &cur_time) == 0) {
uint64_t ns;
ns = cur_time.tv_sec * NS_PER_SEC;
ns += cur_time.tv_nsec;
if (prev_ns[port_id] != 0)
diff_ns = ns - prev_ns[port_id];
prev_ns[port_id] = ns;
}
diff_pkts_rx = (stats.ipackets > prev_pkts_rx[port_id]) ?
(stats.ipackets - prev_pkts_rx[port_id]) : 0;
diff_pkts_tx = (stats.opackets > prev_pkts_tx[port_id]) ?
(stats.opackets - prev_pkts_tx[port_id]) : 0;
prev_pkts_rx[port_id] = stats.ipackets;
prev_pkts_tx[port_id] = stats.opackets;
mpps_rx = diff_ns > 0 ?
(double)diff_pkts_rx / diff_ns * NS_PER_SEC : 0;
mpps_tx = diff_ns > 0 ?
(double)diff_pkts_tx / diff_ns * NS_PER_SEC : 0;
diff_bytes_rx = (stats.ibytes > prev_bytes_rx[port_id]) ?
(stats.ibytes - prev_bytes_rx[port_id]) : 0;
diff_bytes_tx = (stats.obytes > prev_bytes_tx[port_id]) ?
(stats.obytes - prev_bytes_tx[port_id]) : 0;
prev_bytes_rx[port_id] = stats.ibytes;
prev_bytes_tx[port_id] = stats.obytes;
mbps_rx = diff_ns > 0 ?
(double)diff_bytes_rx / diff_ns * NS_PER_SEC : 0;
mbps_tx = diff_ns > 0 ?
(double)diff_bytes_tx / diff_ns * NS_PER_SEC : 0;
printf("\n Throughput (since last show)\n");
printf(" Rx-pps: %12"PRIu64" Rx-bps: %12"PRIu64"\n Tx-pps: %12"
PRIu64" Tx-bps: %12"PRIu64"\n", mpps_rx, mbps_rx * 8,
mpps_tx, mbps_tx * 8);
if (xstats_display_num > 0)
nic_xstats_display_periodic(port_id);
printf(" %s############################%s\n",
nic_stats_border, nic_stats_border);
}
void
nic_stats_clear(portid_t port_id)
{
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
ret = rte_eth_stats_reset(port_id);
if (ret != 0) {
fprintf(stderr,
"%s: Error: failed to reset stats (port %u): %s",
__func__, port_id, strerror(-ret));
return;
}
ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
if (ret != 0) {
if (ret < 0)
ret = -ret;
fprintf(stderr,
"%s: Error: failed to get stats (port %u): %s",
__func__, port_id, strerror(ret));
return;
}
printf("\n NIC statistics for port %d cleared\n", port_id);
}
void
nic_xstats_display(portid_t port_id)
{
struct rte_eth_xstat *xstats;
int cnt_xstats, idx_xstat;
struct rte_eth_xstat_name *xstats_names;
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
printf("###### NIC extended statistics for port %-2d\n", port_id);
if (!rte_eth_dev_is_valid_port(port_id)) {
fprintf(stderr, "Error: Invalid port number %i\n", port_id);
return;
}
/* Get count */
cnt_xstats = rte_eth_xstats_get_names(port_id, NULL, 0);
if (cnt_xstats < 0) {
fprintf(stderr, "Error: Cannot get count of xstats\n");
return;
}
/* Get id-name lookup table */
xstats_names = malloc(sizeof(struct rte_eth_xstat_name) * cnt_xstats);
if (xstats_names == NULL) {
fprintf(stderr, "Cannot allocate memory for xstats lookup\n");
return;
}
if (cnt_xstats != rte_eth_xstats_get_names(
port_id, xstats_names, cnt_xstats)) {
fprintf(stderr, "Error: Cannot get xstats lookup\n");
free(xstats_names);
return;
}
/* Get stats themselves */
xstats = malloc(sizeof(struct rte_eth_xstat) * cnt_xstats);
if (xstats == NULL) {
fprintf(stderr, "Cannot allocate memory for xstats\n");
free(xstats_names);
return;
}
if (cnt_xstats != rte_eth_xstats_get(port_id, xstats, cnt_xstats)) {
fprintf(stderr, "Error: Unable to get xstats\n");
free(xstats_names);
free(xstats);
return;
}
/* Display xstats */
for (idx_xstat = 0; idx_xstat < cnt_xstats; idx_xstat++) {
if (xstats_hide_zero && !xstats[idx_xstat].value)
continue;
printf("%s: %"PRIu64"\n",
xstats_names[idx_xstat].name,
xstats[idx_xstat].value);
}
free(xstats_names);
free(xstats);
}
void
nic_xstats_clear(portid_t port_id)
{
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
ret = rte_eth_xstats_reset(port_id);
if (ret != 0) {
fprintf(stderr,
"%s: Error: failed to reset xstats (port %u): %s\n",
__func__, port_id, strerror(-ret));
return;
}
ret = rte_eth_stats_get(port_id, &ports[port_id].stats);
if (ret != 0) {
if (ret < 0)
ret = -ret;
fprintf(stderr, "%s: Error: failed to get stats (port %u): %s",
__func__, port_id, strerror(ret));
return;
}
}
static const char *
get_queue_state_name(uint8_t queue_state)
{
if (queue_state == RTE_ETH_QUEUE_STATE_STOPPED)
return "stopped";
else if (queue_state == RTE_ETH_QUEUE_STATE_STARTED)
return "started";
else if (queue_state == RTE_ETH_QUEUE_STATE_HAIRPIN)
return "hairpin";
else
return "unknown";
}
void
rx_queue_infos_display(portid_t port_id, uint16_t queue_id)
{
struct rte_eth_burst_mode mode;
struct rte_eth_rxq_info qinfo;
int32_t rc;
static const char *info_border = "*********************";
rc = rte_eth_rx_queue_info_get(port_id, queue_id, &qinfo);
if (rc != 0) {
fprintf(stderr,
"Failed to retrieve information for port: %u, RX queue: %hu\nerror desc: %s(%d)\n",
port_id, queue_id, strerror(-rc), rc);
return;
}
printf("\n%s Infos for port %-2u, RX queue %-2u %s",
info_border, port_id, queue_id, info_border);
printf("\nMempool: %s", (qinfo.mp == NULL) ? "NULL" : qinfo.mp->name);
printf("\nRX prefetch threshold: %hhu", qinfo.conf.rx_thresh.pthresh);
printf("\nRX host threshold: %hhu", qinfo.conf.rx_thresh.hthresh);
printf("\nRX writeback threshold: %hhu", qinfo.conf.rx_thresh.wthresh);
printf("\nRX free threshold: %hu", qinfo.conf.rx_free_thresh);
printf("\nRX drop packets: %s",
(qinfo.conf.rx_drop_en != 0) ? "on" : "off");
printf("\nRX deferred start: %s",
(qinfo.conf.rx_deferred_start != 0) ? "on" : "off");
printf("\nRX scattered packets: %s",
(qinfo.scattered_rx != 0) ? "on" : "off");
printf("\nRx queue state: %s", get_queue_state_name(qinfo.queue_state));
if (qinfo.rx_buf_size != 0)
printf("\nRX buffer size: %hu", qinfo.rx_buf_size);
printf("\nNumber of RXDs: %hu", qinfo.nb_desc);
if (rte_eth_rx_burst_mode_get(port_id, queue_id, &mode) == 0)
printf("\nBurst mode: %s%s",
mode.info,
mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
" (per queue)" : "");
printf("\n");
}
void
tx_queue_infos_display(portid_t port_id, uint16_t queue_id)
{
struct rte_eth_burst_mode mode;
struct rte_eth_txq_info qinfo;
int32_t rc;
static const char *info_border = "*********************";
rc = rte_eth_tx_queue_info_get(port_id, queue_id, &qinfo);
if (rc != 0) {
fprintf(stderr,
"Failed to retrieve information for port: %u, TX queue: %hu\nerror desc: %s(%d)\n",
port_id, queue_id, strerror(-rc), rc);
return;
}
printf("\n%s Infos for port %-2u, TX queue %-2u %s",
info_border, port_id, queue_id, info_border);
printf("\nTX prefetch threshold: %hhu", qinfo.conf.tx_thresh.pthresh);
printf("\nTX host threshold: %hhu", qinfo.conf.tx_thresh.hthresh);
printf("\nTX writeback threshold: %hhu", qinfo.conf.tx_thresh.wthresh);
printf("\nTX RS threshold: %hu", qinfo.conf.tx_rs_thresh);
printf("\nTX free threshold: %hu", qinfo.conf.tx_free_thresh);
printf("\nTX deferred start: %s",
(qinfo.conf.tx_deferred_start != 0) ? "on" : "off");
printf("\nNumber of TXDs: %hu", qinfo.nb_desc);
printf("\nTx queue state: %s", get_queue_state_name(qinfo.queue_state));
if (rte_eth_tx_burst_mode_get(port_id, queue_id, &mode) == 0)
printf("\nBurst mode: %s%s",
mode.info,
mode.flags & RTE_ETH_BURST_FLAG_PER_QUEUE ?
" (per queue)" : "");
printf("\n");
}
static int bus_match_all(const struct rte_bus *bus, const void *data)
{
RTE_SET_USED(bus);
RTE_SET_USED(data);
return 0;
}
static void
device_infos_display_speeds(uint32_t speed_capa)
{
printf("\n\tDevice speed capability:");
if (speed_capa == RTE_ETH_LINK_SPEED_AUTONEG)
printf(" Autonegotiate (all speeds)");
if (speed_capa & RTE_ETH_LINK_SPEED_FIXED)
printf(" Disable autonegotiate (fixed speed) ");
if (speed_capa & RTE_ETH_LINK_SPEED_10M_HD)
printf(" 10 Mbps half-duplex ");
if (speed_capa & RTE_ETH_LINK_SPEED_10M)
printf(" 10 Mbps full-duplex ");
if (speed_capa & RTE_ETH_LINK_SPEED_100M_HD)
printf(" 100 Mbps half-duplex ");
if (speed_capa & RTE_ETH_LINK_SPEED_100M)
printf(" 100 Mbps full-duplex ");
if (speed_capa & RTE_ETH_LINK_SPEED_1G)
printf(" 1 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_2_5G)
printf(" 2.5 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_5G)
printf(" 5 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_10G)
printf(" 10 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_20G)
printf(" 20 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_25G)
printf(" 25 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_40G)
printf(" 40 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_50G)
printf(" 50 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_56G)
printf(" 56 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_100G)
printf(" 100 Gbps ");
if (speed_capa & RTE_ETH_LINK_SPEED_200G)
printf(" 200 Gbps ");
}
void
device_infos_display(const char *identifier)
{
static const char *info_border = "*********************";
struct rte_bus *start = NULL, *next;
struct rte_dev_iterator dev_iter;
char name[RTE_ETH_NAME_MAX_LEN];
struct rte_ether_addr mac_addr;
struct rte_device *dev;
struct rte_devargs da;
portid_t port_id;
struct rte_eth_dev_info dev_info;
char devstr[128];
memset(&da, 0, sizeof(da));
if (!identifier)
goto skip_parse;
if (rte_devargs_parsef(&da, "%s", identifier)) {
fprintf(stderr, "cannot parse identifier\n");
return;
}
skip_parse:
while ((next = rte_bus_find(start, bus_match_all, NULL)) != NULL) {
start = next;
if (identifier && da.bus != next)
continue;
snprintf(devstr, sizeof(devstr), "bus=%s", rte_bus_name(next));
RTE_DEV_FOREACH(dev, devstr, &dev_iter) {
if (rte_dev_driver(dev) == NULL)
continue;
/* Check for matching device if identifier is present */
if (identifier &&
strncmp(da.name, rte_dev_name(dev), strlen(rte_dev_name(dev))))
continue;
printf("\n%s Infos for device %s %s\n",
info_border, rte_dev_name(dev), info_border);
printf("Bus name: %s", rte_bus_name(rte_dev_bus(dev)));
printf("\nBus information: %s",
rte_dev_bus_info(dev) ? rte_dev_bus_info(dev) : "");
printf("\nDriver name: %s", rte_driver_name(rte_dev_driver(dev)));
printf("\nDevargs: %s",
rte_dev_devargs(dev) ? rte_dev_devargs(dev)->args : "");
printf("\nConnect to socket: %d", rte_dev_numa_node(dev));
printf("\n");
/* List ports with matching device name */
RTE_ETH_FOREACH_DEV_OF(port_id, dev) {
printf("\n\tPort id: %-2d", port_id);
if (eth_macaddr_get_print_err(port_id,
&mac_addr) == 0)
print_ethaddr("\n\tMAC address: ",
&mac_addr);
rte_eth_dev_get_name_by_port(port_id, name);
printf("\n\tDevice name: %s", name);
if (rte_eth_dev_info_get(port_id, &dev_info) == 0)
device_infos_display_speeds(dev_info.speed_capa);
printf("\n");
}
}
};
rte_devargs_reset(&da);
}
static void
print_dev_capabilities(uint64_t capabilities)
{
uint64_t single_capa;
int begin;
int end;
int bit;
if (capabilities == 0)
return;
begin = __builtin_ctzll(capabilities);
end = sizeof(capabilities) * CHAR_BIT - __builtin_clzll(capabilities);
single_capa = 1ULL << begin;
for (bit = begin; bit < end; bit++) {
if (capabilities & single_capa)
printf(" %s",
rte_eth_dev_capability_name(single_capa));
single_capa <<= 1;
}
}
uint64_t
str_to_rsstypes(const char *str)
{
uint16_t i;
for (i = 0; rss_type_table[i].str != NULL; i++) {
if (strcmp(rss_type_table[i].str, str) == 0)
return rss_type_table[i].rss_type;
}
return 0;
}
const char *
rsstypes_to_str(uint64_t rss_type)
{
uint16_t i;
for (i = 0; rss_type_table[i].str != NULL; i++) {
if (rss_type_table[i].rss_type == rss_type)
return rss_type_table[i].str;
}
return NULL;
}
static void
rss_offload_types_display(uint64_t offload_types, uint16_t char_num_per_line)
{
uint16_t user_defined_str_len;
uint16_t total_len = 0;
uint16_t str_len = 0;
uint64_t rss_offload;
uint16_t i;
for (i = 0; i < sizeof(offload_types) * CHAR_BIT; i++) {
rss_offload = RTE_BIT64(i);
if ((offload_types & rss_offload) != 0) {
const char *p = rsstypes_to_str(rss_offload);
user_defined_str_len =
strlen("user-defined-") + (i / 10 + 1);
str_len = p ? strlen(p) : user_defined_str_len;
str_len += 2; /* add two spaces */
if (total_len + str_len >= char_num_per_line) {
total_len = 0;
printf("\n");
}
if (p)
printf(" %s", p);
else
printf(" user-defined-%u", i);
total_len += str_len;
}
}
printf("\n");
}
void
port_infos_display(portid_t port_id)
{
struct rte_port *port;
struct rte_ether_addr mac_addr;
struct rte_eth_link link;
struct rte_eth_dev_info dev_info;
int vlan_offload;
struct rte_mempool * mp;
static const char *info_border = "*********************";
uint16_t mtu;
char name[RTE_ETH_NAME_MAX_LEN];
int ret;
char fw_version[ETHDEV_FWVERS_LEN];
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
port = &ports[port_id];
ret = eth_link_get_nowait_print_err(port_id, &link);
if (ret < 0)
return;
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0)
return;
printf("\n%s Infos for port %-2d %s\n",
info_border, port_id, info_border);
if (eth_macaddr_get_print_err(port_id, &mac_addr) == 0)
print_ethaddr("MAC address: ", &mac_addr);
rte_eth_dev_get_name_by_port(port_id, name);
printf("\nDevice name: %s", name);
printf("\nDriver name: %s", dev_info.driver_name);
if (rte_eth_dev_fw_version_get(port_id, fw_version,
ETHDEV_FWVERS_LEN) == 0)
printf("\nFirmware-version: %s", fw_version);
else
printf("\nFirmware-version: %s", "not available");
if (rte_dev_devargs(dev_info.device) && rte_dev_devargs(dev_info.device)->args)
printf("\nDevargs: %s", rte_dev_devargs(dev_info.device)->args);
printf("\nConnect to socket: %u", port->socket_id);
if (port_numa[port_id] != NUMA_NO_CONFIG) {
mp = mbuf_pool_find(port_numa[port_id], 0);
if (mp)
printf("\nmemory allocation on the socket: %d",
port_numa[port_id]);
} else
printf("\nmemory allocation on the socket: %u",port->socket_id);
printf("\nLink status: %s\n", (link.link_status) ? ("up") : ("down"));
printf("Link speed: %s\n", rte_eth_link_speed_to_str(link.link_speed));
printf("Link duplex: %s\n", (link.link_duplex == RTE_ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex"));
printf("Autoneg status: %s\n", (link.link_autoneg == RTE_ETH_LINK_AUTONEG) ?
