7223bd02ee
Dequeue from event device needs to process the event on the basis of the hardware queue from which it is dequeued. A callback is added into dpaa2_queue structure, to enable event dequeue functionality to call that processing routine. Signed-off-by: Nipun Gupta <nipun.gupta@nxp.com>
372 lines
12 KiB
C
372 lines
12 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright (c) 2016 Freescale Semiconductor, Inc. All rights reserved.
|
|
* Copyright (c) 2016 NXP. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Freescale Semiconductor, Inc nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef _DPAA2_HW_PVT_H_
|
|
#define _DPAA2_HW_PVT_H_
|
|
|
|
#include <rte_eventdev.h>
|
|
|
|
#include <mc/fsl_mc_sys.h>
|
|
#include <fsl_qbman_portal.h>
|
|
|
|
#ifndef false
|
|
#define false 0
|
|
#endif
|
|
#ifndef true
|
|
#define true 1
|
|
#endif
|
|
#define lower_32_bits(x) ((uint32_t)(x))
|
|
#define upper_32_bits(x) ((uint32_t)(((x) >> 16) >> 16))
|
|
|
|
#define SVR_LS1080A 0x87030000
|
|
#define SVR_LS2080A 0x87010000
|
|
#define SVR_LS2088A 0x87090000
|
|
|
|
#ifndef ETH_VLAN_HLEN
|
|
#define ETH_VLAN_HLEN 4 /** < Vlan Header Length */
|
|
#endif
|
|
|
|
#define MAX_TX_RING_SLOTS 8
|
|
/** <Maximum number of slots available in TX ring*/
|
|
|
|
#define DPAA2_DQRR_RING_SIZE 16
|
|
/** <Maximum number of slots available in RX ring*/
|
|
|
|
#define MC_PORTAL_INDEX 0
|
|
#define NUM_DPIO_REGIONS 2
|
|
#define NUM_DQS_PER_QUEUE 2
|
|
|
|
/* Maximum release/acquire from QBMAN */
|
|
#define DPAA2_MBUF_MAX_ACQ_REL 7
|
|
|
|
#define MAX_BPID 256
|
|
#define DPAA2_MBUF_HW_ANNOTATION 64
|
|
#define DPAA2_FD_PTA_SIZE 0
|
|
|
|
#if (DPAA2_MBUF_HW_ANNOTATION + DPAA2_FD_PTA_SIZE) > RTE_PKTMBUF_HEADROOM
|
|
#error "Annotation requirement is more than RTE_PKTMBUF_HEADROOM"
|
|
#endif
|
|
|
|
/* we will re-use the HEADROOM for annotation in RX */
|
|
#define DPAA2_HW_BUF_RESERVE 0
|
|
#define DPAA2_PACKET_LAYOUT_ALIGN 64 /*changing from 256 */
|
|
|
|
#define DPAA2_DPCI_MAX_QUEUES 2
|
|
|
|
struct dpaa2_dpio_dev {
|
|
TAILQ_ENTRY(dpaa2_dpio_dev) next;
|
|
/**< Pointer to Next device instance */
|
|
uint16_t index; /**< Index of a instance in the list */
|
|
rte_atomic16_t ref_count;
|
|
/**< How many thread contexts are sharing this.*/
|
|
struct fsl_mc_io *dpio; /** handle to DPIO portal object */
|
|
uint16_t token;
|
|
struct qbman_swp *sw_portal; /** SW portal object */
|
|
const struct qbman_result *dqrr[4];
|
|
/**< DQRR Entry for this SW portal */
|
|
void *mc_portal; /**< MC Portal for configuring this device */
|
|
uintptr_t qbman_portal_ce_paddr;
|
|
/**< Physical address of Cache Enabled Area */
|
|
uintptr_t ce_size; /**< Size of the CE region */
|
|
uintptr_t qbman_portal_ci_paddr;
|
|
/**< Physical address of Cache Inhibit Area */
|
|
uintptr_t ci_size; /**< Size of the CI region */
|
|
int32_t vfio_