("On") : ("Off"));
if (!rte_eth_dev_get_mtu(port_id, &mtu))
printf("MTU: %u\n", mtu);
printf("Promiscuous mode: %s\n",
rte_eth_promiscuous_get(port_id) ? "enabled" : "disabled");
printf("Allmulticast mode: %s\n",
rte_eth_allmulticast_get(port_id) ? "enabled" : "disabled");
printf("Maximum number of MAC addresses: %u\n",
(unsigned int)(port->dev_info.max_mac_addrs));
printf("Maximum number of MAC addresses of hash filtering: %u\n",
(unsigned int)(port->dev_info.max_hash_mac_addrs));
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (vlan_offload >= 0){
printf("VLAN offload: \n");
if (vlan_offload & RTE_ETH_VLAN_STRIP_OFFLOAD)
printf(" strip on, ");
else
printf(" strip off, ");
if (vlan_offload & RTE_ETH_VLAN_FILTER_OFFLOAD)
printf("filter on, ");
else
printf("filter off, ");
if (vlan_offload & RTE_ETH_VLAN_EXTEND_OFFLOAD)
printf("extend on, ");
else
printf("extend off, ");
if (vlan_offload & RTE_ETH_QINQ_STRIP_OFFLOAD)
printf("qinq strip on\n");
else
printf("qinq strip off\n");
}
if (dev_info.hash_key_size > 0)
printf("Hash key size in bytes: %u\n", dev_info.hash_key_size);
if (dev_info.reta_size > 0)
printf("Redirection table size: %u\n", dev_info.reta_size);
if (!dev_info.flow_type_rss_offloads)
printf("No RSS offload flow type is supported.\n");
else {
printf("Supported RSS offload flow types:\n");
rss_offload_types_display(dev_info.flow_type_rss_offloads,
TESTPMD_RSS_TYPES_CHAR_NUM_PER_LINE);
}
printf("Minimum size of RX buffer: %u\n", dev_info.min_rx_bufsize);
printf("Maximum configurable length of RX packet: %u\n",
dev_info.max_rx_pktlen);
printf("Maximum configurable size of LRO aggregated packet: %u\n",
dev_info.max_lro_pkt_size);
if (dev_info.max_vfs)
printf("Maximum number of VFs: %u\n", dev_info.max_vfs);
if (dev_info.max_vmdq_pools)
printf("Maximum number of VMDq pools: %u\n",
dev_info.max_vmdq_pools);
printf("Current number of RX queues: %u\n", dev_info.nb_rx_queues);
printf("Max possible RX queues: %u\n", dev_info.max_rx_queues);
printf("Max possible number of RXDs per queue: %hu\n",
dev_info.rx_desc_lim.nb_max);
printf("Min possible number of RXDs per queue: %hu\n",
dev_info.rx_desc_lim.nb_min);
printf("RXDs number alignment: %hu\n", dev_info.rx_desc_lim.nb_align);
printf("Current number of TX queues: %u\n", dev_info.nb_tx_queues);
printf("Max possible TX queues: %u\n", dev_info.max_tx_queues);
printf("Max possible number of TXDs per queue: %hu\n",
dev_info.tx_desc_lim.nb_max);
printf("Min possible number of TXDs per queue: %hu\n",
dev_info.tx_desc_lim.nb_min);
printf("TXDs number alignment: %hu\n", dev_info.tx_desc_lim.nb_align);
printf("Max segment number per packet: %hu\n",
dev_info.tx_desc_lim.nb_seg_max);
printf("Max segment number per MTU/TSO: %hu\n",
dev_info.tx_desc_lim.nb_mtu_seg_max);
printf("Device capabilities: 0x%"PRIx64"(", dev_info.dev_capa);
print_dev_capabilities(dev_info.dev_capa);
printf(" )\n");
/* Show switch info only if valid switch domain and port id is set */
if (dev_info.switch_info.domain_id !=
RTE_ETH_DEV_SWITCH_DOMAIN_ID_INVALID) {
if (dev_info.switch_info.name)
printf("Switch name: %s\n", dev_info.switch_info.name);
printf("Switch domain Id: %u\n",
dev_info.switch_info.domain_id);
printf("Switch Port Id: %u\n",
dev_info.switch_info.port_id);
if ((dev_info.dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE) != 0)
printf("Switch Rx domain: %u\n",
dev_info.switch_info.rx_domain);
}
}
void
port_summary_header_display(void)
{
uint16_t port_number;
port_number = rte_eth_dev_count_avail();
printf("Number of available ports: %i\n", port_number);
printf("%-4s %-17s %-12s %-14s %-8s %s\n", "Port", "MAC Address", "Name",
"Driver", "Status", "Link");
}
void
port_summary_display(portid_t port_id)
{
struct rte_ether_addr mac_addr;
struct rte_eth_link link;
struct rte_eth_dev_info dev_info;
char name[RTE_ETH_NAME_MAX_LEN];
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
ret = eth_link_get_nowait_print_err(port_id, &link);
if (ret < 0)
return;
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0)
return;
rte_eth_dev_get_name_by_port(port_id, name);
ret = eth_macaddr_get_print_err(port_id, &mac_addr);
if (ret != 0)
return;
printf("%-4d " RTE_ETHER_ADDR_PRT_FMT " %-12s %-14s %-8s %s\n",
port_id, RTE_ETHER_ADDR_BYTES(&mac_addr), name,
dev_info.driver_name, (link.link_status) ? ("up") : ("down"),
rte_eth_link_speed_to_str(link.link_speed));
}
void
port_eeprom_display(portid_t port_id)
{
struct rte_dev_eeprom_info einfo;
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
int len_eeprom = rte_eth_dev_get_eeprom_length(port_id);
if (len_eeprom < 0) {
switch (len_eeprom) {
case -ENODEV:
fprintf(stderr, "port index %d invalid\n", port_id);
break;
case -ENOTSUP:
fprintf(stderr, "operation not supported by device\n");
break;
case -EIO:
fprintf(stderr, "device is removed\n");
break;
default:
fprintf(stderr, "Unable to get EEPROM: %d\n",
len_eeprom);
break;
}
return;
}
einfo.offset = 0;
einfo.length = len_eeprom;
einfo.data = calloc(1, len_eeprom);
if (!einfo.data) {
fprintf(stderr,
"Allocation of port %u eeprom data failed\n",
port_id);
return;
}
ret = rte_eth_dev_get_eeprom(port_id, &einfo);
if (ret != 0) {
switch (ret) {
case -ENODEV:
fprintf(stderr, "port index %d invalid\n", port_id);
break;
case -ENOTSUP:
fprintf(stderr, "operation not supported by device\n");
break;
case -EIO:
fprintf(stderr, "device is removed\n");
break;
default:
fprintf(stderr, "Unable to get EEPROM: %d\n", ret);
break;
}
free(einfo.data);
return;
}
rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
printf("Finish -- Port: %d EEPROM length: %d bytes\n", port_id, len_eeprom);
free(einfo.data);
}
void
port_module_eeprom_display(portid_t port_id)
{
struct rte_eth_dev_module_info minfo;
struct rte_dev_eeprom_info einfo;
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN)) {
print_valid_ports();
return;
}
ret = rte_eth_dev_get_module_info(port_id, &minfo);
if (ret != 0) {
switch (ret) {
case -ENODEV:
fprintf(stderr, "port index %d invalid\n", port_id);
break;
case -ENOTSUP:
fprintf(stderr, "operation not supported by device\n");
break;
case -EIO:
fprintf(stderr, "device is removed\n");
break;
default:
fprintf(stderr, "Unable to get module EEPROM: %d\n",
ret);
break;
}
return;
}
einfo.offset = 0;
einfo.length = minfo.eeprom_len;
einfo.data = calloc(1, minfo.eeprom_len);
if (!einfo.data) {
fprintf(stderr,
"Allocation of port %u eeprom data failed\n",
port_id);
return;
}
ret = rte_eth_dev_get_module_eeprom(port_id, &einfo);
if (ret != 0) {
switch (ret) {
case -ENODEV:
fprintf(stderr, "port index %d invalid\n", port_id);
break;
case -ENOTSUP:
fprintf(stderr, "operation not supported by device\n");
break;
case -EIO:
fprintf(stderr, "device is removed\n");
break;
default:
fprintf(stderr, "Unable to get module EEPROM: %d\n",
ret);
break;
}
free(einfo.data);
return;
}
rte_hexdump(stdout, "hexdump", einfo.data, einfo.length);
printf("Finish -- Port: %d MODULE EEPROM length: %d bytes\n", port_id, einfo.length);
free(einfo.data);
}
int
port_id_is_invalid(portid_t port_id, enum print_warning warning)
{
uint16_t pid;
if (port_id == (portid_t)RTE_PORT_ALL)
return 0;
RTE_ETH_FOREACH_DEV(pid)
if (port_id == pid)
return 0;
if (warning == ENABLED_WARN)
fprintf(stderr, "Invalid port %d\n", port_id);
return 1;
}
void print_valid_ports(void)
{
portid_t pid;
printf("The valid ports array is [");
RTE_ETH_FOREACH_DEV(pid) {
printf(" %d", pid);
}
printf(" ]\n");
}
static int
vlan_id_is_invalid(uint16_t vlan_id)
{
if (vlan_id < 4096)
return 0;
fprintf(stderr, "Invalid vlan_id %d (must be < 4096)\n", vlan_id);
return 1;
}
static uint32_t
eth_dev_get_overhead_len(uint32_t max_rx_pktlen, uint16_t max_mtu)
{
uint32_t overhead_len;
if (max_mtu != UINT16_MAX && max_rx_pktlen > max_mtu)
overhead_len = max_rx_pktlen - max_mtu;
else
overhead_len = RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN;
return overhead_len;
}
static int
eth_dev_validate_mtu(uint16_t port_id, uint16_t mtu)
{
struct rte_eth_dev_info dev_info;
uint32_t overhead_len;
uint32_t frame_size;
int ret;
ret = rte_eth_dev_info_get(port_id, &dev_info);
if (ret != 0)
return ret;
if (mtu < dev_info.min_mtu) {
fprintf(stderr,
"MTU (%u) < device min MTU (%u) for port_id %u\n",
mtu, dev_info.min_mtu, port_id);
return -EINVAL;
}
if (mtu > dev_info.max_mtu) {
fprintf(stderr,
"MTU (%u) > device max MTU (%u) for port_id %u\n",
mtu, dev_info.max_mtu, port_id);
return -EINVAL;
}
overhead_len = eth_dev_get_overhead_len(dev_info.max_rx_pktlen,
dev_info.max_mtu);
frame_size = mtu + overhead_len;
if (frame_size > dev_info.max_rx_pktlen) {
fprintf(stderr,
"Frame size (%u) > device max frame size (%u) for port_id %u\n",
frame_size, dev_info.max_rx_pktlen, port_id);
return -EINVAL;
}
return 0;
}
void
port_mtu_set(portid_t port_id, uint16_t mtu)
{
struct rte_port *port = &ports[port_id];
int diag;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
diag = eth_dev_validate_mtu(port_id, mtu);
if (diag != 0)
return;
if (port->need_reconfig == 0) {
diag = rte_eth_dev_set_mtu(port_id, mtu);
if (diag != 0) {
fprintf(stderr, "Set MTU failed. diag=%d\n", diag);
return;
}
}
port->dev_conf.rxmode.mtu = mtu;
}
/* Generic flow management functions. */
static struct port_flow_tunnel *
port_flow_locate_tunnel_id(struct rte_port *port, uint32_t port_tunnel_id)
{
struct port_flow_tunnel *flow_tunnel;
LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
if (flow_tunnel->id == port_tunnel_id)
goto out;
}
flow_tunnel = NULL;
out:
return flow_tunnel;
}
const char *
port_flow_tunnel_type(struct rte_flow_tunnel *tunnel)
{
const char *type;
switch (tunnel->type) {
default:
type = "unknown";
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
type = "vxlan";
break;
case RTE_FLOW_ITEM_TYPE_GRE:
type = "gre";
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
type = "nvgre";
break;
case RTE_FLOW_ITEM_TYPE_GENEVE:
type = "geneve";
break;
}
return type;
}
struct port_flow_tunnel *
port_flow_locate_tunnel(uint16_t port_id, struct rte_flow_tunnel *tun)
{
struct rte_port *port = &ports[port_id];
struct port_flow_tunnel *flow_tunnel;
LIST_FOREACH(flow_tunnel, &port->flow_tunnel_list, chain) {
if (!memcmp(&flow_tunnel->tunnel, tun, sizeof(*tun)))
goto out;
}
flow_tunnel = NULL;
out:
return flow_tunnel;
}
void port_flow_tunnel_list(portid_t port_id)
{
struct rte_port *port = &ports[port_id];
struct port_flow_tunnel *flt;
LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
printf("port %u tunnel #%u type=%s",
port_id, flt->id, port_flow_tunnel_type(&flt->tunnel));
if (flt->tunnel.tun_id)
printf(" id=%" PRIu64, flt->tunnel.tun_id);
printf("\n");
}
}
void port_flow_tunnel_destroy(portid_t port_id, uint32_t tunnel_id)
{
struct rte_port *port = &ports[port_id];
struct port_flow_tunnel *flt;
LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
if (flt->id == tunnel_id)
break;
}
if (flt) {
LIST_REMOVE(flt, chain);
free(flt);
printf("port %u: flow tunnel #%u destroyed\n",
port_id, tunnel_id);
}
}
void port_flow_tunnel_create(portid_t port_id, const struct tunnel_ops *ops)
{
struct rte_port *port = &ports[port_id];
enum rte_flow_item_type type;
struct port_flow_tunnel *flt;
if (!strcmp(ops->type, "vxlan"))
type = RTE_FLOW_ITEM_TYPE_VXLAN;
else if (!strcmp(ops->type, "gre"))
type = RTE_FLOW_ITEM_TYPE_GRE;
else if (!strcmp(ops->type, "nvgre"))
type = RTE_FLOW_ITEM_TYPE_NVGRE;
else if (!strcmp(ops->type, "geneve"))
type = RTE_FLOW_ITEM_TYPE_GENEVE;
else {
fprintf(stderr, "cannot offload \"%s\" tunnel type\n",
ops->type);
return;
}
LIST_FOREACH(flt, &port->flow_tunnel_list, chain) {
if (flt->tunnel.type == type)
break;
}
if (!flt) {
flt = calloc(1, sizeof(*flt));
if (!flt) {
fprintf(stderr, "failed to allocate port flt object\n");
return;
}
flt->tunnel.type = type;
flt->id = LIST_EMPTY(&port->flow_tunnel_list) ? 1 :
LIST_FIRST(&port->flow_tunnel_list)->id + 1;
LIST_INSERT_HEAD(&port->flow_tunnel_list, flt, chain);
}
printf("port %d: flow tunnel #%u type %s\n",
port_id, flt->id, ops->type);
}
/** Generate a port_flow entry from attributes/pattern/actions. */
static struct port_flow *
port_flow_new(const struct rte_flow_attr *attr,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions,
struct rte_flow_error *error)
{
const struct rte_flow_conv_rule rule = {
.attr_ro = attr,
.pattern_ro = pattern,
.actions_ro = actions,
};
struct port_flow *pf;
int ret;
ret = rte_flow_conv(RTE_FLOW_CONV_OP_RULE, NULL, 0, &rule, error);
if (ret < 0)
return NULL;
pf = calloc(1, offsetof(struct port_flow, rule) + ret);
if (!pf) {
rte_flow_error_set
(error, errno, RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"calloc() failed");
return NULL;
}
if (rte_flow_conv(RTE_FLOW_CONV_OP_RULE, &pf->rule, ret, &rule,
error) >= 0)
return pf;
free(pf);
return NULL;
}
/** Print a message out of a flow error. */
static int
port_flow_complain(struct rte_flow_error *error)
{
static const char *const errstrlist[] = {
[RTE_FLOW_ERROR_TYPE_NONE] = "no error",
[RTE_FLOW_ERROR_TYPE_UNSPECIFIED] = "cause unspecified",
[RTE_FLOW_ERROR_TYPE_HANDLE] = "flow rule (handle)",
[RTE_FLOW_ERROR_TYPE_ATTR_GROUP] = "group field",
[RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY] = "priority field",
[RTE_FLOW_ERROR_TYPE_ATTR_INGRESS] = "ingress field",
[RTE_FLOW_ERROR_TYPE_ATTR_EGRESS] = "egress field",
[RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER] = "transfer field",
[RTE_FLOW_ERROR_TYPE_ATTR] = "attributes structure",
[RTE_FLOW_ERROR_TYPE_ITEM_NUM] = "pattern length",
[RTE_FLOW_ERROR_TYPE_ITEM_SPEC] = "item specification",
[RTE_FLOW_ERROR_TYPE_ITEM_LAST] = "item specification range",
[RTE_FLOW_ERROR_TYPE_ITEM_MASK] = "item specification mask",
[RTE_FLOW_ERROR_TYPE_ITEM] = "specific pattern item",
[RTE_FLOW_ERROR_TYPE_ACTION_NUM] = "number of actions",
[RTE_FLOW_ERROR_TYPE_ACTION_CONF] = "action configuration",
[RTE_FLOW_ERROR_TYPE_ACTION] = "specific action",
};
const char *errstr;
char buf[32];
int err = rte_errno;
if ((unsigned int)error->type >= RTE_DIM(errstrlist) ||
!errstrlist[error->type])
errstr = "unknown type";
else
errstr = errstrlist[error->type];
fprintf(stderr, "%s(): Caught PMD error type %d (%s): %s%s: %s\n",
__func__, error->type, errstr,
error->cause ? (snprintf(buf, sizeof(buf), "cause: %p, ",
error->cause), buf) : "",
error->message ? error->message : "(no stated reason)",
rte_strerror(err));
switch (error->type) {
case RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER:
fprintf(stderr, "The status suggests the use of \"transfer\" "
"as the possible cause of the failure. Make "
"sure that the flow in question and its "
"indirect components (if any) are managed "
"via \"transfer\" proxy port. Use command "
"\"show port (port_id) flow transfer proxy\" "
"to figure out the proxy port ID\n");
break;
default:
break;
}
return -err;
}
static void
rss_types_display(uint64_t rss_types, uint16_t char_num_per_line)
{
uint16_t total_len = 0;
uint16_t str_len;
uint16_t i;
if (rss_types == 0)
return;
for (i = 0; rss_type_table[i].str; i++) {
if (rss_type_table[i].rss_type == 0)
continue;
if ((rss_types & rss_type_table[i].rss_type) ==
rss_type_table[i].rss_type) {
/* Contain two spaces */
str_len = strlen(rss_type_table[i].str) + 2;
if (total_len + str_len > char_num_per_line) {
printf("\n");
total_len = 0;
}
printf(" %s", rss_type_table[i].str);
total_len += str_len;
}
}
printf("\n");
}
static void
rss_config_display(struct rte_flow_action_rss *rss_conf)
{
uint8_t i;
if (rss_conf == NULL) {
fprintf(stderr, "Invalid rule\n");
return;
}
printf("RSS:\n"
" queues:");
if (rss_conf->queue_num == 0)
printf(" none");
for (i = 0; i < rss_conf->queue_num; i++)
printf(" %d", rss_conf->queue[i]);
printf("\n");
printf(" function: ");
switch (rss_conf->func) {
case RTE_ETH_HASH_FUNCTION_DEFAULT:
printf("default\n");
break;
case RTE_ETH_HASH_FUNCTION_TOEPLITZ:
printf("toeplitz\n");
break;
case RTE_ETH_HASH_FUNCTION_SIMPLE_XOR:
printf("simple_xor\n");
break;
case RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ:
printf("symmetric_toeplitz\n");
break;
default:
printf("Unknown function\n");
return;
}
printf(" types:\n");
if (rss_conf->types == 0) {
printf(" none\n");
return;
}
rss_types_display(rss_conf->types, TESTPMD_RSS_TYPES_CHAR_NUM_PER_LINE);
}
static struct port_indirect_action *
action_get_by_id(portid_t port_id, uint32_t id)
{
struct rte_port *port;
struct port_indirect_action **ppia;
struct port_indirect_action *pia = NULL;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return NULL;
port = &ports[port_id];
ppia = &port->actions_list;
while (*ppia) {
if ((*ppia)->id == id) {
pia = *ppia;
break;
}
ppia = &(*ppia)->next;
}
if (!pia)
fprintf(stderr,
"Failed to find indirect action #%u on port %u\n",
id, port_id);
return pia;
}
static int
action_alloc(portid_t port_id, uint32_t id,
struct port_indirect_action **action)
{
struct rte_port *port;
struct port_indirect_action **ppia;
struct port_indirect_action *pia = NULL;
*action = NULL;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
if (id == UINT32_MAX) {
/* taking first available ID */
if (port->actions_list) {
if (port->actions_list->id == UINT32_MAX - 1) {
fprintf(stderr,
"Highest indirect action ID is already assigned, delete it first\n");
return -ENOMEM;
}
id = port->actions_list->id + 1;
} else {
id = 0;
}
}
pia = calloc(1, sizeof(*pia));
if (!pia) {
fprintf(stderr,
"Allocation of port %u indirect action failed\n",
port_id);
return -ENOMEM;
}
ppia = &port->actions_list;
while (*ppia && (*ppia)->id > id)
ppia = &(*ppia)->next;
if (*ppia && (*ppia)->id == id) {
fprintf(stderr,
"Indirect action #%u is already assigned, delete it first\n",
id);
free(pia);
return -EINVAL;
}
pia->next = *ppia;
pia->id = id;
*ppia = pia;
*action = pia;
return 0;
}
static int
template_alloc(uint32_t id, struct port_template **template,
struct port_template **list)
{
struct port_template *lst = *list;
struct port_template **ppt;
struct port_template *pt = NULL;
*template = NULL;
if (id == UINT32_MAX) {
/* taking first available ID */
if (lst) {
if (lst->id == UINT32_MAX - 1) {
printf("Highest template ID is already"
" assigned, delete it first\n");
return -ENOMEM;
}
id = lst->id + 1;
} else {
id = 0;
}
}
pt = calloc(1, sizeof(*pt));
if (!pt) {
printf("Allocation of port template failed\n");
return -ENOMEM;
}
ppt = list;
while (*ppt && (*ppt)->id > id)
ppt = &(*ppt)->next;
if (*ppt && (*ppt)->id == id) {
printf("Template #%u is already assigned,"
" delete it first\n", id);
free(pt);
return -EINVAL;
}
pt->next = *ppt;
pt->id = id;
*ppt = pt;
*template = pt;
return 0;
}
static int
table_alloc(uint32_t id, struct port_table **table,
struct port_table **list)
{
struct port_table *lst = *list;
struct port_table **ppt;
struct port_table *pt = NULL;
*table = NULL;
if (id == UINT32_MAX) {
/* taking first available ID */
if (lst) {
if (lst->id == UINT32_MAX - 1) {
printf("Highest table ID is already"
" assigned, delete it first\n");
return -ENOMEM;
}
id = lst->id + 1;
} else {
id = 0;
}
}
pt = calloc(1, sizeof(*pt));
if (!pt) {
printf("Allocation of table failed\n");
return -ENOMEM;
}
ppt = list;
while (*ppt && (*ppt)->id > id)
ppt = &(*ppt)->next;
if (*ppt && (*ppt)->id == id) {
printf("Table #%u is already assigned,"
" delete it first\n", id);
free(pt);
return -EINVAL;
}
pt->next = *ppt;
pt->id = id;
*ppt = pt;
*table = pt;
return 0;
}
/** Get info about flow management resources. */
int
port_flow_get_info(portid_t port_id)
{
struct rte_flow_port_info port_info;
struct rte_flow_queue_info queue_info;
struct rte_flow_error error;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x99, sizeof(error));
memset(&port_info, 0, sizeof(port_info));
memset(&queue_info, 0, sizeof(queue_info));
if (rte_flow_info_get(port_id, &port_info, &queue_info, &error))
return port_flow_complain(&error);
printf("Flow engine resources on port %u:\n"
"Number of queues: %d\n"
"Size of queues: %d\n"
"Number of counters: %d\n"
"Number of aging objects: %d\n"
"Number of meter actions: %d\n",
port_id, port_info.max_nb_queues,
queue_info.max_size,
port_info.max_nb_counters,
port_info.max_nb_aging_objects,
port_info.max_nb_meters);
return 0;
}
/** Configure flow management resources. */
int
port_flow_configure(portid_t port_id,
const struct rte_flow_port_attr *port_attr,
uint16_t nb_queue,
const struct rte_flow_queue_attr *queue_attr)
{
struct rte_port *port;
struct rte_flow_error error;
const struct rte_flow_queue_attr *attr_list[nb_queue];
int std_queue;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
port->queue_nb = nb_queue;
port->queue_sz = queue_attr->size;
for (std_queue = 0; std_queue < nb_queue; std_queue++)
attr_list[std_queue] = queue_attr;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x66, sizeof(error));
if (rte_flow_configure(port_id, port_attr, nb_queue, attr_list, &error))
return port_flow_complain(&error);
printf("Configure flows on port %u: "
"number of queues %d with %d elements\n",
port_id, nb_queue, queue_attr->size);
return 0;
}
/** Create indirect action */
int
port_action_handle_create(portid_t port_id, uint32_t id,
const struct rte_flow_indir_action_conf *conf,
const struct rte_flow_action *action)
{
struct port_indirect_action *pia;
int ret;
struct rte_flow_error error;
ret = action_alloc(port_id, id, &pia);
if (ret)
return ret;
if (action->type == RTE_FLOW_ACTION_TYPE_AGE) {
struct rte_flow_action_age *age =
(struct rte_flow_action_age *)(uintptr_t)(action->conf);
pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION;
age->context = &pia->age_type;
} else if (action->type == RTE_FLOW_ACTION_TYPE_CONNTRACK) {
struct rte_flow_action_conntrack *ct =
(struct rte_flow_action_conntrack *)(uintptr_t)(action->conf);
memcpy(ct, &conntrack_context, sizeof(*ct));
}
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x22, sizeof(error));
pia->handle = rte_flow_action_handle_create(port_id, conf, action,
&error);
if (!pia->handle) {
uint32_t destroy_id = pia->id;
port_action_handle_destroy(port_id, 1, &destroy_id);
return port_flow_complain(&error);
}
pia->type = action->type;
printf("Indirect action #%u created\n", pia->id);
return 0;
}
/** Destroy indirect action */
int
port_action_handle_destroy(portid_t port_id,
uint32_t n,
const uint32_t *actions)
{
struct rte_port *port;
struct port_indirect_action **tmp;
uint32_t c = 0;
int ret = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
tmp = &port->actions_list;
while (*tmp) {
uint32_t i;
for (i = 0; i != n; ++i) {
struct rte_flow_error error;
struct port_indirect_action *pia = *tmp;
if (actions[i] != pia->id)
continue;
/*
* Poisoning to make sure PMDs update it in case
* of error.
*/
memset(&error, 0x33, sizeof(error));
if (pia->handle && rte_flow_action_handle_destroy(
port_id, pia->handle, &error)) {
ret = port_flow_complain(&error);
continue;
}
*tmp = pia->next;
printf("Indirect action #%u destroyed\n", pia->id);
free(pia);
break;
}
if (i == n)
tmp = &(*tmp)->next;
++c;
}
return ret;
}
int
port_action_handle_flush(portid_t port_id)
{
struct rte_port *port;
struct port_indirect_action **tmp;
int ret = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
tmp = &port->actions_list;
while (*tmp != NULL) {
struct rte_flow_error error;
struct port_indirect_action *pia = *tmp;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x44, sizeof(error));
if (pia->handle != NULL &&
rte_flow_action_handle_destroy
(port_id, pia->handle, &error) != 0) {
printf("Indirect action #%u not destroyed\n", pia->id);
ret = port_flow_complain(&error);
tmp = &pia->next;
} else {
*tmp = pia->next;
free(pia);
}
}
return ret;
}
/** Get indirect action by port + id */
struct rte_flow_action_handle *
port_action_handle_get_by_id(portid_t port_id, uint32_t id)
{
struct port_indirect_action *pia = action_get_by_id(port_id, id);
return (pia) ? pia->handle : NULL;
}
/** Update indirect action */
int
port_action_handle_update(portid_t port_id, uint32_t id,
const struct rte_flow_action *action)
{
struct rte_flow_error error;
struct rte_flow_action_handle *action_handle;
struct port_indirect_action *pia;
const void *update;
action_handle = port_action_handle_get_by_id(port_id, id);
if (!action_handle)
return -EINVAL;
pia = action_get_by_id(port_id, id);
if (!pia)
return -EINVAL;
switch (pia->type) {
case RTE_FLOW_ACTION_TYPE_CONNTRACK:
update = action->conf;
break;
default:
update = action;
break;
}
if (rte_flow_action_handle_update(port_id, action_handle, update,
&error)) {
return port_flow_complain(&error);
}
printf("Indirect action #%u updated\n", id);
return 0;
}
static void
port_action_handle_query_dump(uint32_t type, union port_action_query *query)
{
switch (type) {
case RTE_FLOW_ACTION_TYPE_AGE:
printf("Indirect AGE action:\n"
" aged: %u\n"
" sec_since_last_hit_valid: %u\n"
" sec_since_last_hit: %" PRIu32 "\n",
query->age.aged,
query->age.sec_since_last_hit_valid,
query->age.sec_since_last_hit);
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
printf("Indirect COUNT action:\n"
" hits_set: %u\n"
" bytes_set: %u\n"
" hits: %" PRIu64 "\n"
" bytes: %" PRIu64 "\n",
query->count.hits_set,
query->count.bytes_set,
query->count.hits,
query->count.bytes);
break;
case RTE_FLOW_ACTION_TYPE_CONNTRACK:
printf("Conntrack Context:\n"
" Peer: %u, Flow dir: %s, Enable: %u\n"
" Live: %u, SACK: %u, CACK: %u\n"
" Packet dir: %s, Liberal: %u, State: %u\n"
" Factor: %u, Retrans: %u, TCP flags: %u\n"
" Last Seq: %u, Last ACK: %u\n"
" Last Win: %u, Last End: %u\n",
query->ct.peer_port,
query->ct.is_original_dir ? "Original" : "Reply",
query->ct.enable, query->ct.live_connection,
query->ct.selective_ack, query->ct.challenge_ack_passed,
query->ct.last_direction ? "Original" : "Reply",
query->ct.liberal_mode, query->ct.state,
query->ct.max_ack_window, query->ct.retransmission_limit,
query->ct.last_index, query->ct.last_seq,
query->ct.last_ack, query->ct.last_window,
query->ct.last_end);
printf(" Original Dir:\n"
" scale: %u, fin: %u, ack seen: %u\n"
" unacked data: %u\n Sent end: %u,"
" Reply end: %u, Max win: %u, Max ACK: %u\n",
query->ct.original_dir.scale,
query->ct.original_dir.close_initiated,
query->ct.original_dir.last_ack_seen,
query->ct.original_dir.data_unacked,
query->ct.original_dir.sent_end,
query->ct.original_dir.reply_end,
query->ct.original_dir.max_win,
query->ct.original_dir.max_ack);
printf(" Reply Dir:\n"
" scale: %u, fin: %u, ack seen: %u\n"
" unacked data: %u\n Sent end: %u,"
" Reply end: %u, Max win: %u, Max ACK: %u\n",
query->ct.reply_dir.scale,
query->ct.reply_dir.close_initiated,
query->ct.reply_dir.last_ack_seen,
query->ct.reply_dir.data_unacked,
query->ct.reply_dir.sent_end,
query->ct.reply_dir.reply_end,
query->ct.reply_dir.max_win,
query->ct.reply_dir.max_ack);
break;
default:
fprintf(stderr,
"Indirect action (type: %d) doesn't support query\n",
type);
break;
}
}
int
port_action_handle_query(portid_t port_id, uint32_t id)
{
struct rte_flow_error error;
struct port_indirect_action *pia;
union port_action_query query;
pia = action_get_by_id(port_id, id);
if (!pia)
return -EINVAL;
switch (pia->type) {
case RTE_FLOW_ACTION_TYPE_AGE:
case RTE_FLOW_ACTION_TYPE_COUNT:
break;
default:
fprintf(stderr,
"Indirect action %u (type: %d) on port %u doesn't support query\n",
id, pia->type, port_id);
return -ENOTSUP;
}
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x55, sizeof(error));
memset(&query, 0, sizeof(query));
if (rte_flow_action_handle_query(port_id, pia->handle, &query, &error))
return port_flow_complain(&error);
port_action_handle_query_dump(pia->type, &query);
return 0;
}
static struct port_flow_tunnel *
port_flow_tunnel_offload_cmd_prep(portid_t port_id,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions,
const struct tunnel_ops *tunnel_ops)
{
int ret;
struct rte_port *port;
struct port_flow_tunnel *pft;
struct rte_flow_error error;
port = &ports[port_id];
pft = port_flow_locate_tunnel_id(port, tunnel_ops->id);
if (!pft) {
fprintf(stderr, "failed to locate port flow tunnel #%u\n",
tunnel_ops->id);
return NULL;
}
if (tunnel_ops->actions) {
uint32_t num_actions;
const struct rte_flow_action *aptr;
ret = rte_flow_tunnel_decap_set(port_id, &pft->tunnel,
&pft->pmd_actions,
&pft->num_pmd_actions,
&error);
if (ret) {
port_flow_complain(&error);
return NULL;
}
for (aptr = actions, num_actions = 1;
aptr->type != RTE_FLOW_ACTION_TYPE_END;
aptr++, num_actions++);
pft->actions = malloc(
(num_actions + pft->num_pmd_actions) *
sizeof(actions[0]));
if (!pft->actions) {
rte_flow_tunnel_action_decap_release(
port_id, pft->actions,
pft->num_pmd_actions, &error);
return NULL;
}
rte_memcpy(pft->actions, pft->pmd_actions,
pft->num_pmd_actions * sizeof(actions[0]));
rte_memcpy(pft->actions + pft->num_pmd_actions, actions,
num_actions * sizeof(actions[0]));
}
if (tunnel_ops->items) {
uint32_t num_items;
const struct rte_flow_item *iptr;
ret = rte_flow_tunnel_match(port_id, &pft->tunnel,
&pft->pmd_items,
&pft->num_pmd_items,
&error);
if (ret) {
port_flow_complain(&error);
return NULL;
}
for (iptr = pattern, num_items = 1;
iptr->type != RTE_FLOW_ITEM_TYPE_END;
iptr++, num_items++);
pft->items = malloc((num_items + pft->num_pmd_items) *
sizeof(pattern[0]));
if (!pft->items) {
rte_flow_tunnel_item_release(
port_id, pft->pmd_items,
pft->num_pmd_items, &error);
return NULL;
}
rte_memcpy(pft->items, pft->pmd_items,
pft->num_pmd_items * sizeof(pattern[0]));
rte_memcpy(pft->items + pft->num_pmd_items, pattern,
num_items * sizeof(pattern[0]));
}
return pft;
}
static void
port_flow_tunnel_offload_cmd_release(portid_t port_id,
const struct tunnel_ops *tunnel_ops,
struct port_flow_tunnel *pft)
{
struct rte_flow_error error;
if (tunnel_ops->actions) {
free(pft->actions);
rte_flow_tunnel_action_decap_release(
port_id, pft->pmd_actions,
pft->num_pmd_actions, &error);
pft->actions = NULL;
pft->pmd_actions = NULL;
}
if (tunnel_ops->items) {
free(pft->items);
rte_flow_tunnel_item_release(port_id, pft->pmd_items,
pft->num_pmd_items,
&error);
pft->items = NULL;
pft->pmd_items = NULL;
}
}
/** Add port meter policy */
int
port_meter_policy_add(portid_t port_id, uint32_t policy_id,
const struct rte_flow_action *actions)
{
struct rte_mtr_error error;
const struct rte_flow_action *act = actions;
const struct rte_flow_action *start;
struct rte_mtr_meter_policy_params policy;
uint32_t i = 0, act_n;
int ret;
for (i = 0; i < RTE_COLORS; i++) {
for (act_n = 0, start = act;
act->type != RTE_FLOW_ACTION_TYPE_END; act++)
act_n++;
if (act_n && act->type == RTE_FLOW_ACTION_TYPE_END)
policy.actions[i] = start;
else
policy.actions[i] = NULL;
act++;
}
ret = rte_mtr_meter_policy_add(port_id,
policy_id,
&policy, &error);
if (ret)
print_mtr_err_msg(&error);
return ret;
}
struct rte_flow_meter_profile *
port_meter_profile_get_by_id(portid_t port_id, uint32_t id)
{
struct rte_mtr_error error;
struct rte_flow_meter_profile *profile;
profile = rte_mtr_meter_profile_get(port_id, id, &error);
if (!profile)
print_mtr_err_msg(&error);
return profile;
}
struct rte_flow_meter_policy *
port_meter_policy_get_by_id(portid_t port_id, uint32_t id)
{
struct rte_mtr_error error;
struct rte_flow_meter_policy *policy;
policy = rte_mtr_meter_policy_get(port_id, id, &error);
if (!policy)
print_mtr_err_msg(&error);
return policy;
}
/** Validate flow rule. */
int
port_flow_validate(portid_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions,
const struct tunnel_ops *tunnel_ops)
{
struct rte_flow_error error;
struct port_flow_tunnel *pft = NULL;
int ret;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x11, sizeof(error));
if (tunnel_ops->enabled) {
pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
actions, tunnel_ops);
if (!pft)
return -ENOENT;
if (pft->items)
pattern = pft->items;
if (pft->actions)
actions = pft->actions;
}
ret = rte_flow_validate(port_id, attr, pattern, actions, &error);
if (tunnel_ops->enabled)
port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
if (ret)
return port_flow_complain(&error);
printf("Flow rule validated\n");
return 0;
}
/** Return age action structure if exists, otherwise NULL. */
static struct rte_flow_action_age *
age_action_get(const struct rte_flow_action *actions)
{
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_AGE:
return (struct rte_flow_action_age *)
(uintptr_t)actions->conf;
default:
break;
}
}
return NULL;
}
/** Create pattern template */
int
port_flow_pattern_template_create(portid_t port_id, uint32_t id,
const struct rte_flow_pattern_template_attr *attr,
const struct rte_flow_item *pattern)
{
struct rte_port *port;
struct port_template *pit;
int ret;
struct rte_flow_error error;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
ret = template_alloc(id, &pit, &port->pattern_templ_list);
if (ret)
return ret;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x22, sizeof(error));
pit->template.pattern_template = rte_flow_pattern_template_create(port_id,
attr, pattern, &error);
if (!pit->template.pattern_template) {
uint32_t destroy_id = pit->id;
port_flow_pattern_template_destroy(port_id, 1, &destroy_id);
return port_flow_complain(&error);
}
printf("Pattern template #%u created\n", pit->id);
return 0;
}
/** Destroy pattern template */
int
port_flow_pattern_template_destroy(portid_t port_id, uint32_t n,
const uint32_t *template)
{
struct rte_port *port;
struct port_template **tmp;
uint32_t c = 0;
int ret = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
tmp = &port->pattern_templ_list;
while (*tmp) {
uint32_t i;
for (i = 0; i != n; ++i) {
struct rte_flow_error error;
struct port_template *pit = *tmp;
if (template[i] != pit->id)
continue;
/*
* Poisoning to make sure PMDs update it in case
* of error.
*/
memset(&error, 0x33, sizeof(error));
if (pit->template.pattern_template &&
rte_flow_pattern_template_destroy(port_id,
pit->template.pattern_template,
&error)) {
ret = port_flow_complain(&error);
continue;
}
*tmp = pit->next;
printf("Pattern template #%u destroyed\n", pit->id);
free(pit);
break;
}
if (i == n)
tmp = &(*tmp)->next;
++c;
}
return ret;
}
/** Create actions template */
int
port_flow_actions_template_create(portid_t port_id, uint32_t id,
const struct rte_flow_actions_template_attr *attr,
const struct rte_flow_action *actions,
const struct rte_flow_action *masks)
{
struct rte_port *port;
struct port_template *pat;
int ret;
struct rte_flow_error error;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
ret = template_alloc(id, &pat, &port->actions_templ_list);
if (ret)
return ret;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x22, sizeof(error));
pat->template.actions_template = rte_flow_actions_template_create(port_id,
attr, actions, masks, &error);
if (!pat->template.actions_template) {
uint32_t destroy_id = pat->id;
port_flow_actions_template_destroy(port_id, 1, &destroy_id);
return port_flow_complain(&error);
}
printf("Actions template #%u created\n", pat->id);
return 0;
}
/** Destroy actions template */
int
port_flow_actions_template_destroy(portid_t port_id, uint32_t n,
const uint32_t *template)
{
struct rte_port *port;
struct port_template **tmp;
uint32_t c = 0;
int ret = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
tmp = &port->actions_templ_list;
while (*tmp) {
uint32_t i;
for (i = 0; i != n; ++i) {
struct rte_flow_error error;
struct port_template *pat = *tmp;
if (template[i] != pat->id)
continue;
/*
* Poisoning to make sure PMDs update it in case
* of error.
*/
memset(&error, 0x33, sizeof(error));
if (pat->template.actions_template &&
rte_flow_actions_template_destroy(port_id,
pat->template.actions_template, &error)) {
ret = port_flow_complain(&error);
continue;
}
*tmp = pat->next;
printf("Actions template #%u destroyed\n", pat->id);
free(pat);
break;
}
if (i == n)
tmp = &(*tmp)->next;
++c;
}
return ret;
}
/** Create table */
int
port_flow_template_table_create(portid_t port_id, uint32_t id,
const struct rte_flow_template_table_attr *table_attr,
uint32_t nb_pattern_templates, uint32_t *pattern_templates,
uint32_t nb_actions_templates, uint32_t *actions_templates)
{
struct rte_port *port;
struct port_table *pt;
struct port_template *temp = NULL;
int ret;
uint32_t i;
struct rte_flow_error error;
struct rte_flow_pattern_template
*flow_pattern_templates[nb_pattern_templates];
struct rte_flow_actions_template
*flow_actions_templates[nb_actions_templates];
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
for (i = 0; i < nb_pattern_templates; ++i) {
bool found = false;
temp = port->pattern_templ_list;
while (temp) {
if (pattern_templates[i] == temp->id) {
flow_pattern_templates[i] =
temp->template.pattern_template;
found = true;
break;
}
temp = temp->next;
}
if (!found) {
printf("Pattern template #%u is invalid\n",
pattern_templates[i]);
return -EINVAL;
}
}
for (i = 0; i < nb_actions_templates; ++i) {
bool found = false;
temp = port->actions_templ_list;
while (temp) {
if (actions_templates[i] == temp->id) {
flow_actions_templates[i] =
temp->template.actions_template;
found = true;
break;
}
temp = temp->next;
}
if (!found) {
printf("Actions template #%u is invalid\n",
actions_templates[i]);
return -EINVAL;
}
}
ret = table_alloc(id, &pt, &port->table_list);
if (ret)
return ret;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x22, sizeof(error));
pt->table = rte_flow_template_table_create(port_id, table_attr,
flow_pattern_templates, nb_pattern_templates,
flow_actions_templates, nb_actions_templates,
&error);
if (!pt->table) {
uint32_t destroy_id = pt->id;
port_flow_template_table_destroy(port_id, 1, &destroy_id);
return port_flow_complain(&error);
}
pt->nb_pattern_templates = nb_pattern_templates;
pt->nb_actions_templates = nb_actions_templates;
printf("Template table #%u created\n", pt->id);
return 0;
}
/** Destroy table */
int
port_flow_template_table_destroy(portid_t port_id,
uint32_t n, const uint32_t *table)
{
struct rte_port *port;
struct port_table **tmp;
uint32_t c = 0;
int ret = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
tmp = &port->table_list;
while (*tmp) {
uint32_t i;
for (i = 0; i != n; ++i) {
struct rte_flow_error error;
struct port_table *pt = *tmp;
if (table[i] != pt->id)
continue;
/*
* Poisoning to make sure PMDs update it in case
* of error.
*/
memset(&error, 0x33, sizeof(error));
if (pt->table &&
rte_flow_template_table_destroy(port_id,
pt->table,
&error)) {
ret = port_flow_complain(&error);
continue;
}
*tmp = pt->next;
printf("Template table #%u destroyed\n", pt->id);
free(pt);
break;
}
if (i == n)
tmp = &(*tmp)->next;
++c;
}
return ret;
}
/** Enqueue create flow rule operation. */
int
port_queue_flow_create(portid_t port_id, queueid_t queue_id,
bool postpone, uint32_t table_id,
uint32_t pattern_idx, uint32_t actions_idx,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions)
{
struct rte_flow_op_attr op_attr = { .postpone = postpone };
struct rte_flow *flow;
struct rte_port *port;
struct port_flow *pf;
struct port_table *pt;
uint32_t id = 0;
bool found;
struct rte_flow_error error = { RTE_FLOW_ERROR_TYPE_NONE, NULL, NULL };
struct rte_flow_action_age *age = age_action_get(actions);
struct queue_job *job;
port = &ports[port_id];
if (port->flow_list) {
if (port->flow_list->id == UINT32_MAX) {
printf("Highest rule ID is already assigned,"
" delete it first");
return -ENOMEM;
}
id = port->flow_list->id + 1;
}
if (queue_id >= port->queue_nb) {
printf("Queue #%u is invalid\n", queue_id);
return -EINVAL;
}
found = false;
pt = port->table_list;
while (pt) {
if (table_id == pt->id) {
found = true;
break;
}
pt = pt->next;
}
if (!found) {
printf("Table #%u is invalid\n", table_id);
return -EINVAL;
}
if (pattern_idx >= pt->nb_pattern_templates) {
printf("Pattern template index #%u is invalid,"
" %u templates present in the table\n",
pattern_idx, pt->nb_pattern_templates);
return -EINVAL;
}
if (actions_idx >= pt->nb_actions_templates) {
printf("Actions template index #%u is invalid,"
" %u templates present in the table\n",
actions_idx, pt->nb_actions_templates);
return -EINVAL;
}
job = calloc(1, sizeof(*job));
if (!job) {
printf("Queue flow create job allocate failed\n");
return -ENOMEM;
}
job->type = QUEUE_JOB_TYPE_FLOW_CREATE;
pf = port_flow_new(NULL, pattern, actions, &error);
if (!pf) {
free(job);
return port_flow_complain(&error);
}
if (age) {
pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW;
age->context = &pf->age_type;
}
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x11, sizeof(error));
flow = rte_flow_async_create(port_id, queue_id, &op_attr, pt->table,
pattern, pattern_idx, actions, actions_idx, job, &error);
if (!flow) {
uint32_t flow_id = pf->id;
port_queue_flow_destroy(port_id, queue_id, true, 1, &flow_id);
free(job);
return port_flow_complain(&error);
}
pf->next = port->flow_list;
pf->id = id;
pf->flow = flow;
job->pf = pf;
port->flow_list = pf;
printf("Flow rule #%u creation enqueued\n", pf->id);
return 0;
}
/** Enqueue number of destroy flow rules operations. */
int
port_queue_flow_destroy(portid_t port_id, queueid_t queue_id,
bool postpone, uint32_t n, const uint32_t *rule)
{
struct rte_flow_op_attr op_attr = { .postpone = postpone };
struct rte_port *port;
struct port_flow **tmp;
uint32_t c = 0;
int ret = 0;
struct queue_job *job;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
if (queue_id >= port->queue_nb) {
printf("Queue #%u is invalid\n", queue_id);
return -EINVAL;
}
tmp = &port->flow_list;
while (*tmp) {
uint32_t i;
for (i = 0; i != n; ++i) {
struct rte_flow_error error;
struct port_flow *pf = *tmp;
if (rule[i] != pf->id)
continue;
/*
* Poisoning to make sure PMD
* update it in case of error.
*/
memset(&error, 0x33, sizeof(error));
job = calloc(1, sizeof(*job));
if (!job) {
printf("Queue flow destroy job allocate failed\n");
return -ENOMEM;
}
job->type = QUEUE_JOB_TYPE_FLOW_DESTROY;
job->pf = pf;
if (rte_flow_async_destroy(port_id, queue_id, &op_attr,
pf->flow, job, &error)) {
free(job);
ret = port_flow_complain(&error);
continue;
}
printf("Flow rule #%u destruction enqueued\n", pf->id);
*tmp = pf->next;
break;
}
if (i == n)
tmp = &(*tmp)->next;
++c;
}
return ret;
}
/** Enqueue indirect action create operation. */
int
port_queue_action_handle_create(portid_t port_id, uint32_t queue_id,
bool postpone, uint32_t id,
const struct rte_flow_indir_action_conf *conf,
const struct rte_flow_action *action)
{
const struct rte_flow_op_attr attr = { .postpone = postpone};
struct rte_port *port;
struct port_indirect_action *pia;
int ret;
struct rte_flow_error error;
struct queue_job *job;
ret = action_alloc(port_id, id, &pia);
if (ret)
return ret;
port = &ports[port_id];
if (queue_id >= port->queue_nb) {
printf("Queue #%u is invalid\n", queue_id);
return -EINVAL;
}
job = calloc(1, sizeof(*job));
if (!job) {
printf("Queue action create job allocate failed\n");
return -ENOMEM;
}
job->type = QUEUE_JOB_TYPE_ACTION_CREATE;
job->pia = pia;
if (action->type == RTE_FLOW_ACTION_TYPE_AGE) {
struct rte_flow_action_age *age =
(struct rte_flow_action_age *)(uintptr_t)(action->conf);
pia->age_type = ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION;
age->context = &pia->age_type;
}
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x88, sizeof(error));
pia->handle = rte_flow_async_action_handle_create(port_id, queue_id,
&attr, conf, action, job, &error);
if (!pia->handle) {
uint32_t destroy_id = pia->id;
port_queue_action_handle_destroy(port_id, queue_id,
postpone, 1, &destroy_id);
free(job);
return port_flow_complain(&error);
}
pia->type = action->type;
printf("Indirect action #%u creation queued\n", pia->id);
return 0;
}
/** Enqueue indirect action destroy operation. */
int
port_queue_action_handle_destroy(portid_t port_id,
uint32_t queue_id, bool postpone,
uint32_t n, const uint32_t *actions)
{
const struct rte_flow_op_attr attr = { .postpone = postpone};
struct rte_port *port;
struct port_indirect_action **tmp;
uint32_t c = 0;
int ret = 0;
struct queue_job *job;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
if (queue_id >= port->queue_nb) {
printf("Queue #%u is invalid\n", queue_id);
return -EINVAL;
}
tmp = &port->actions_list;
while (*tmp) {
uint32_t i;
for (i = 0; i != n; ++i) {
struct rte_flow_error error;
struct port_indirect_action *pia = *tmp;
if (actions[i] != pia->id)
continue;
/*
* Poisoning to make sure PMDs update it in case
* of error.
*/
memset(&error, 0x99, sizeof(error));
job = calloc(1, sizeof(*job));
if (!job) {
printf("Queue action destroy job allocate failed\n");
return -ENOMEM;
}
job->type = QUEUE_JOB_TYPE_ACTION_DESTROY;
job->pia = pia;
if (pia->handle &&
rte_flow_async_action_handle_destroy(port_id,
queue_id, &attr, pia->handle, job, &error)) {
ret = port_flow_complain(&error);
continue;
}
*tmp = pia->next;
printf("Indirect action #%u destruction queued\n",
pia->id);
break;
}
if (i == n)
tmp = &(*tmp)->next;
++c;
}
return ret;
}
/** Enqueue indirect action update operation. */
int
port_queue_action_handle_update(portid_t port_id,
uint32_t queue_id, bool postpone, uint32_t id,
const struct rte_flow_action *action)
{
const struct rte_flow_op_attr attr = { .postpone = postpone};
struct rte_port *port;
struct rte_flow_error error;
struct rte_flow_action_handle *action_handle;
struct queue_job *job;
struct port_indirect_action *pia;
struct rte_flow_update_meter_mark mtr_update;
const void *update;
action_handle = port_action_handle_get_by_id(port_id, id);
if (!action_handle)
return -EINVAL;
port = &ports[port_id];
if (queue_id >= port->queue_nb) {
printf("Queue #%u is invalid\n", queue_id);
return -EINVAL;
}
job = calloc(1, sizeof(*job));
if (!job) {
printf("Queue action update job allocate failed\n");
return -ENOMEM;
}
job->type = QUEUE_JOB_TYPE_ACTION_UPDATE;
pia = action_get_by_id(port_id, id);
if (!pia) {
free(job);
return -EINVAL;
}
if (pia->type == RTE_FLOW_ACTION_TYPE_METER_MARK) {
rte_memcpy(&mtr_update.meter_mark, action->conf,
sizeof(struct rte_flow_action_meter_mark));
mtr_update.profile_valid = 1;
mtr_update.policy_valid = 1;
mtr_update.color_mode_valid = 1;
mtr_update.init_color_valid = 1;
mtr_update.state_valid = 1;
update = &mtr_update;
} else {
update = action;
}
if (rte_flow_async_action_handle_update(port_id, queue_id, &attr,
action_handle, update, job, &error)) {
free(job);
return port_flow_complain(&error);
}
printf("Indirect action #%u update queued\n", id);
return 0;
}
/** Enqueue indirect action query operation. */
int
port_queue_action_handle_query(portid_t port_id,
uint32_t queue_id, bool postpone, uint32_t id)
{
const struct rte_flow_op_attr attr = { .postpone = postpone};
struct rte_port *port;
struct rte_flow_error error;
struct rte_flow_action_handle *action_handle;
struct port_indirect_action *pia;
struct queue_job *job;
pia = action_get_by_id(port_id, id);
action_handle = pia ? pia->handle : NULL;
if (!action_handle)
return -EINVAL;
port = &ports[port_id];
if (queue_id >= port->queue_nb) {
printf("Queue #%u is invalid\n", queue_id);
return -EINVAL;
}
job = calloc(1, sizeof(*job));
if (!job) {
printf("Queue action update job allocate failed\n");
return -ENOMEM;
}
job->type = QUEUE_JOB_TYPE_ACTION_QUERY;
job->pia = pia;
if (rte_flow_async_action_handle_query(port_id, queue_id, &attr,
action_handle, &job->query, job, &error)) {
free(job);
return port_flow_complain(&error);
}
printf("Indirect action #%u update queued\n", id);
return 0;
}
/** Push all the queue operations in the queue to the NIC. */
int
port_queue_flow_push(portid_t port_id, queueid_t queue_id)
{
struct rte_port *port;
struct rte_flow_error error;
int ret = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
if (queue_id >= port->queue_nb) {
printf("Queue #%u is invalid\n", queue_id);
return -EINVAL;
}
memset(&error, 0x55, sizeof(error));
ret = rte_flow_push(port_id, queue_id, &error);
if (ret < 0) {
printf("Failed to push operations in the queue\n");
return -EINVAL;
}
printf("Queue #%u operations pushed\n", queue_id);
return ret;
}
/** Pull queue operation results from the queue. */
int
port_queue_flow_pull(portid_t port_id, queueid_t queue_id)
{
struct rte_port *port;
struct rte_flow_op_result *res;
struct rte_flow_error error;
int ret = 0;
int success = 0;
int i;
struct queue_job *job;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
if (queue_id >= port->queue_nb) {
printf("Queue #%u is invalid\n", queue_id);
return -EINVAL;
}
res = calloc(port->queue_sz, sizeof(struct rte_flow_op_result));
if (!res) {
printf("Failed to allocate memory for pulled results\n");
return -ENOMEM;
}
memset(&error, 0x66, sizeof(error));
ret = rte_flow_pull(port_id, queue_id, res,
port->queue_sz, &error);
if (ret < 0) {
printf("Failed to pull a operation results\n");
free(res);
return -EINVAL;
}
for (i = 0; i < ret; i++) {
if (res[i].status == RTE_FLOW_OP_SUCCESS)
success++;
job = (struct queue_job *)res[i].user_data;
if (job->type == QUEUE_JOB_TYPE_FLOW_DESTROY)
free(job->pf);
else if (job->type == QUEUE_JOB_TYPE_ACTION_DESTROY)
free(job->pia);
else if (job->type == QUEUE_JOB_TYPE_ACTION_QUERY)
port_action_handle_query_dump(job->pia->type, &job->query);
free(job);
}
printf("Queue #%u pulled %u operations (%u failed, %u succeeded)\n",
queue_id, ret, ret - success, success);
free(res);
return ret;
}
/** Create flow rule. */
int
port_flow_create(portid_t port_id,
const struct rte_flow_attr *attr,
const struct rte_flow_item *pattern,
const struct rte_flow_action *actions,
const struct tunnel_ops *tunnel_ops)
{
struct rte_flow *flow;
struct rte_port *port;
struct port_flow *pf;
uint32_t id = 0;
struct rte_flow_error error;
struct port_flow_tunnel *pft = NULL;
struct rte_flow_action_age *age = age_action_get(actions);
port = &ports[port_id];
if (port->flow_list) {
if (port->flow_list->id == UINT32_MAX) {
fprintf(stderr,
"Highest rule ID is already assigned, delete it first");
return -ENOMEM;
}
id = port->flow_list->id + 1;
}
if (tunnel_ops->enabled) {
pft = port_flow_tunnel_offload_cmd_prep(port_id, pattern,
actions, tunnel_ops);
if (!pft)
return -ENOENT;
if (pft->items)
pattern = pft->items;
if (pft->actions)
actions = pft->actions;
}
pf = port_flow_new(attr, pattern, actions, &error);
if (!pf)
return port_flow_complain(&error);
if (age) {
pf->age_type = ACTION_AGE_CONTEXT_TYPE_FLOW;
age->context = &pf->age_type;
}
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x22, sizeof(error));
flow = rte_flow_create(port_id, attr, pattern, actions, &error);
if (!flow) {
if (tunnel_ops->enabled)
port_flow_tunnel_offload_cmd_release(port_id,
tunnel_ops, pft);
free(pf);
return port_flow_complain(&error);
}
pf->next = port->flow_list;
pf->id = id;
pf->flow = flow;
port->flow_list = pf;
if (tunnel_ops->enabled)
port_flow_tunnel_offload_cmd_release(port_id, tunnel_ops, pft);
printf("Flow rule #%u created\n", pf->id);
return 0;
}
/** Destroy a number of flow rules. */
int
port_flow_destroy(portid_t port_id, uint32_t n, const uint32_t *rule)
{
struct rte_port *port;
struct port_flow **tmp;
uint32_t c = 0;
int ret = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
tmp = &port->flow_list;
while (*tmp) {
uint32_t i;
for (i = 0; i != n; ++i) {
struct rte_flow_error error;
struct port_flow *pf = *tmp;
if (rule[i] != pf->id)
continue;
/*
* Poisoning to make sure PMDs update it in case
* of error.
*/
memset(&error, 0x33, sizeof(error));
if (rte_flow_destroy(port_id, pf->flow, &error)) {
ret = port_flow_complain(&error);
continue;
}
printf("Flow rule #%u destroyed\n", pf->id);
*tmp = pf->next;
free(pf);
break;
}
if (i == n)
tmp = &(*tmp)->next;
++c;
}
return ret;
}
/** Remove all flow rules. */
int
port_flow_flush(portid_t port_id)
{
struct rte_flow_error error;
struct rte_port *port;
int ret = 0;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
if (port->flow_list == NULL)
return ret;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x44, sizeof(error));
if (rte_flow_flush(port_id, &error)) {
port_flow_complain(&error);
}
while (port->flow_list) {
struct port_flow *pf = port->flow_list->next;
free(port->flow_list);
port->flow_list = pf;
}
return ret;
}
/** Dump flow rules. */
int
port_flow_dump(portid_t port_id, bool dump_all, uint32_t rule_id,
const char *file_name)
{
int ret = 0;
FILE *file = stdout;
struct rte_flow_error error;
struct rte_port *port;
struct port_flow *pflow;
struct rte_flow *tmpFlow = NULL;
bool found = false;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
if (!dump_all) {
port = &ports[port_id];
pflow = port->flow_list;
while (pflow) {
if (rule_id != pflow->id) {
pflow = pflow->next;
} else {
tmpFlow = pflow->flow;
if (tmpFlow)
found = true;
break;
}
}
if (found == false) {
fprintf(stderr, "Failed to dump to flow %d\n", rule_id);
return -EINVAL;
}
}
if (file_name && strlen(file_name)) {
file = fopen(file_name, "w");
if (!file) {
fprintf(stderr, "Failed to create file %s: %s\n",
file_name, strerror(errno));
return -errno;
}
}
if (!dump_all)
ret = rte_flow_dev_dump(port_id, tmpFlow, file, &error);
else
ret = rte_flow_dev_dump(port_id, NULL, file, &error);
if (ret) {
port_flow_complain(&error);
fprintf(stderr, "Failed to dump flow: %s\n", strerror(-ret));
} else
printf("Flow dump finished\n");
if (file_name && strlen(file_name))
fclose(file);
return ret;
}
/** Query a flow rule. */
int
port_flow_query(portid_t port_id, uint32_t rule,
const struct rte_flow_action *action)
{
struct rte_flow_error error;
struct rte_port *port;
struct port_flow *pf;
const char *name;
union {
struct rte_flow_query_count count;
struct rte_flow_action_rss rss_conf;
struct rte_flow_query_age age;
} query;
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
for (pf = port->flow_list; pf; pf = pf->next)
if (pf->id == rule)
break;
if (!pf) {
fprintf(stderr, "Flow rule #%u not found\n", rule);
return -ENOENT;
}
ret = rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
&name, sizeof(name),
(void *)(uintptr_t)action->type, &error);
if (ret < 0)
return port_flow_complain(&error);
switch (action->type) {
case RTE_FLOW_ACTION_TYPE_COUNT:
case RTE_FLOW_ACTION_TYPE_RSS:
case RTE_FLOW_ACTION_TYPE_AGE:
break;
default:
fprintf(stderr, "Cannot query action type %d (%s)\n",
action->type, name);
return -ENOTSUP;
}
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x55, sizeof(error));
memset(&query, 0, sizeof(query));
if (rte_flow_query(port_id, pf->flow, action, &query, &error))
return port_flow_complain(&error);
switch (action->type) {
case RTE_FLOW_ACTION_TYPE_COUNT:
printf("%s:\n"
" hits_set: %u\n"
" bytes_set: %u\n"
" hits: %" PRIu64 "\n"
" bytes: %" PRIu64 "\n",
name,
query.count.hits_set,
query.count.bytes_set,
query.count.hits,
query.count.bytes);
break;
case RTE_FLOW_ACTION_TYPE_RSS:
rss_config_display(&query.rss_conf);
break;
case RTE_FLOW_ACTION_TYPE_AGE:
printf("%s:\n"
" aged: %u\n"
" sec_since_last_hit_valid: %u\n"
" sec_since_last_hit: %" PRIu32 "\n",
name,
query.age.aged,
query.age.sec_since_last_hit_valid,
query.age.sec_since_last_hit);
break;
default:
fprintf(stderr,
"Cannot display result for action type %d (%s)\n",
action->type, name);
break;
}
return 0;
}
/** List simply and destroy all aged flows. */
void
port_flow_aged(portid_t port_id, uint8_t destroy)
{
void **contexts;
int nb_context, total = 0, idx;
struct rte_flow_error error;
enum age_action_context_type *type;
union {
struct port_flow *pf;
struct port_indirect_action *pia;
} ctx;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return;
total = rte_flow_get_aged_flows(port_id, NULL, 0, &error);
printf("Port %u total aged flows: %d\n", port_id, total);
if (total < 0) {
port_flow_complain(&error);
return;
}
if (total == 0)
return;
contexts = malloc(sizeof(void *) * total);
if (contexts == NULL) {
fprintf(stderr, "Cannot allocate contexts for aged flow\n");
return;
}
printf("%-20s\tID\tGroup\tPrio\tAttr\n", "Type");
nb_context = rte_flow_get_aged_flows(port_id, contexts, total, &error);
if (nb_context != total) {
fprintf(stderr,
"Port:%d get aged flows count(%d) != total(%d)\n",
port_id, nb_context, total);
free(contexts);
return;
}
total = 0;
for (idx = 0; idx < nb_context; idx++) {
if (!contexts[idx]) {
fprintf(stderr, "Error: get Null context in port %u\n",
port_id);
continue;
}
type = (enum age_action_context_type *)contexts[idx];
switch (*type) {
case ACTION_AGE_CONTEXT_TYPE_FLOW:
ctx.pf = container_of(type, struct port_flow, age_type);
printf("%-20s\t%" PRIu32 "\t%" PRIu32 "\t%" PRIu32
"\t%c%c%c\t\n",
"Flow",
ctx.pf->id,
ctx.pf->rule.attr->group,
ctx.pf->rule.attr->priority,
ctx.pf->rule.attr->ingress ? 'i' : '-',
ctx.pf->rule.attr->egress ? 'e' : '-',
ctx.pf->rule.attr->transfer ? 't' : '-');
if (destroy && !port_flow_destroy(port_id, 1,
&ctx.pf->id))
total++;
break;
case ACTION_AGE_CONTEXT_TYPE_INDIRECT_ACTION:
ctx.pia = container_of(type,
struct port_indirect_action, age_type);
printf("%-20s\t%" PRIu32 "\n", "Indirect action",
ctx.pia->id);
break;
default:
fprintf(stderr, "Error: invalid context type %u\n",
port_id);
break;
}
}
printf("\n%d flows destroyed\n", total);
free(contexts);
}
/** List flow rules. */
void
port_flow_list(portid_t port_id, uint32_t n, const uint32_t *group)
{
struct rte_port *port;
struct port_flow *pf;
struct port_flow *list = NULL;
uint32_t i;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return;
port = &ports[port_id];
if (!port->flow_list)
return;
/* Sort flows by group, priority and ID. */
for (pf = port->flow_list; pf != NULL; pf = pf->next) {
struct port_flow **tmp;
const struct rte_flow_attr *curr = pf->rule.attr;
if (n) {
/* Filter out unwanted groups. */
for (i = 0; i != n; ++i)
if (curr->group == group[i])
break;
if (i == n)
continue;
}
for (tmp = &list; *tmp; tmp = &(*tmp)->tmp) {
const struct rte_flow_attr *comp = (*tmp)->rule.attr;
if (curr->group > comp->group ||
(curr->group == comp->group &&
curr->priority > comp->priority) ||
(curr->group == comp->group &&
curr->priority == comp->priority &&
pf->id > (*tmp)->id))
continue;
break;
}
pf->tmp = *tmp;
*tmp = pf;
}
printf("ID\tGroup\tPrio\tAttr\tRule\n");
for (pf = list; pf != NULL; pf = pf->tmp) {
const struct rte_flow_item *item = pf->rule.pattern;
const struct rte_flow_action *action = pf->rule.actions;
const char *name;
printf("%" PRIu32 "\t%" PRIu32 "\t%" PRIu32 "\t%c%c%c\t",
pf->id,
pf->rule.attr->group,
pf->rule.attr->priority,
pf->rule.attr->ingress ? 'i' : '-',
pf->rule.attr->egress ? 'e' : '-',
pf->rule.attr->transfer ? 't' : '-');
while (item->type != RTE_FLOW_ITEM_TYPE_END) {
if ((uint32_t)item->type > INT_MAX)
name = "PMD_INTERNAL";
else if (rte_flow_conv(RTE_FLOW_CONV_OP_ITEM_NAME_PTR,
&name, sizeof(name),
(void *)(uintptr_t)item->type,
NULL) <= 0)
name = "[UNKNOWN]";
if (item->type != RTE_FLOW_ITEM_TYPE_VOID)
printf("%s ", name);
++item;
}
printf("=>");
while (action->type != RTE_FLOW_ACTION_TYPE_END) {
if ((uint32_t)action->type > INT_MAX)
name = "PMD_INTERNAL";
else if (rte_flow_conv(RTE_FLOW_CONV_OP_ACTION_NAME_PTR,
&name, sizeof(name),
(void *)(uintptr_t)action->type,
NULL) <= 0)
name = "[UNKNOWN]";
if (action->type != RTE_FLOW_ACTION_TYPE_VOID)
printf(" %s", name);
++action;
}
printf("\n");
}
}
/** Restrict ingress traffic to the defined flow rules. */
int
port_flow_isolate(portid_t port_id, int set)
{
struct rte_flow_error error;
/* Poisoning to make sure PMDs update it in case of error. */
memset(&error, 0x66, sizeof(error));
if (rte_flow_isolate(port_id, set, &error))
return port_flow_complain(&error);
printf("Ingress traffic on port %u is %s to the defined flow rules\n",
port_id,
set ? "now restricted" : "not restricted anymore");
return 0;
}
/*
* RX/TX ring descriptors display functions.
*/
int
rx_queue_id_is_invalid(queueid_t rxq_id)
{
if (rxq_id < nb_rxq)
return 0;
fprintf(stderr, "Invalid RX queue %d (must be < nb_rxq=%d)\n",
rxq_id, nb_rxq);
return 1;
}
int
tx_queue_id_is_invalid(queueid_t txq_id)
{
if (txq_id < nb_txq)
return 0;
fprintf(stderr, "Invalid TX queue %d (must be < nb_txq=%d)\n",
txq_id, nb_txq);
return 1;
}
static int
get_rx_ring_size(portid_t port_id, queueid_t rxq_id, uint16_t *ring_size)
{
struct rte_port *port = &ports[port_id];
struct rte_eth_rxq_info rx_qinfo;
int ret;
ret = rte_eth_rx_queue_info_get(port_id, rxq_id, &rx_qinfo);
if (ret == 0) {
*ring_size = rx_qinfo.nb_desc;
return ret;
}
if (ret != -ENOTSUP)
return ret;
/*
* If the rte_eth_rx_queue_info_get is not support for this PMD,
* ring_size stored in testpmd will be used for validity verification.
* When configure the rxq by rte_eth_rx_queue_setup with nb_rx_desc
* being 0, it will use a default value provided by PMDs to setup this
* rxq. If the default value is 0, it will use the
* RTE_ETH_DEV_FALLBACK_RX_RINGSIZE to setup this rxq.
*/
if (port->nb_rx_desc[rxq_id])
*ring_size = port->nb_rx_desc[rxq_id];
else if (port->dev_info.default_rxportconf.ring_size)
*ring_size = port->dev_info.default_rxportconf.ring_size;
else
*ring_size = RTE_ETH_DEV_FALLBACK_RX_RINGSIZE;
return 0;
}
static int
get_tx_ring_size(portid_t port_id, queueid_t txq_id, uint16_t *ring_size)
{
struct rte_port *port = &ports[port_id];
struct rte_eth_txq_info tx_qinfo;
int ret;
ret = rte_eth_tx_queue_info_get(port_id, txq_id, &tx_qinfo);
if (ret == 0) {
*ring_size = tx_qinfo.nb_desc;
return ret;
}
if (ret != -ENOTSUP)
return ret;
/*
* If the rte_eth_tx_queue_info_get is not support for this PMD,
* ring_size stored in testpmd will be used for validity verification.
* When configure the txq by rte_eth_tx_queue_setup with nb_tx_desc
* being 0, it will use a default value provided by PMDs to setup this
* txq. If the default value is 0, it will use the
* RTE_ETH_DEV_FALLBACK_TX_RINGSIZE to setup this txq.
*/
if (port->nb_tx_desc[txq_id])
*ring_size = port->nb_tx_desc[txq_id];
else if (port->dev_info.default_txportconf.ring_size)
*ring_size = port->dev_info.default_txportconf.ring_size;
else
*ring_size = RTE_ETH_DEV_FALLBACK_TX_RINGSIZE;
return 0;
}
static int
rx_desc_id_is_invalid(portid_t port_id, queueid_t rxq_id, uint16_t rxdesc_id)
{
uint16_t ring_size;
int ret;
ret = get_rx_ring_size(port_id, rxq_id, &ring_size);
if (ret)
return 1;
if (rxdesc_id < ring_size)
return 0;
fprintf(stderr, "Invalid RX descriptor %u (must be < ring_size=%u)\n",
rxdesc_id, ring_size);
return 1;
}
static int
tx_desc_id_is_invalid(portid_t port_id, queueid_t txq_id, uint16_t txdesc_id)
{
uint16_t ring_size;
int ret;
ret = get_tx_ring_size(port_id, txq_id, &ring_size);
if (ret)
return 1;
if (txdesc_id < ring_size)
return 0;
fprintf(stderr, "Invalid TX descriptor %u (must be < ring_size=%u)\n",
txdesc_id, ring_size);
return 1;
}
static const struct rte_memzone *
ring_dma_zone_lookup(const char *ring_name, portid_t port_id, uint16_t q_id)
{
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
snprintf(mz_name, sizeof(mz_name), "eth_p%d_q%d_%s",
port_id, q_id, ring_name);
mz = rte_memzone_lookup(mz_name);
if (mz == NULL)
fprintf(stderr,
"%s ring memory zoneof (port %d, queue %d) not found (zone name = %s\n",
ring_name, port_id, q_id, mz_name);
return mz;
}
union igb_ring_dword {
uint64_t dword;
struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
uint32_t lo;
uint32_t hi;
#else
uint32_t hi;
uint32_t lo;
#endif
} words;
};
struct igb_ring_desc_32_bytes {
union igb_ring_dword lo_dword;
union igb_ring_dword hi_dword;
union igb_ring_dword resv1;
union igb_ring_dword resv2;
};
struct igb_ring_desc_16_bytes {
union igb_ring_dword lo_dword;
union igb_ring_dword hi_dword;
};
static void
ring_rxd_display_dword(union igb_ring_dword dword)
{
printf(" 0x%08X - 0x%08X\n", (unsigned)dword.words.lo,
(unsigned)dword.words.hi);
}
static void
ring_rx_descriptor_display(const struct rte_memzone *ring_mz,
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
portid_t port_id,
#else
__rte_unused portid_t port_id,
#endif
uint16_t desc_id)
{
struct igb_ring_desc_16_bytes *ring =
(struct igb_ring_desc_16_bytes *)ring_mz->addr;
#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
int ret;
struct rte_eth_dev_info dev_info;
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0)
return;
if (strstr(dev_info.driver_name, "i40e") != NULL) {
/* 32 bytes RX descriptor, i40e only */
struct igb_ring_desc_32_bytes *ring =
(struct igb_ring_desc_32_bytes *)ring_mz->addr;
ring[desc_id].lo_dword.dword =
rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
ring_rxd_display_dword(ring[desc_id].lo_dword);
ring[desc_id].hi_dword.dword =
rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
ring_rxd_display_dword(ring[desc_id].hi_dword);
ring[desc_id].resv1.dword =
rte_le_to_cpu_64(ring[desc_id].resv1.dword);
ring_rxd_display_dword(ring[desc_id].resv1);
ring[desc_id].resv2.dword =
rte_le_to_cpu_64(ring[desc_id].resv2.dword);
ring_rxd_display_dword(ring[desc_id].resv2);
return;
}
#endif
/* 16 bytes RX descriptor */
ring[desc_id].lo_dword.dword =
rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
ring_rxd_display_dword(ring[desc_id].lo_dword);
ring[desc_id].hi_dword.dword =
rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
ring_rxd_display_dword(ring[desc_id].hi_dword);
}
static void
ring_tx_descriptor_display(const struct rte_memzone *ring_mz, uint16_t desc_id)
{
struct igb_ring_desc_16_bytes *ring;
struct igb_ring_desc_16_bytes txd;
ring = (struct igb_ring_desc_16_bytes *)ring_mz->addr;
txd.lo_dword.dword = rte_le_to_cpu_64(ring[desc_id].lo_dword.dword);
txd.hi_dword.dword = rte_le_to_cpu_64(ring[desc_id].hi_dword.dword);
printf(" 0x%08X - 0x%08X / 0x%08X - 0x%08X\n",
(unsigned)txd.lo_dword.words.lo,
(unsigned)txd.lo_dword.words.hi,
(unsigned)txd.hi_dword.words.lo,
(unsigned)txd.hi_dword.words.hi);
}
void
rx_ring_desc_display(portid_t port_id, queueid_t rxq_id, uint16_t rxd_id)
{
const struct rte_memzone *rx_mz;
if (rx_desc_id_is_invalid(port_id, rxq_id, rxd_id))
return;
rx_mz = ring_dma_zone_lookup("rx_ring", port_id, rxq_id);
if (rx_mz == NULL)
return;
ring_rx_descriptor_display(rx_mz, port_id, rxd_id);
}
void
tx_ring_desc_display(portid_t port_id, queueid_t txq_id, uint16_t txd_id)
{
const struct rte_memzone *tx_mz;
if (tx_desc_id_is_invalid(port_id, txq_id, txd_id))
return;
tx_mz = ring_dma_zone_lookup("tx_ring", port_id, txq_id);
if (tx_mz == NULL)
return;
ring_tx_descriptor_display(tx_mz, txd_id);
}
void
fwd_lcores_config_display(void)
{
lcoreid_t lc_id;
printf("List of forwarding lcores:");
for (lc_id = 0; lc_id < nb_cfg_lcores; lc_id++)
printf(" %2u", fwd_lcores_cpuids[lc_id]);
printf("\n");
}
void
rxtx_config_display(void)
{
portid_t pid;
queueid_t qid;
printf(" %s packet forwarding%s packets/burst=%d\n",
cur_fwd_eng->fwd_mode_name,
retry_enabled == 0 ? "" : " with retry",
nb_pkt_per_burst);
if (cur_fwd_eng == &tx_only_engine || cur_fwd_eng == &flow_gen_engine)
printf(" packet len=%u - nb packet segments=%d\n",
(unsigned)tx_pkt_length, (int) tx_pkt_nb_segs);
printf(" nb forwarding cores=%d - nb forwarding ports=%d\n",
nb_fwd_lcores, nb_fwd_ports);
RTE_ETH_FOREACH_DEV(pid) {
struct rte_eth_rxconf *rx_conf = &ports[pid].rxq[0].conf;
struct rte_eth_txconf *tx_conf = &ports[pid].txq[0].conf;
uint16_t *nb_rx_desc = &ports[pid].nb_rx_desc[0];
uint16_t *nb_tx_desc = &ports[pid].nb_tx_desc[0];
struct rte_eth_rxq_info rx_qinfo;
struct rte_eth_txq_info tx_qinfo;
uint16_t rx_free_thresh_tmp;
uint16_t tx_free_thresh_tmp;
uint16_t tx_rs_thresh_tmp;
uint16_t nb_rx_desc_tmp;
uint16_t nb_tx_desc_tmp;
uint64_t offloads_tmp;
uint8_t pthresh_tmp;
uint8_t hthresh_tmp;
uint8_t wthresh_tmp;
int32_t rc;
/* per port config */
printf(" port %d: RX queue number: %d Tx queue number: %d\n",
(unsigned int)pid, nb_rxq, nb_txq);
printf(" Rx offloads=0x%"PRIx64" Tx offloads=0x%"PRIx64"\n",
ports[pid].dev_conf.rxmode.offloads,
ports[pid].dev_conf.txmode.offloads);
/* per rx queue config only for first queue to be less verbose */
for (qid = 0; qid < 1; qid++) {
rc = rte_eth_rx_queue_info_get(pid, qid, &rx_qinfo);
if (rc) {
nb_rx_desc_tmp = nb_rx_desc[qid];
rx_free_thresh_tmp =
rx_conf[qid].rx_free_thresh;
pthresh_tmp = rx_conf[qid].rx_thresh.pthresh;
hthresh_tmp = rx_conf[qid].rx_thresh.hthresh;
wthresh_tmp = rx_conf[qid].rx_thresh.wthresh;
offloads_tmp = rx_conf[qid].offloads;
} else {
nb_rx_desc_tmp = rx_qinfo.nb_desc;
rx_free_thresh_tmp =
rx_qinfo.conf.rx_free_thresh;
pthresh_tmp = rx_qinfo.conf.rx_thresh.pthresh;
hthresh_tmp = rx_qinfo.conf.rx_thresh.hthresh;
wthresh_tmp = rx_qinfo.conf.rx_thresh.wthresh;
offloads_tmp = rx_qinfo.conf.offloads;
}
printf(" RX queue: %d\n", qid);
printf(" RX desc=%d - RX free threshold=%d\n",
nb_rx_desc_tmp, rx_free_thresh_tmp);
printf(" RX threshold registers: pthresh=%d hthresh=%d "
" wthresh=%d\n",
pthresh_tmp, hthresh_tmp, wthresh_tmp);
printf(" RX Offloads=0x%"PRIx64, offloads_tmp);
if (rx_conf->share_group > 0)
printf(" share_group=%u share_qid=%u",
rx_conf->share_group,
rx_conf->share_qid);
printf("\n");
}
/* per tx queue config only for first queue to be less verbose */
for (qid = 0; qid < 1; qid++) {
rc = rte_eth_tx_queue_info_get(pid, qid, &tx_qinfo);
if (rc) {
nb_tx_desc_tmp = nb_tx_desc[qid];
tx_free_thresh_tmp =
tx_conf[qid].tx_free_thresh;
pthresh_tmp = tx_conf[qid].tx_thresh.pthresh;
hthresh_tmp = tx_conf[qid].tx_thresh.hthresh;
wthresh_tmp = tx_conf[qid].tx_thresh.wthresh;
offloads_tmp = tx_conf[qid].offloads;
tx_rs_thresh_tmp = tx_conf[qid].tx_rs_thresh;
} else {
nb_tx_desc_tmp = tx_qinfo.nb_desc;
tx_free_thresh_tmp =
tx_qinfo.conf.tx_free_thresh;
pthresh_tmp = tx_qinfo.conf.tx_thresh.pthresh;
hthresh_tmp = tx_qinfo.conf.tx_thresh.hthresh;
wthresh_tmp = tx_qinfo.conf.tx_thresh.wthresh;
offloads_tmp = tx_qinfo.conf.offloads;
tx_rs_thresh_tmp = tx_qinfo.conf.tx_rs_thresh;
}
printf(" TX queue: %d\n", qid);
printf(" TX desc=%d - TX free threshold=%d\n",
nb_tx_desc_tmp, tx_free_thresh_tmp);
printf(" TX threshold registers: pthresh=%d hthresh=%d "
" wthresh=%d\n",
pthresh_tmp, hthresh_tmp, wthresh_tmp);
printf(" TX offloads=0x%"PRIx64" - TX RS bit threshold=%d\n",
offloads_tmp, tx_rs_thresh_tmp);
}
}
}
void
port_rss_reta_info(portid_t port_id,
struct rte_eth_rss_reta_entry64 *reta_conf,
uint16_t nb_entries)
{
uint16_t i, idx, shift;
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
ret = rte_eth_dev_rss_reta_query(port_id, reta_conf, nb_entries);
if (ret != 0) {
fprintf(stderr,
"Failed to get RSS RETA info, return code = %d\n",
ret);
return;
}
for (i = 0; i < nb_entries; i++) {
idx = i / RTE_ETH_RETA_GROUP_SIZE;
shift = i % RTE_ETH_RETA_GROUP_SIZE;
if (!(reta_conf[idx].mask & (1ULL << shift)))
continue;
printf("RSS RETA configuration: hash index=%u, queue=%u\n",
i, reta_conf[idx].reta[shift]);
}
}
/*
* Displays the RSS hash functions of a port, and, optionally, the RSS hash
* key of the port.
*/
void
port_rss_hash_conf_show(portid_t port_id, int show_rss_key)
{
struct rte_eth_rss_conf rss_conf = {0};
uint8_t rss_key[RSS_HASH_KEY_LENGTH];
uint64_t rss_hf;
uint8_t i;
int diag;
struct rte_eth_dev_info dev_info;
uint8_t hash_key_size;
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0)
return;
if (dev_info.hash_key_size > 0 &&
dev_info.hash_key_size <= sizeof(rss_key))
hash_key_size = dev_info.hash_key_size;
else {
fprintf(stderr,
"dev_info did not provide a valid hash key size\n");
return;
}
/* Get RSS hash key if asked to display it */
rss_conf.rss_key = (show_rss_key) ? rss_key : NULL;
rss_conf.rss_key_len = hash_key_size;
diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
if (diag != 0) {
switch (diag) {
case -ENODEV:
fprintf(stderr, "port index %d invalid\n", port_id);
break;
case -ENOTSUP:
fprintf(stderr, "operation not supported by device\n");
break;
default:
fprintf(stderr, "operation failed - diag=%d\n", diag);
break;
}
return;
}
rss_hf = rss_conf.rss_hf;
if (rss_hf == 0) {
printf("RSS disabled\n");
return;
}
printf("RSS functions:\n");
rss_types_display(rss_hf, TESTPMD_RSS_TYPES_CHAR_NUM_PER_LINE);
if (!show_rss_key)
return;
printf("RSS key:\n");
for (i = 0; i < hash_key_size; i++)
printf("%02X", rss_key[i]);
printf("\n");
}
void
port_rss_hash_key_update(portid_t port_id, char rss_type[], uint8_t *hash_key,
uint8_t hash_key_len)
{
struct rte_eth_rss_conf rss_conf;
int diag;
rss_conf.rss_key = NULL;
rss_conf.rss_key_len = 0;
rss_conf.rss_hf = str_to_rsstypes(rss_type);
diag = rte_eth_dev_rss_hash_conf_get(port_id, &rss_conf);
if (diag == 0) {
rss_conf.rss_key = hash_key;
rss_conf.rss_key_len = hash_key_len;
diag = rte_eth_dev_rss_hash_update(port_id, &rss_conf);
}
if (diag == 0)
return;
switch (diag) {
case -ENODEV:
fprintf(stderr, "port index %d invalid\n", port_id);
break;
case -ENOTSUP:
fprintf(stderr, "operation not supported by device\n");
break;
default:
fprintf(stderr, "operation failed - diag=%d\n", diag);
break;
}
}
/*
* Check whether a shared rxq scheduled on other lcores.
*/
static bool
fwd_stream_on_other_lcores(uint16_t domain_id, lcoreid_t src_lc,
portid_t src_port, queueid_t src_rxq,
uint32_t share_group, queueid_t share_rxq)
{
streamid_t sm_id;
streamid_t nb_fs_per_lcore;
lcoreid_t nb_fc;
lcoreid_t lc_id;
struct fwd_stream *fs;
struct rte_port *port;
struct rte_eth_dev_info *dev_info;
struct rte_eth_rxconf *rxq_conf;
nb_fc = cur_fwd_config.nb_fwd_lcores;
/* Check remaining cores. */
for (lc_id = src_lc + 1; lc_id < nb_fc; lc_id++) {
sm_id = fwd_lcores[lc_id]->stream_idx;
nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb;
for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore;
sm_id++) {
fs = fwd_streams[sm_id];
port = &ports[fs->rx_port];
dev_info = &port->dev_info;
rxq_conf = &port->rxq[fs->rx_queue].conf;
if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE)
== 0 || rxq_conf->share_group == 0)
/* Not shared rxq. */
continue;
if (domain_id != port->dev_info.switch_info.domain_id)
continue;
if (rxq_conf->share_group != share_group)
continue;
if (rxq_conf->share_qid != share_rxq)
continue;
printf("Shared Rx queue group %u queue %hu can't be scheduled on different cores:\n",
share_group, share_rxq);
printf(" lcore %hhu Port %hu queue %hu\n",
src_lc, src_port, src_rxq);
printf(" lcore %hhu Port %hu queue %hu\n",
lc_id, fs->rx_port, fs->rx_queue);
printf("Please use --nb-cores=%hu to limit number of forwarding cores\n",
nb_rxq);
return true;
}
}
return false;
}
/*
* Check shared rxq configuration.
*
* Shared group must not being scheduled on different core.
*/
bool
pkt_fwd_shared_rxq_check(void)
{
streamid_t sm_id;
streamid_t nb_fs_per_lcore;
lcoreid_t nb_fc;
lcoreid_t lc_id;
struct fwd_stream *fs;
uint16_t domain_id;
struct rte_port *port;
struct rte_eth_dev_info *dev_info;
struct rte_eth_rxconf *rxq_conf;
if (rxq_share == 0)
return true;
nb_fc = cur_fwd_config.nb_fwd_lcores;
/*
* Check streams on each core, make sure the same switch domain +
* group + queue doesn't get scheduled on other cores.
*/
for (lc_id = 0; lc_id < nb_fc; lc_id++) {
sm_id = fwd_lcores[lc_id]->stream_idx;
nb_fs_per_lcore = fwd_lcores[lc_id]->stream_nb;
for (; sm_id < fwd_lcores[lc_id]->stream_idx + nb_fs_per_lcore;
sm_id++) {
fs = fwd_streams[sm_id];
/* Update lcore info stream being scheduled. */
fs->lcore = fwd_lcores[lc_id];
port = &ports[fs->rx_port];
dev_info = &port->dev_info;
rxq_conf = &port->rxq[fs->rx_queue].conf;
if ((dev_info->dev_capa & RTE_ETH_DEV_CAPA_RXQ_SHARE)
== 0 || rxq_conf->share_group == 0)
/* Not shared rxq. */
continue;
/* Check shared rxq not scheduled on remaining cores. */
domain_id = port->dev_info.switch_info.domain_id;
if (fwd_stream_on_other_lcores(domain_id, lc_id,
fs->rx_port,
fs->rx_queue,
rxq_conf->share_group,
rxq_conf->share_qid))
return false;
}
}
return true;
}
/*
* Setup forwarding configuration for each logical core.
*/
static void
setup_fwd_config_of_each_lcore(struct fwd_config *cfg)
{
streamid_t nb_fs_per_lcore;
streamid_t nb_fs;
streamid_t sm_id;
lcoreid_t nb_extra;
lcoreid_t nb_fc;
lcoreid_t nb_lc;
lcoreid_t lc_id;
nb_fs = cfg->nb_fwd_streams;
nb_fc = cfg->nb_fwd_lcores;
if (nb_fs <= nb_fc) {
nb_fs_per_lcore = 1;
nb_extra = 0;
} else {
nb_fs_per_lcore = (streamid_t) (nb_fs / nb_fc);
nb_extra = (lcoreid_t) (nb_fs % nb_fc);
}
nb_lc = (lcoreid_t) (nb_fc - nb_extra);
sm_id = 0;
for (lc_id = 0; lc_id < nb_lc; lc_id++) {
fwd_lcores[lc_id]->stream_idx = sm_id;
fwd_lcores[lc_id]->stream_nb = nb_fs_per_lcore;
sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
}
/*
* Assign extra remaining streams, if any.
*/
nb_fs_per_lcore = (streamid_t) (nb_fs_per_lcore + 1);
for (lc_id = 0; lc_id < nb_extra; lc_id++) {
fwd_lcores[nb_lc + lc_id]->stream_idx = sm_id;
fwd_lcores[nb_lc + lc_id]->stream_nb = nb_fs_per_lcore;
sm_id = (streamid_t) (sm_id + nb_fs_per_lcore);
}
}
static portid_t
fwd_topology_tx_port_get(portid_t rxp)
{
static int warning_once = 1;
RTE_ASSERT(rxp < cur_fwd_config.nb_fwd_ports);
switch (port_topology) {
default:
case PORT_TOPOLOGY_PAIRED:
if ((rxp & 0x1) == 0) {
if (rxp + 1 < cur_fwd_config.nb_fwd_ports)
return rxp + 1;
if (warning_once) {
fprintf(stderr,
"\nWarning! port-topology=paired and odd forward ports number, the last port will pair with itself.\n\n");
warning_once = 0;
}
return rxp;
}
return rxp - 1;
case PORT_TOPOLOGY_CHAINED:
return (rxp + 1) % cur_fwd_config.nb_fwd_ports;
case PORT_TOPOLOGY_LOOP:
return rxp;
}
}
static void
simple_fwd_config_setup(void)
{
portid_t i;
cur_fwd_config.nb_fwd_ports = (portid_t) nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) cur_fwd_config.nb_fwd_ports;
/* reinitialize forwarding streams */
init_fwd_streams();
/*
* In the simple forwarding test, the number of forwarding cores
* must be lower or equal to the number of forwarding ports.
*/
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
if (cur_fwd_config.nb_fwd_lcores > cur_fwd_config.nb_fwd_ports)
cur_fwd_config.nb_fwd_lcores =
(lcoreid_t) cur_fwd_config.nb_fwd_ports;
setup_fwd_config_of_each_lcore(&cur_fwd_config);
for (i = 0; i < cur_fwd_config.nb_fwd_ports; i++) {
fwd_streams[i]->rx_port = fwd_ports_ids[i];
fwd_streams[i]->rx_queue = 0;
fwd_streams[i]->tx_port =
fwd_ports_ids[fwd_topology_tx_port_get(i)];
fwd_streams[i]->tx_queue = 0;
fwd_streams[i]->peer_addr = fwd_streams[i]->tx_port;
fwd_streams[i]->retry_enabled = retry_enabled;
}
}
/**
* For the RSS forwarding test all streams distributed over lcores. Each stream
* being composed of a RX queue to poll on a RX port for input messages,
* associated with a TX queue of a TX port where to send forwarded packets.
*/
static void
rss_fwd_config_setup(void)
{
portid_t rxp;
portid_t txp;
queueid_t rxq;
queueid_t nb_q;
streamid_t sm_id;
int start;
int end;
nb_q = nb_rxq;
if (nb_q > nb_txq)
nb_q = nb_txq;
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) (nb_q * cur_fwd_config.nb_fwd_ports);
if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
cur_fwd_config.nb_fwd_lcores =
(lcoreid_t)cur_fwd_config.nb_fwd_streams;
/* reinitialize forwarding streams */
init_fwd_streams();
setup_fwd_config_of_each_lcore(&cur_fwd_config);
if (proc_id > 0 && nb_q % num_procs != 0)
printf("Warning! queue numbers should be multiple of processes, or packet loss will happen.\n");
/**
* In multi-process, All queues are allocated to different
* processes based on num_procs and proc_id. For example:
* if supports 4 queues(nb_q), 2 processes(num_procs),
* the 0~1 queue for primary process.
* the 2~3 queue for secondary process.
*/
start = proc_id * nb_q / num_procs;
end = start + nb_q / num_procs;
rxp = 0;
rxq = start;
for (sm_id = 0; sm_id < cur_fwd_config.nb_fwd_streams; sm_id++) {
struct fwd_stream *fs;
fs = fwd_streams[sm_id];
txp = fwd_topology_tx_port_get(rxp);
fs->rx_port = fwd_ports_ids[rxp];
fs->rx_queue = rxq;
fs->tx_port = fwd_ports_ids[txp];
fs->tx_queue = rxq;
fs->peer_addr = fs->tx_port;
fs->retry_enabled = retry_enabled;
rxp++;
if (rxp < nb_fwd_ports)
continue;
rxp = 0;
rxq++;
if (rxq >= end)
rxq = start;
}
}
static uint16_t
get_fwd_port_total_tc_num(void)
{
struct rte_eth_dcb_info dcb_info;
uint16_t total_tc_num = 0;
unsigned int i;
for (i = 0; i < nb_fwd_ports; i++) {
(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[i], &dcb_info);
total_tc_num += dcb_info.nb_tcs;
}
return total_tc_num;
}
/**
* For the DCB forwarding test, each core is assigned on each traffic class.
*
* Each core is assigned a multi-stream, each stream being composed of
* a RX queue to poll on a RX port for input messages, associated with
* a TX queue of a TX port where to send forwarded packets. All RX and
* TX queues are mapping to the same traffic class.
* If VMDQ and DCB co-exist, each traffic class on different POOLs share
* the same core
*/
static void
dcb_fwd_config_setup(void)
{
struct rte_eth_dcb_info rxp_dcb_info, txp_dcb_info;
portid_t txp, rxp = 0;
queueid_t txq, rxq = 0;
lcoreid_t lc_id;
uint16_t nb_rx_queue, nb_tx_queue;
uint16_t i, j, k, sm_id = 0;
uint16_t total_tc_num;
struct rte_port *port;
uint8_t tc = 0;
portid_t pid;
int ret;
/*
* The fwd_config_setup() is called when the port is RTE_PORT_STARTED
* or RTE_PORT_STOPPED.
*
* Re-configure ports to get updated mapping between tc and queue in
* case the queue number of the port is changed. Skip for started ports
* since modifying queue number and calling dev_configure need to stop
* ports first.
*/
for (pid = 0; pid < nb_fwd_ports; pid++) {
if (port_is_started(pid) == 1)
continue;
port = &ports[pid];
ret = rte_eth_dev_configure(pid, nb_rxq, nb_txq,
&port->dev_conf);
if (ret < 0) {
fprintf(stderr,
"Failed to re-configure port %d, ret = %d.\n",
pid, ret);
return;
}
}
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
total_tc_num = get_fwd_port_total_tc_num();
if (cur_fwd_config.nb_fwd_lcores > total_tc_num)
cur_fwd_config.nb_fwd_lcores = total_tc_num;
/* reinitialize forwarding streams */
init_fwd_streams();
sm_id = 0;
txp = 1;
/* get the dcb info on the first RX and TX ports */
(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
(void)rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
fwd_lcores[lc_id]->stream_nb = 0;
fwd_lcores[lc_id]->stream_idx = sm_id;
for (i = 0; i < RTE_ETH_MAX_VMDQ_POOL; i++) {
/* if the nb_queue is zero, means this tc is
* not enabled on the POOL
*/
if (rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue == 0)
break;
k = fwd_lcores[lc_id]->stream_nb +
fwd_lcores[lc_id]->stream_idx;
rxq = rxp_dcb_info.tc_queue.tc_rxq[i][tc].base;
txq = txp_dcb_info.tc_queue.tc_txq[i][tc].base;
nb_rx_queue = txp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
nb_tx_queue = txp_dcb_info.tc_queue.tc_txq[i][tc].nb_queue;
for (j = 0; j < nb_rx_queue; j++) {
struct fwd_stream *fs;
fs = fwd_streams[k + j];
fs->rx_port = fwd_ports_ids[rxp];
fs->rx_queue = rxq + j;
fs->tx_port = fwd_ports_ids[txp];
fs->tx_queue = txq + j % nb_tx_queue;
fs->peer_addr = fs->tx_port;
fs->retry_enabled = retry_enabled;
}
fwd_lcores[lc_id]->stream_nb +=
rxp_dcb_info.tc_queue.tc_rxq[i][tc].nb_queue;
}
sm_id = (streamid_t) (sm_id + fwd_lcores[lc_id]->stream_nb);
tc++;
if (tc < rxp_dcb_info.nb_tcs)
continue;
/* Restart from TC 0 on next RX port */
tc = 0;
if (numa_support && (nb_fwd_ports <= (nb_ports >> 1)))
rxp = (portid_t)
(rxp + ((nb_ports >> 1) / nb_fwd_ports));
else
rxp++;
if (rxp >= nb_fwd_ports)
return;
/* get the dcb information on next RX and TX ports */
if ((rxp & 0x1) == 0)
txp = (portid_t) (rxp + 1);
else
txp = (portid_t) (rxp - 1);
rte_eth_dev_get_dcb_info(fwd_ports_ids[rxp], &rxp_dcb_info);
rte_eth_dev_get_dcb_info(fwd_ports_ids[txp], &txp_dcb_info);
}
}
static void
icmp_echo_config_setup(void)
{
portid_t rxp;
queueid_t rxq;
lcoreid_t lc_id;
uint16_t sm_id;
if ((nb_txq * nb_fwd_ports) < nb_fwd_lcores)
cur_fwd_config.nb_fwd_lcores = (lcoreid_t)
(nb_txq * nb_fwd_ports);
else
cur_fwd_config.nb_fwd_lcores = (lcoreid_t) nb_fwd_lcores;
cur_fwd_config.nb_fwd_ports = nb_fwd_ports;
cur_fwd_config.nb_fwd_streams =
(streamid_t) (nb_rxq * cur_fwd_config.nb_fwd_ports);
if (cur_fwd_config.nb_fwd_streams < cur_fwd_config.nb_fwd_lcores)
cur_fwd_config.nb_fwd_lcores =
(lcoreid_t)cur_fwd_config.nb_fwd_streams;
if (verbose_level > 0) {
printf("%s fwd_cores=%d fwd_ports=%d fwd_streams=%d\n",
__FUNCTION__,
cur_fwd_config.nb_fwd_lcores,
cur_fwd_config.nb_fwd_ports,
cur_fwd_config.nb_fwd_streams);
}
/* reinitialize forwarding streams */
init_fwd_streams();
setup_fwd_config_of_each_lcore(&cur_fwd_config);
rxp = 0; rxq = 0;
for (lc_id = 0; lc_id < cur_fwd_config.nb_fwd_lcores; lc_id++) {
if (verbose_level > 0)
printf(" core=%d: \n", lc_id);
for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
struct fwd_stream *fs;
fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
fs->rx_port = fwd_ports_ids[rxp];
fs->rx_queue = rxq;
fs->tx_port = fs->rx_port;
fs->tx_queue = rxq;
fs->peer_addr = fs->tx_port;
fs->retry_enabled = retry_enabled;
if (verbose_level > 0)
printf(" stream=%d port=%d rxq=%d txq=%d\n",
sm_id, fs->rx_port, fs->rx_queue,
fs->tx_queue);
rxq = (queueid_t) (rxq + 1);
if (rxq == nb_rxq) {
rxq = 0;
rxp = (portid_t) (rxp + 1);
}
}
}
}
void
fwd_config_setup(void)
{
struct rte_port *port;
portid_t pt_id;
unsigned int i;
cur_fwd_config.fwd_eng = cur_fwd_eng;
if (strcmp(cur_fwd_eng->fwd_mode_name, "icmpecho") == 0) {
icmp_echo_config_setup();
return;
}
if ((nb_rxq > 1) && (nb_txq > 1)){
if (dcb_config) {
for (i = 0; i < nb_fwd_ports; i++) {
pt_id = fwd_ports_ids[i];
port = &ports[pt_id];
if (!port->dcb_flag) {
fprintf(stderr,
"In DCB mode, all forwarding ports must be configured in this mode.\n");
return;
}
}
if (nb_fwd_lcores == 1) {
fprintf(stderr,
"In DCB mode,the nb forwarding cores should be larger than 1.\n");
return;
}
dcb_fwd_config_setup();
} else
rss_fwd_config_setup();
}
else
simple_fwd_config_setup();
}
static const char *
mp_alloc_to_str(uint8_t mode)
{
switch (mode) {
case MP_ALLOC_NATIVE:
return "native";
case MP_ALLOC_ANON:
return "anon";
case MP_ALLOC_XMEM:
return "xmem";
case MP_ALLOC_XMEM_HUGE:
return "xmemhuge";
case MP_ALLOC_XBUF:
return "xbuf";
default:
return "invalid";
}
}
void
pkt_fwd_config_display(struct fwd_config *cfg)
{
struct fwd_stream *fs;
lcoreid_t lc_id;
streamid_t sm_id;
printf("%s packet forwarding%s - ports=%d - cores=%d - streams=%d - "
"NUMA support %s, MP allocation mode: %s\n",
cfg->fwd_eng->fwd_mode_name,
retry_enabled == 0 ? "" : " with retry",
cfg->nb_fwd_ports, cfg->nb_fwd_lcores, cfg->nb_fwd_streams,
numa_support == 1 ? "enabled" : "disabled",
mp_alloc_to_str(mp_alloc_type));
if (retry_enabled)
printf("TX retry num: %u, delay between TX retries: %uus\n",
burst_tx_retry_num, burst_tx_delay_time);
for (lc_id = 0; lc_id < cfg->nb_fwd_lcores; lc_id++) {
printf("Logical Core %u (socket %u) forwards packets on "
"%d streams:",
fwd_lcores_cpuids[lc_id],
rte_lcore_to_socket_id(fwd_lcores_cpuids[lc_id]),
fwd_lcores[lc_id]->stream_nb);
for (sm_id = 0; sm_id < fwd_lcores[lc_id]->stream_nb; sm_id++) {
fs = fwd_streams[fwd_lcores[lc_id]->stream_idx + sm_id];
printf("\n RX P=%d/Q=%d (socket %u) -> TX "
"P=%d/Q=%d (socket %u) ",
fs->rx_port, fs->rx_queue,
ports[fs->rx_port].socket_id,
fs->tx_port, fs->tx_queue,
ports[fs->tx_port].socket_id);
print_ethaddr("peer=",
&peer_eth_addrs[fs->peer_addr]);
}
printf("\n");
}
printf("\n");
}
void
set_fwd_eth_peer(portid_t port_id, char *peer_addr)
{
struct rte_ether_addr new_peer_addr;
if (!rte_eth_dev_is_valid_port(port_id)) {
fprintf(stderr, "Error: Invalid port number %i\n", port_id);
return;
}
if (rte_ether_unformat_addr(peer_addr, &new_peer_addr) < 0) {
fprintf(stderr, "Error: Invalid ethernet address: %s\n",
peer_addr);
return;
}
peer_eth_addrs[port_id] = new_peer_addr;
}
int
set_fwd_lcores_list(unsigned int *lcorelist, unsigned int nb_lc)
{
unsigned int i;
unsigned int lcore_cpuid;
int record_now;
record_now = 0;
again:
for (i = 0; i < nb_lc; i++) {
lcore_cpuid = lcorelist[i];
if (! rte_lcore_is_enabled(lcore_cpuid)) {
fprintf(stderr, "lcore %u not enabled\n", lcore_cpuid);
return -1;
}
if (lcore_cpuid == rte_get_main_lcore()) {
fprintf(stderr,
"lcore %u cannot be masked on for running packet forwarding, which is the main lcore and reserved for command line parsing only\n",
lcore_cpuid);
return -1;
}
if (record_now)
fwd_lcores_cpuids[i] = lcore_cpuid;
}
if (record_now == 0) {
record_now = 1;
goto again;
}
nb_cfg_lcores = (lcoreid_t) nb_lc;
if (nb_fwd_lcores != (lcoreid_t) nb_lc) {
printf("previous number of forwarding cores %u - changed to "
"number of configured cores %u\n",
(unsigned int) nb_fwd_lcores, nb_lc);
nb_fwd_lcores = (lcoreid_t) nb_lc;
}
return 0;
}
int
set_fwd_lcores_mask(uint64_t lcoremask)
{
unsigned int lcorelist[64];
unsigned int nb_lc;
unsigned int i;
if (lcoremask == 0) {
fprintf(stderr, "Invalid NULL mask of cores\n");
return -1;
}
nb_lc = 0;
for (i = 0; i < 64; i++) {
if (! ((uint64_t)(1ULL << i) & lcoremask))
continue;
lcorelist[nb_lc++] = i;
}
return set_fwd_lcores_list(lcorelist, nb_lc);
}
void
set_fwd_lcores_number(uint16_t nb_lc)
{
if (test_done == 0) {
fprintf(stderr, "Please stop forwarding first\n");
return;
}
if (nb_lc > nb_cfg_lcores) {
fprintf(stderr,
"nb fwd cores %u > %u (max. number of configured lcores) - ignored\n",
(unsigned int) nb_lc, (unsigned int) nb_cfg_lcores);
return;
}
nb_fwd_lcores = (lcoreid_t) nb_lc;
printf("Number of forwarding cores set to %u\n",
(unsigned int) nb_fwd_lcores);
}
void
set_fwd_ports_list(unsigned int *portlist, unsigned int nb_pt)
{
unsigned int i;
portid_t port_id;
int record_now;
record_now = 0;
again:
for (i = 0; i < nb_pt; i++) {
port_id = (portid_t) portlist[i];
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (record_now)
fwd_ports_ids[i] = port_id;
}
if (record_now == 0) {
record_now = 1;
goto again;
}
nb_cfg_ports = (portid_t) nb_pt;
if (nb_fwd_ports != (portid_t) nb_pt) {
printf("previous number of forwarding ports %u - changed to "
"number of configured ports %u\n",
(unsigned int) nb_fwd_ports, nb_pt);
nb_fwd_ports = (portid_t) nb_pt;
}
}
/**
* Parse the user input and obtain the list of forwarding ports
*
* @param[in] list
* String containing the user input. User can specify
* in these formats 1,3,5 or 1-3 or 1-2,5 or 3,5-6.
* For example, if the user wants to use all the available
* 4 ports in his system, then the input can be 0-3 or 0,1,2,3.
* If the user wants to use only the ports 1,2 then the input
* is 1,2.
* valid characters are '-' and ','
* @param[out] values
* This array will be filled with a list of port IDs
* based on the user input
* Note that duplicate entries are discarded and only the first
* count entries in this array are port IDs and all the rest
* will contain default values
* @param[in] maxsize
* This parameter denotes 2 things
* 1) Number of elements in the values array
* 2) Maximum value of each element in the values array
* @return
* On success, returns total count of parsed port IDs
* On failure, returns 0
*/
static unsigned int
parse_port_list(const char *list, unsigned int *values, unsigned int maxsize)
{
unsigned int count = 0;
char *end = NULL;
int min, max;
int value, i;
unsigned int marked[maxsize];
if (list == NULL || values == NULL)
return 0;
for (i = 0; i < (int)maxsize; i++)
marked[i] = 0;
min = INT_MAX;
do {
/*Remove the blank spaces if any*/
while (isblank(*list))
list++;
if (*list == '\0')
break;
errno = 0;
value = strtol(list, &end, 10);
if (errno || end == NULL)
return 0;
if (value < 0 || value >= (int)maxsize)
return 0;
while (isblank(*end))
end++;
if (*end == '-' && min == INT_MAX) {
min = value;
} else if ((*end == ',') || (*end == '\0')) {
max = value;
if (min == INT_MAX)
min = value;
for (i = min; i <= max; i++) {
if (count < maxsize) {
if (marked[i])
continue;
values[count] = i;
marked[i] = 1;
count++;
}
}
min = INT_MAX;
} else
return 0;
list = end + 1;
} while (*end != '\0');
return count;
}
void
parse_fwd_portlist(const char *portlist)
{
unsigned int portcount;
unsigned int portindex[RTE_MAX_ETHPORTS];
unsigned int i, valid_port_count = 0;
portcount = parse_port_list(portlist, portindex, RTE_MAX_ETHPORTS);
if (!portcount)
rte_exit(EXIT_FAILURE, "Invalid fwd port list\n");
/*
* Here we verify the validity of the ports
* and thereby calculate the total number of
* valid ports
*/
for (i = 0; i < portcount && i < RTE_DIM(portindex); i++) {
if (rte_eth_dev_is_valid_port(portindex[i])) {
portindex[valid_port_count] = portindex[i];
valid_port_count++;
}
}
set_fwd_ports_list(portindex, valid_port_count);
}
void
set_fwd_ports_mask(uint64_t portmask)
{
unsigned int portlist[64];
unsigned int nb_pt;
unsigned int i;
if (portmask == 0) {
fprintf(stderr, "Invalid NULL mask of ports\n");
return;
}
nb_pt = 0;
RTE_ETH_FOREACH_DEV(i) {
if (! ((uint64_t)(1ULL << i) & portmask))
continue;
portlist[nb_pt++] = i;
}
set_fwd_ports_list(portlist, nb_pt);
}
void
set_fwd_ports_number(uint16_t nb_pt)
{
if (nb_pt > nb_cfg_ports) {
fprintf(stderr,
"nb fwd ports %u > %u (number of configured ports) - ignored\n",
(unsigned int) nb_pt, (unsigned int) nb_cfg_ports);
return;
}
nb_fwd_ports = (portid_t) nb_pt;
printf("Number of forwarding ports set to %u\n",
(unsigned int) nb_fwd_ports);
}
int
port_is_forwarding(portid_t port_id)
{
unsigned int i;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return -1;
for (i = 0; i < nb_fwd_ports; i++) {
if (fwd_ports_ids[i] == port_id)
return 1;
}
return 0;
}
void
set_nb_pkt_per_burst(uint16_t nb)
{
if (nb > MAX_PKT_BURST) {
fprintf(stderr,
"nb pkt per burst: %u > %u (maximum packet per burst) ignored\n",
(unsigned int) nb, (unsigned int) MAX_PKT_BURST);
return;
}
nb_pkt_per_burst = nb;
printf("Number of packets per burst set to %u\n",
(unsigned int) nb_pkt_per_burst);
}
static const char *
tx_split_get_name(enum tx_pkt_split split)
{
uint32_t i;
for (i = 0; i != RTE_DIM(tx_split_name); i++) {
if (tx_split_name[i].split == split)
return tx_split_name[i].name;
}
return NULL;
}
void
set_tx_pkt_split(const char *name)
{
uint32_t i;
for (i = 0; i != RTE_DIM(tx_split_name); i++) {
if (strcmp(tx_split_name[i].name, name) == 0) {
tx_pkt_split = tx_split_name[i].split;
return;
}
}
fprintf(stderr, "unknown value: \"%s\"\n", name);
}
int
parse_fec_mode(const char *name, uint32_t *fec_capa)
{
uint8_t i;
for (i = 0; i < RTE_DIM(fec_mode_name); i++) {
if (strcmp(fec_mode_name[i].name, name) == 0) {
*fec_capa =
RTE_ETH_FEC_MODE_TO_CAPA(fec_mode_name[i].mode);
return 0;
}
}
return -1;
}
void
show_fec_capability(unsigned int num, struct rte_eth_fec_capa *speed_fec_capa)
{
unsigned int i, j;
printf("FEC capabilities:\n");
for (i = 0; i < num; i++) {
printf("%s : ",
rte_eth_link_speed_to_str(speed_fec_capa[i].speed));
for (j = 0; j < RTE_DIM(fec_mode_name); j++) {
if (RTE_ETH_FEC_MODE_TO_CAPA(j) &
speed_fec_capa[i].capa)
printf("%s ", fec_mode_name[j].name);
}
printf("\n");
}
}
void
show_rx_pkt_offsets(void)
{
uint32_t i, n;
n = rx_pkt_nb_offs;
printf("Number of offsets: %u\n", n);
if (n) {
printf("Segment offsets: ");
for (i = 0; i != n - 1; i++)
printf("%hu,", rx_pkt_seg_offsets[i]);
printf("%hu\n", rx_pkt_seg_lengths[i]);
}
}
void
set_rx_pkt_offsets(unsigned int *seg_offsets, unsigned int nb_offs)
{
unsigned int i;
if (nb_offs >= MAX_SEGS_BUFFER_SPLIT) {
printf("nb segments per RX packets=%u >= "
"MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_offs);
return;
}
/*
* No extra check here, the segment length will be checked by PMD
* in the extended queue setup.
*/
for (i = 0; i < nb_offs; i++) {
if (seg_offsets[i] >= UINT16_MAX) {
printf("offset[%u]=%u > UINT16_MAX - give up\n",
i, seg_offsets[i]);
return;
}
}
for (i = 0; i < nb_offs; i++)
rx_pkt_seg_offsets[i] = (uint16_t) seg_offsets[i];
rx_pkt_nb_offs = (uint8_t) nb_offs;
}
void
show_rx_pkt_segments(void)
{
uint32_t i, n;
n = rx_pkt_nb_segs;
printf("Number of segments: %u\n", n);
if (n) {
printf("Segment sizes: ");
for (i = 0; i != n - 1; i++)
printf("%hu,", rx_pkt_seg_lengths[i]);
printf("%hu\n", rx_pkt_seg_lengths[i]);
}
}
void
set_rx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
{
unsigned int i;
if (nb_segs >= MAX_SEGS_BUFFER_SPLIT) {
printf("nb segments per RX packets=%u >= "
"MAX_SEGS_BUFFER_SPLIT - ignored\n", nb_segs);
return;
}
/*
* No extra check here, the segment length will be checked by PMD
* in the extended queue setup.
*/
for (i = 0; i < nb_segs; i++) {
if (seg_lengths[i] >= UINT16_MAX) {
printf("length[%u]=%u > UINT16_MAX - give up\n",
i, seg_lengths[i]);
return;
}
}
for (i = 0; i < nb_segs; i++)
rx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
rx_pkt_nb_segs = (uint8_t) nb_segs;
}
void
show_tx_pkt_segments(void)
{
uint32_t i, n;
const char *split;
n = tx_pkt_nb_segs;
split = tx_split_get_name(tx_pkt_split);
printf("Number of segments: %u\n", n);
printf("Segment sizes: ");
for (i = 0; i != n - 1; i++)
printf("%hu,", tx_pkt_seg_lengths[i]);
printf("%hu\n", tx_pkt_seg_lengths[i]);
printf("Split packet: %s\n", split);
}
static bool
nb_segs_is_invalid(unsigned int nb_segs)
{
uint16_t ring_size;
uint16_t queue_id;
uint16_t port_id;
int ret;
RTE_ETH_FOREACH_DEV(port_id) {
for (queue_id = 0; queue_id < nb_txq; queue_id++) {
ret = get_tx_ring_size(port_id, queue_id, &ring_size);
if (ret) {
/* Port may not be initialized yet, can't say
* the port is invalid in this stage.
*/
continue;
}
if (ring_size < nb_segs) {
printf("nb segments per TX packets=%u >= TX "
"queue(%u) ring_size=%u - txpkts ignored\n",
nb_segs, queue_id, ring_size);
return true;
}
}
}
return false;
}
void
set_tx_pkt_segments(unsigned int *seg_lengths, unsigned int nb_segs)
{
uint16_t tx_pkt_len;
unsigned int i;
/*
* For single segment settings failed check is ignored.
* It is a very basic capability to send the single segment
* packets, suppose it is always supported.
*/
if (nb_segs > 1 && nb_segs_is_invalid(nb_segs)) {
fprintf(stderr,
"Tx segment size(%u) is not supported - txpkts ignored\n",
nb_segs);
return;
}
if (nb_segs > RTE_MAX_SEGS_PER_PKT) {
fprintf(stderr,
"Tx segment size(%u) is bigger than max number of segment(%u)\n",
nb_segs, RTE_MAX_SEGS_PER_PKT);
return;
}
/*
* Check that each segment length is greater or equal than
* the mbuf data size.
* Check also that the total packet length is greater or equal than the
* size of an empty UDP/IP packet (sizeof(struct rte_ether_hdr) +
* 20 + 8).
*/
tx_pkt_len = 0;
for (i = 0; i < nb_segs; i++) {
if (seg_lengths[i] > mbuf_data_size[0]) {
fprintf(stderr,
"length[%u]=%u > mbuf_data_size=%u - give up\n",
i, seg_lengths[i], mbuf_data_size[0]);
return;
}
tx_pkt_len = (uint16_t)(tx_pkt_len + seg_lengths[i]);
}
if (tx_pkt_len < (sizeof(struct rte_ether_hdr) + 20 + 8)) {
fprintf(stderr, "total packet length=%u < %d - give up\n",
(unsigned) tx_pkt_len,
(int)(sizeof(struct rte_ether_hdr) + 20 + 8));
return;
}
for (i = 0; i < nb_segs; i++)
tx_pkt_seg_lengths[i] = (uint16_t) seg_lengths[i];
tx_pkt_length = tx_pkt_len;
tx_pkt_nb_segs = (uint8_t) nb_segs;
}
void
show_tx_pkt_times(void)
{
printf("Interburst gap: %u\n", tx_pkt_times_inter);
printf("Intraburst gap: %u\n", tx_pkt_times_intra);
}
void
set_tx_pkt_times(unsigned int *tx_times)
{
tx_pkt_times_inter = tx_times[0];
tx_pkt_times_intra = tx_times[1];
}
#ifdef RTE_LIB_GRO
void
setup_gro(const char *onoff, portid_t port_id)
{
if (!rte_eth_dev_is_valid_port(port_id)) {
fprintf(stderr, "invalid port id %u\n", port_id);
return;
}
if (test_done == 0) {
fprintf(stderr,
"Before enable/disable GRO, please stop forwarding first\n");
return;
}
if (strcmp(onoff, "on") == 0) {
if (gro_ports[port_id].enable != 0) {
fprintf(stderr,
"Port %u has enabled GRO. Please disable GRO first\n",
port_id);
return;
}
if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
gro_ports[port_id].param.gro_types = RTE_GRO_TCP_IPV4;
gro_ports[port_id].param.max_flow_num =
GRO_DEFAULT_FLOW_NUM;
gro_ports[port_id].param.max_item_per_flow =
GRO_DEFAULT_ITEM_NUM_PER_FLOW;
}
gro_ports[port_id].enable = 1;
} else {
if (gro_ports[port_id].enable == 0) {
fprintf(stderr, "Port %u has disabled GRO\n", port_id);
return;
}
gro_ports[port_id].enable = 0;
}
}
void
setup_gro_flush_cycles(uint8_t cycles)
{
if (test_done == 0) {
fprintf(stderr,
"Before change flush interval for GRO, please stop forwarding first.\n");
return;
}
if (cycles > GRO_MAX_FLUSH_CYCLES || cycles <
GRO_DEFAULT_FLUSH_CYCLES) {
fprintf(stderr,
"The flushing cycle be in the range of 1 to %u. Revert to the default value %u.\n",
GRO_MAX_FLUSH_CYCLES, GRO_DEFAULT_FLUSH_CYCLES);
cycles = GRO_DEFAULT_FLUSH_CYCLES;
}
gro_flush_cycles = cycles;
}
void
show_gro(portid_t port_id)
{
struct rte_gro_param *param;
uint32_t max_pkts_num;
param = &gro_ports[port_id].param;
if (!rte_eth_dev_is_valid_port(port_id)) {
fprintf(stderr, "Invalid port id %u.\n", port_id);
return;
}
if (gro_ports[port_id].enable) {
printf("GRO type: TCP/IPv4\n");
if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
max_pkts_num = param->max_flow_num *
param->max_item_per_flow;
} else
max_pkts_num = MAX_PKT_BURST * GRO_MAX_FLUSH_CYCLES;
printf("Max number of packets to perform GRO: %u\n",
max_pkts_num);
printf("Flushing cycles: %u\n", gro_flush_cycles);
} else
printf("Port %u doesn't enable GRO.\n", port_id);
}
#endif /* RTE_LIB_GRO */
#ifdef RTE_LIB_GSO
void
setup_gso(const char *mode, portid_t port_id)
{
if (!rte_eth_dev_is_valid_port(port_id)) {
fprintf(stderr, "invalid port id %u\n", port_id);
return;
}
if (strcmp(mode, "on") == 0) {
if (test_done == 0) {
fprintf(stderr,
"before enabling GSO, please stop forwarding first\n");
return;
}
gso_ports[port_id].enable = 1;
} else if (strcmp(mode, "off") == 0) {
if (test_done == 0) {
fprintf(stderr,
"before disabling GSO, please stop forwarding first\n");
return;
}
gso_ports[port_id].enable = 0;
}
}
#endif /* RTE_LIB_GSO */
char*
list_pkt_forwarding_modes(void)
{
static char fwd_modes[128] = "";
const char *separator = "|";
struct fwd_engine *fwd_eng;
unsigned i = 0;
if (strlen (fwd_modes) == 0) {
while ((fwd_eng = fwd_engines[i++]) != NULL) {
strncat(fwd_modes, fwd_eng->fwd_mode_name,
sizeof(fwd_modes) - strlen(fwd_modes) - 1);
strncat(fwd_modes, separator,
sizeof(fwd_modes) - strlen(fwd_modes) - 1);
}
fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
}
return fwd_modes;
}
char*
list_pkt_forwarding_retry_modes(void)
{
static char fwd_modes[128] = "";
const char *separator = "|";
struct fwd_engine *fwd_eng;
unsigned i = 0;
if (strlen(fwd_modes) == 0) {
while ((fwd_eng = fwd_engines[i++]) != NULL) {
if (fwd_eng == &rx_only_engine)
continue;
strncat(fwd_modes, fwd_eng->fwd_mode_name,
sizeof(fwd_modes) -
strlen(fwd_modes) - 1);
strncat(fwd_modes, separator,
sizeof(fwd_modes) -
strlen(fwd_modes) - 1);
}
fwd_modes[strlen(fwd_modes) - strlen(separator)] = '\0';
}
return fwd_modes;
}
void
set_pkt_forwarding_mode(const char *fwd_mode_name)
{
struct fwd_engine *fwd_eng;
unsigned i;
i = 0;
while ((fwd_eng = fwd_engines[i]) != NULL) {
if (! strcmp(fwd_eng->fwd_mode_name, fwd_mode_name)) {
printf("Set %s packet forwarding mode%s\n",
fwd_mode_name,
retry_enabled == 0 ? "" : " with retry");
cur_fwd_eng = fwd_eng;
return;
}
i++;
}
fprintf(stderr, "Invalid %s packet forwarding mode\n", fwd_mode_name);
}
void
add_rx_dump_callbacks(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
if (!ports[portid].rx_dump_cb[queue])
ports[portid].rx_dump_cb[queue] =
rte_eth_add_rx_callback(portid, queue,
dump_rx_pkts, NULL);
}
void
add_tx_dump_callbacks(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (!ports[portid].tx_dump_cb[queue])
ports[portid].tx_dump_cb[queue] =
rte_eth_add_tx_callback(portid, queue,
dump_tx_pkts, NULL);
}
void
remove_rx_dump_callbacks(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_rx_queues; queue++)
if (ports[portid].rx_dump_cb[queue]) {
rte_eth_remove_rx_callback(portid, queue,
ports[portid].rx_dump_cb[queue]);
ports[portid].rx_dump_cb[queue] = NULL;
}
}
void
remove_tx_dump_callbacks(portid_t portid)
{
struct rte_eth_dev_info dev_info;
uint16_t queue;
int ret;
if (port_id_is_invalid(portid, ENABLED_WARN))
return;
ret = eth_dev_info_get_print_err(portid, &dev_info);
if (ret != 0)
return;
for (queue = 0; queue < dev_info.nb_tx_queues; queue++)
if (ports[portid].tx_dump_cb[queue]) {
rte_eth_remove_tx_callback(portid, queue,
ports[portid].tx_dump_cb[queue]);
ports[portid].tx_dump_cb[queue] = NULL;
}
}
void
configure_rxtx_dump_callbacks(uint16_t verbose)
{
portid_t portid;
#ifndef RTE_ETHDEV_RXTX_CALLBACKS
TESTPMD_LOG(ERR, "setting rxtx callbacks is not enabled\n");
return;
#endif
RTE_ETH_FOREACH_DEV(portid)
{
if (verbose == 1 || verbose > 2)
add_rx_dump_callbacks(portid);
else
remove_rx_dump_callbacks(portid);
if (verbose >= 2)
add_tx_dump_callbacks(portid);
else
remove_tx_dump_callbacks(portid);
}
}
void
set_verbose_level(uint16_t vb_level)
{
printf("Change verbose level from %u to %u\n",
(unsigned int) verbose_level, (unsigned int) vb_level);
verbose_level = vb_level;
configure_rxtx_dump_callbacks(verbose_level);
}
void
vlan_extend_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on) {
vlan_offload |= RTE_ETH_VLAN_EXTEND_OFFLOAD;
port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
} else {
vlan_offload &= ~RTE_ETH_VLAN_EXTEND_OFFLOAD;
port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_EXTEND;
}
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0) {
fprintf(stderr,
"rx_vlan_extend_set(port_pi=%d, on=%d) failed diag=%d\n",
port_id, on, diag);
return;
}
ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
}
void
rx_vlan_strip_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on) {
vlan_offload |= RTE_ETH_VLAN_STRIP_OFFLOAD;
port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
} else {
vlan_offload &= ~RTE_ETH_VLAN_STRIP_OFFLOAD;
port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_STRIP;
}
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0) {
fprintf(stderr,
"%s(port_pi=%d, on=%d) failed diag=%d\n",
__func__, port_id, on, diag);
return;
}
ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
}
void
rx_vlan_strip_set_on_queue(portid_t port_id, uint16_t queue_id, int on)
{
int diag;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
diag = rte_eth_dev_set_vlan_strip_on_queue(port_id, queue_id, on);
if (diag < 0)
fprintf(stderr,
"%s(port_pi=%d, queue_id=%d, on=%d) failed diag=%d\n",
__func__, port_id, queue_id, on, diag);
}
void
rx_vlan_filter_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on) {
vlan_offload |= RTE_ETH_VLAN_FILTER_OFFLOAD;
port_rx_offloads |= RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
} else {
vlan_offload &= ~RTE_ETH_VLAN_FILTER_OFFLOAD;
port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
}
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0) {
fprintf(stderr,
"%s(port_pi=%d, on=%d) failed diag=%d\n",
__func__, port_id, on, diag);
return;
}
ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
}
void
rx_vlan_qinq_strip_set(portid_t port_id, int on)
{
int diag;
int vlan_offload;
uint64_t port_rx_offloads = ports[port_id].dev_conf.rxmode.offloads;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
vlan_offload = rte_eth_dev_get_vlan_offload(port_id);
if (on) {
vlan_offload |= RTE_ETH_QINQ_STRIP_OFFLOAD;
port_rx_offloads |= RTE_ETH_RX_OFFLOAD_QINQ_STRIP;
} else {
vlan_offload &= ~RTE_ETH_QINQ_STRIP_OFFLOAD;
port_rx_offloads &= ~RTE_ETH_RX_OFFLOAD_QINQ_STRIP;
}
diag = rte_eth_dev_set_vlan_offload(port_id, vlan_offload);
if (diag < 0) {
fprintf(stderr, "%s(port_pi=%d, on=%d) failed diag=%d\n",
__func__, port_id, on, diag);
return;
}
ports[port_id].dev_conf.rxmode.offloads = port_rx_offloads;
}
int
rx_vft_set(portid_t port_id, uint16_t vlan_id, int on)
{
int diag;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return 1;
if (vlan_id_is_invalid(vlan_id))
return 1;
diag = rte_eth_dev_vlan_filter(port_id, vlan_id, on);
if (diag == 0)
return 0;
fprintf(stderr,
"rte_eth_dev_vlan_filter(port_pi=%d, vlan_id=%d, on=%d) failed diag=%d\n",
port_id, vlan_id, on, diag);
return -1;
}
void
rx_vlan_all_filter_set(portid_t port_id, int on)
{
uint16_t vlan_id;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
for (vlan_id = 0; vlan_id < 4096; vlan_id++) {
if (rx_vft_set(port_id, vlan_id, on))
break;
}
}
void
vlan_tpid_set(portid_t port_id, enum rte_vlan_type vlan_type, uint16_t tp_id)
{
int diag;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
diag = rte_eth_dev_set_vlan_ether_type(port_id, vlan_type, tp_id);
if (diag == 0)
return;
fprintf(stderr,
"tx_vlan_tpid_set(port_pi=%d, vlan_type=%d, tpid=%d) failed diag=%d\n",
port_id, vlan_type, tp_id, diag);
}
void
tx_vlan_set(portid_t port_id, uint16_t vlan_id)
{
struct rte_eth_dev_info dev_info;
int ret;
if (vlan_id_is_invalid(vlan_id))
return;
if (ports[port_id].dev_conf.txmode.offloads &
RTE_ETH_TX_OFFLOAD_QINQ_INSERT) {
fprintf(stderr, "Error, as QinQ has been enabled.\n");
return;
}
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0)
return;
if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_VLAN_INSERT) == 0) {
fprintf(stderr,
"Error: vlan insert is not supported by port %d\n",
port_id);
return;
}
tx_vlan_reset(port_id);
ports[port_id].dev_conf.txmode.offloads |= RTE_ETH_TX_OFFLOAD_VLAN_INSERT;
ports[port_id].tx_vlan_id = vlan_id;
}
void
tx_qinq_set(portid_t port_id, uint16_t vlan_id, uint16_t vlan_id_outer)
{
struct rte_eth_dev_info dev_info;
int ret;
if (vlan_id_is_invalid(vlan_id))
return;
if (vlan_id_is_invalid(vlan_id_outer))
return;
ret = eth_dev_info_get_print_err(port_id, &dev_info);
if (ret != 0)
return;
if ((dev_info.tx_offload_capa & RTE_ETH_TX_OFFLOAD_QINQ_INSERT) == 0) {
fprintf(stderr,
"Error: qinq insert not supported by port %d\n",
port_id);
return;
}
tx_vlan_reset(port_id);
ports[port_id].dev_conf.txmode.offloads |= (RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
RTE_ETH_TX_OFFLOAD_QINQ_INSERT);
ports[port_id].tx_vlan_id = vlan_id;
ports[port_id].tx_vlan_id_outer = vlan_id_outer;
}
void
tx_vlan_reset(portid_t port_id)
{
ports[port_id].dev_conf.txmode.offloads &=
~(RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
RTE_ETH_TX_OFFLOAD_QINQ_INSERT);
ports[port_id].tx_vlan_id = 0;
ports[port_id].tx_vlan_id_outer = 0;
}
void
tx_vlan_pvid_set(portid_t port_id, uint16_t vlan_id, int on)
{
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
rte_eth_dev_set_vlan_pvid(port_id, vlan_id, on);
}
void
set_qmap(portid_t port_id, uint8_t is_rx, uint16_t queue_id, uint8_t map_value)
{
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
if (is_rx ? (rx_queue_id_is_invalid(queue_id)) : (tx_queue_id_is_invalid(queue_id)))
return;
if (map_value >= RTE_ETHDEV_QUEUE_STAT_CNTRS) {
fprintf(stderr, "map_value not in required range 0..%d\n",
RTE_ETHDEV_QUEUE_STAT_CNTRS - 1);
return;
}
if (!is_rx) { /* tx */
ret = rte_eth_dev_set_tx_queue_stats_mapping(port_id, queue_id,
map_value);
if (ret) {
fprintf(stderr,
"failed to set tx queue stats mapping.\n");
return;
}
} else { /* rx */
ret = rte_eth_dev_set_rx_queue_stats_mapping(port_id, queue_id,
map_value);
if (ret) {
fprintf(stderr,
"failed to set rx queue stats mapping.\n");
return;
}
}
}
void
set_xstats_hide_zero(uint8_t on_off)
{
xstats_hide_zero = on_off;
}
void
set_record_core_cycles(uint8_t on_off)
{
record_core_cycles = on_off;
}
void
set_record_burst_stats(uint8_t on_off)
{
record_burst_stats = on_off;
}
uint16_t
str_to_flowtype(const char *string)
{
uint8_t i;
for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
if (!strcmp(flowtype_str_table[i].str, string))
return flowtype_str_table[i].ftype;
}
if (isdigit(string[0])) {
int val = atoi(string);
if (val > 0 && val < 64)
return (uint16_t)val;
}
return RTE_ETH_FLOW_UNKNOWN;
}
const char*
flowtype_to_str(uint16_t flow_type)
{
uint8_t i;
for (i = 0; i < RTE_DIM(flowtype_str_table); i++) {
if (flowtype_str_table[i].ftype == flow_type)
return flowtype_str_table[i].str;
}
return NULL;
}
#if defined(RTE_NET_I40E) || defined(RTE_NET_IXGBE)
static inline void
print_fdir_flex_payload(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
{
struct rte_eth_flex_payload_cfg *cfg;
uint32_t i, j;
for (i = 0; i < flex_conf->nb_payloads; i++) {
cfg = &flex_conf->flex_set[i];
if (cfg->type == RTE_ETH_RAW_PAYLOAD)
printf("\n RAW: ");
else if (cfg->type == RTE_ETH_L2_PAYLOAD)
printf("\n L2_PAYLOAD: ");
else if (cfg->type == RTE_ETH_L3_PAYLOAD)
printf("\n L3_PAYLOAD: ");
else if (cfg->type == RTE_ETH_L4_PAYLOAD)
printf("\n L4_PAYLOAD: ");
else
printf("\n UNKNOWN PAYLOAD(%u): ", cfg->type);
for (j = 0; j < num; j++)
printf(" %-5u", cfg->src_offset[j]);
}
printf("\n");
}
static inline void
print_fdir_flex_mask(struct rte_eth_fdir_flex_conf *flex_conf, uint32_t num)
{
struct rte_eth_fdir_flex_mask *mask;
uint32_t i, j;
const char *p;
for (i = 0; i < flex_conf->nb_flexmasks; i++) {
mask = &flex_conf->flex_mask[i];
p = flowtype_to_str(mask->flow_type);
printf("\n %s:\t", p ? p : "unknown");
for (j = 0; j < num; j++)
printf(" %02x", mask->mask[j]);
}
printf("\n");
}
static inline void
print_fdir_flow_type(uint32_t flow_types_mask)
{
int i;
const char *p;
for (i = RTE_ETH_FLOW_UNKNOWN; i < RTE_ETH_FLOW_MAX; i++) {
if (!(flow_types_mask & (1 << i)))
continue;
p = flowtype_to_str(i);
if (p)
printf(" %s", p);
else
printf(" unknown");
}
printf("\n");
}
static int
get_fdir_info(portid_t port_id, struct rte_eth_fdir_info *fdir_info,
struct rte_eth_fdir_stats *fdir_stat)
{
int ret = -ENOTSUP;
#ifdef RTE_NET_I40E
if (ret == -ENOTSUP) {
ret = rte_pmd_i40e_get_fdir_info(port_id, fdir_info);
if (!ret)
ret = rte_pmd_i40e_get_fdir_stats(port_id, fdir_stat);
}
#endif
#ifdef RTE_NET_IXGBE
if (ret == -ENOTSUP) {
ret = rte_pmd_ixgbe_get_fdir_info(port_id, fdir_info);
if (!ret)
ret = rte_pmd_ixgbe_get_fdir_stats(port_id, fdir_stat);
}
#endif
switch (ret) {
case 0:
break;
case -ENOTSUP:
fprintf(stderr, "\n FDIR is not supported on port %-2d\n",
port_id);
break;
default:
fprintf(stderr, "programming error: (%s)\n", strerror(-ret));
break;
}
return ret;
}
void
fdir_get_infos(portid_t port_id)
{
struct rte_eth_fdir_stats fdir_stat;
struct rte_eth_fdir_info fdir_info;
static const char *fdir_stats_border = "########################";
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
memset(&fdir_info, 0, sizeof(fdir_info));
memset(&fdir_stat, 0, sizeof(fdir_stat));
if (get_fdir_info(port_id, &fdir_info, &fdir_stat))
return;
printf("\n %s FDIR infos for port %-2d %s\n",
fdir_stats_border, port_id, fdir_stats_border);
printf(" MODE: ");
if (fdir_info.mode == RTE_FDIR_MODE_PERFECT)
printf(" PERFECT\n");
else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_MAC_VLAN)
printf(" PERFECT-MAC-VLAN\n");
else if (fdir_info.mode == RTE_FDIR_MODE_PERFECT_TUNNEL)
printf(" PERFECT-TUNNEL\n");
else if (fdir_info.mode == RTE_FDIR_MODE_SIGNATURE)
printf(" SIGNATURE\n");
else
printf(" DISABLE\n");
if (fdir_info.mode != RTE_FDIR_MODE_PERFECT_MAC_VLAN
&& fdir_info.mode != RTE_FDIR_MODE_PERFECT_TUNNEL) {
printf(" SUPPORTED FLOW TYPE: ");
print_fdir_flow_type(fdir_info.flow_types_mask[0]);
}
printf(" FLEX PAYLOAD INFO:\n");
printf(" max_len: %-10"PRIu32" payload_limit: %-10"PRIu32"\n"
" payload_unit: %-10"PRIu32" payload_seg: %-10"PRIu32"\n"
" bitmask_unit: %-10"PRIu32" bitmask_num: %-10"PRIu32"\n",
fdir_info.max_flexpayload, fdir_info.flex_payload_limit,
fdir_info.flex_payload_unit,
fdir_info.max_flex_payload_segment_num,
fdir_info.flex_bitmask_unit, fdir_info.max_flex_bitmask_num);
if (fdir_info.flex_conf.nb_payloads > 0) {
printf(" FLEX PAYLOAD SRC OFFSET:");
print_fdir_flex_payload(&fdir_info.flex_conf, fdir_info.max_flexpayload);
}
if (fdir_info.flex_conf.nb_flexmasks > 0) {
printf(" FLEX MASK CFG:");
print_fdir_flex_mask(&fdir_info.flex_conf, fdir_info.max_flexpayload);
}
printf(" guarant_count: %-10"PRIu32" best_count: %"PRIu32"\n",
fdir_stat.guarant_cnt, fdir_stat.best_cnt);
printf(" guarant_space: %-10"PRIu32" best_space: %"PRIu32"\n",
fdir_info.guarant_spc, fdir_info.best_spc);
printf(" collision: %-10"PRIu32" free: %"PRIu32"\n"
" maxhash: %-10"PRIu32" maxlen: %"PRIu32"\n"
" add: %-10"PRIu64" remove: %"PRIu64"\n"
" f_add: %-10"PRIu64" f_remove: %"PRIu64"\n",
fdir_stat.collision, fdir_stat.free,
fdir_stat.maxhash, fdir_stat.maxlen,
fdir_stat.add, fdir_stat.remove,
fdir_stat.f_add, fdir_stat.f_remove);
printf(" %s############################%s\n",
fdir_stats_border, fdir_stats_border);
}
#endif /* RTE_NET_I40E || RTE_NET_IXGBE */
void
set_vf_traffic(portid_t port_id, uint8_t is_rx, uint16_t vf, uint8_t on)
{
#ifdef RTE_NET_IXGBE
int diag;
if (is_rx)
diag = rte_pmd_ixgbe_set_vf_rx(port_id, vf, on);
else
diag = rte_pmd_ixgbe_set_vf_tx(port_id, vf, on);
if (diag == 0)
return;
fprintf(stderr,
"rte_pmd_ixgbe_set_vf_%s for port_id=%d failed diag=%d\n",
is_rx ? "rx" : "tx", port_id, diag);
return;
#endif
fprintf(stderr, "VF %s setting not supported for port %d\n",
is_rx ? "Rx" : "Tx", port_id);
RTE_SET_USED(vf);
RTE_SET_USED(on);
}
int
set_queue_rate_limit(portid_t port_id, uint16_t queue_idx, uint32_t rate)
{
int diag;
struct rte_eth_link link;
int ret;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return 1;
ret = eth_link_get_nowait_print_err(port_id, &link);
if (ret < 0)
return 1;
if (link.link_speed != RTE_ETH_SPEED_NUM_UNKNOWN &&
rate > link.link_speed) {
fprintf(stderr,
"Invalid rate value:%u bigger than link speed: %u\n",
rate, link.link_speed);
return 1;
}
diag = rte_eth_set_queue_rate_limit(port_id, queue_idx, rate);
if (diag == 0)
return diag;
fprintf(stderr,
"rte_eth_set_queue_rate_limit for port_id=%d failed diag=%d\n",
port_id, diag);
return diag;
}
int
set_vf_rate_limit(portid_t port_id, uint16_t vf, uint32_t rate, uint64_t q_msk)
{
int diag = -ENOTSUP;
RTE_SET_USED(vf);
RTE_SET_USED(rate);
RTE_SET_USED(q_msk);
#ifdef RTE_NET_IXGBE
if (diag == -ENOTSUP)
diag = rte_pmd_ixgbe_set_vf_rate_limit(port_id, vf, rate,
q_msk);
#endif
#ifdef RTE_NET_BNXT
if (diag == -ENOTSUP)
diag = rte_pmd_bnxt_set_vf_rate_limit(port_id, vf, rate, q_msk);
#endif
if (diag == 0)
return diag;
fprintf(stderr,
"%s for port_id=%d failed diag=%d\n",
__func__, port_id, diag);
return diag;
}
int
set_rxq_avail_thresh(portid_t port_id, uint16_t queue_id, uint8_t avail_thresh)
{
if (port_id_is_invalid(port_id, ENABLED_WARN))
return -EINVAL;
return rte_eth_rx_avail_thresh_set(port_id, queue_id, avail_thresh);
}
/*
* Functions to manage the set of filtered Multicast MAC addresses.
*
* A pool of filtered multicast MAC addresses is associated with each port.
* The pool is allocated in chunks of MCAST_POOL_INC multicast addresses.
* The address of the pool and the number of valid multicast MAC addresses
* recorded in the pool are stored in the fields "mc_addr_pool" and
* "mc_addr_nb" of the "rte_port" data structure.
*
* The function "rte_eth_dev_set_mc_addr_list" of the PMDs API imposes
* to be supplied a contiguous array of multicast MAC addresses.
* To comply with this constraint, the set of multicast addresses recorded
* into the pool are systematically compacted at the beginning of the pool.
* Hence, when a multicast address is removed from the pool, all following
* addresses, if any, are copied back to keep the set contiguous.
*/
#define MCAST_POOL_INC 32
static int
mcast_addr_pool_extend(struct rte_port *port)
{
struct rte_ether_addr *mc_pool;
size_t mc_pool_size;
/*
* If a free entry is available at the end of the pool, just
* increment the number of recorded multicast addresses.
*/
if ((port->mc_addr_nb % MCAST_POOL_INC) != 0) {
port->mc_addr_nb++;
return 0;
}
/*
* [re]allocate a pool with MCAST_POOL_INC more entries.
* The previous test guarantees that port->mc_addr_nb is a multiple
* of MCAST_POOL_INC.
*/
mc_pool_size = sizeof(struct rte_ether_addr) * (port->mc_addr_nb +
MCAST_POOL_INC);
mc_pool = (struct rte_ether_addr *) realloc(port->mc_addr_pool,
mc_pool_size);
if (mc_pool == NULL) {
fprintf(stderr,
"allocation of pool of %u multicast addresses failed\n",
port->mc_addr_nb + MCAST_POOL_INC);
return -ENOMEM;
}
port->mc_addr_pool = mc_pool;
port->mc_addr_nb++;
return 0;
}
static void
mcast_addr_pool_append(struct rte_port *port, struct rte_ether_addr *mc_addr)
{
if (mcast_addr_pool_extend(port) != 0)
return;
rte_ether_addr_copy(mc_addr, &port->mc_addr_pool[port->mc_addr_nb - 1]);
}
static void
mcast_addr_pool_remove(struct rte_port *port, uint32_t addr_idx)
{
port->mc_addr_nb--;
if (addr_idx == port->mc_addr_nb) {
/* No need to recompact the set of multicast addresses. */
if (port->mc_addr_nb == 0) {
/* free the pool of multicast addresses. */
free(port->mc_addr_pool);
port->mc_addr_pool = NULL;
}
return;
}
memmove(&port->mc_addr_pool[addr_idx],
&port->mc_addr_pool[addr_idx + 1],
sizeof(struct rte_ether_addr) * (port->mc_addr_nb - addr_idx));
}
int
mcast_addr_pool_destroy(portid_t port_id)
{
struct rte_port *port;
if (port_id_is_invalid(port_id, ENABLED_WARN) ||
port_id == (portid_t)RTE_PORT_ALL)
return -EINVAL;
port = &ports[port_id];
if (port->mc_addr_nb != 0) {
/* free the pool of multicast addresses. */
free(port->mc_addr_pool);
port->mc_addr_pool = NULL;
port->mc_addr_nb = 0;
}
return 0;
}
static int
eth_port_multicast_addr_list_set(portid_t port_id)
{
struct rte_port *port;
int diag;
port = &ports[port_id];
diag = rte_eth_dev_set_mc_addr_list(port_id, port->mc_addr_pool,
port->mc_addr_nb);
if (diag < 0)
fprintf(stderr,
"rte_eth_dev_set_mc_addr_list(port=%d, nb=%u) failed. diag=%d\n",
port_id, port->mc_addr_nb, diag);
return diag;
}
void
mcast_addr_add(portid_t port_id, struct rte_ether_addr *mc_addr)
{
struct rte_port *port;
uint32_t i;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
port = &ports[port_id];
/*
* Check that the added multicast MAC address is not already recorded
* in the pool of multicast addresses.
*/
for (i = 0; i < port->mc_addr_nb; i++) {
if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i])) {
fprintf(stderr,
"multicast address already filtered by port\n");
return;
}
}
mcast_addr_pool_append(port, mc_addr);
if (eth_port_multicast_addr_list_set(port_id) < 0)
/* Rollback on failure, remove the address from the pool */
mcast_addr_pool_remove(port, i);
}
void
mcast_addr_remove(portid_t port_id, struct rte_ether_addr *mc_addr)
{
struct rte_port *port;
uint32_t i;
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
port = &ports[port_id];
/*
* Search the pool of multicast MAC addresses for the removed address.
*/
for (i = 0; i < port->mc_addr_nb; i++) {
if (rte_is_same_ether_addr(mc_addr, &port->mc_addr_pool[i]))
break;
}
if (i == port->mc_addr_nb) {
fprintf(stderr, "multicast address not filtered by port %d\n",
port_id);
return;
}
mcast_addr_pool_remove(port, i);
if (eth_port_multicast_addr_list_set(port_id) < 0)
/* Rollback on failure, add the address back into the pool */
mcast_addr_pool_append(port, mc_addr);
}
void
port_dcb_info_display(portid_t port_id)
{
struct rte_eth_dcb_info dcb_info;
uint16_t i;
int ret;
static const char *border = "================";
if (port_id_is_invalid(port_id, ENABLED_WARN))
return;
ret = rte_eth_dev_get_dcb_info(port_id, &dcb_info);
if (ret) {
fprintf(stderr, "\n Failed to get dcb infos on port %-2d\n",
port_id);
return;
}
printf("\n %s DCB infos for port %-2d %s\n", border, port_id, border);
printf(" TC NUMBER: %d\n", dcb_info.nb_tcs);
printf("\n TC : ");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", i);
printf("\n Priority : ");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.prio_tc[i]);
printf("\n BW percent :");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d%%", dcb_info.tc_bws[i]);
printf("\n RXQ base : ");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].base);
printf("\n RXQ number :");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.tc_queue.tc_rxq[0][i].nb_queue);
printf("\n TXQ base : ");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].base);
printf("\n TXQ number :");
for (i = 0; i < dcb_info.nb_tcs; i++)
printf("\t%4d", dcb_info.tc_queue.tc_txq[0][i].nb_queue);
printf("\n");
}
uint8_t *
open_file(const char *file_path, uint32_t *size)
{
int fd = open(file_path, O_RDONLY);
off_t pkg_size;
uint8_t *buf = NULL;
int ret = 0;
struct stat st_buf;
if (size)
*size = 0;
if (fd == -1) {
fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
return buf;
}
if ((fstat(fd, &st_buf) != 0) || (!S_ISREG(st_buf.st_mode))) {
close(fd);
fprintf(stderr, "%s: File operations failed\n", __func__);
return buf;
}
pkg_size = st_buf.st_size;
if (pkg_size < 0) {
close(fd);
fprintf(stderr, "%s: File operations failed\n", __func__);
return buf;
}
buf = (uint8_t *)malloc(pkg_size);
if (!buf) {
close(fd);
fprintf(stderr, "%s: Failed to malloc memory\n", __func__);
return buf;
}
ret = read(fd, buf, pkg_size);
if (ret < 0) {
close(fd);
fprintf(stderr, "%s: File read operation failed\n", __func__);
close_file(buf);
return NULL;
}
if (size)
*size = pkg_size;
close(fd);
return buf;
}
int
save_file(const char *file_path, uint8_t *buf, uint32_t size)
{
FILE *fh = fopen(file_path, "wb");
if (fh == NULL) {
fprintf(stderr, "%s: Failed to open %s\n", __func__, file_path);
return -1;
}
if (fwrite(buf, 1, size, fh) != size) {
fclose(fh);
fprintf(stderr, "%s: File write operation failed\n", __func__);
return -1;
}
fclose(fh);
return 0;
}
int
close_file(uint8_t *buf)
{
if (buf) {
free((void *)buf);
return 0;
}
return -1;
}
void
show_macs(portid_t port_id)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_eth_dev_info dev_info;
int32_t i, rc, num_macs = 0;
if (eth_dev_info_get_print_err(port_id, &dev_info))
return;
struct rte_ether_addr addr[dev_info.max_mac_addrs];
rc = rte_eth_macaddrs_get(port_id, addr, dev_info.max_mac_addrs);
if (rc < 0)
return;
for (i = 0; i < rc; i++) {
/* skip zero address */
if (rte_is_zero_ether_addr(&addr[i]))
continue;
num_macs++;
}
printf("Number of MAC address added: %d\n", num_macs);
for (i = 0; i < rc; i++) {
/* skip zero address */
if (rte_is_zero_ether_addr(&addr[i]))
continue;
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, &addr[i]);
printf(" %s\n", buf);
}
}
void
show_mcast_macs(portid_t port_id)
{
char buf[RTE_ETHER_ADDR_FMT_SIZE];
struct rte_ether_addr *addr;
struct rte_port *port;
uint32_t i;
port = &ports[port_id];
printf("Number of Multicast MAC address added: %d\n", port->mc_addr_nb);
for (i = 0; i < port->mc_addr_nb; i++) {
addr = &port->mc_addr_pool[i];
rte_ether_format_addr(buf, RTE_ETHER_ADDR_FMT_SIZE, addr);
printf(" %s\n", buf);
}
}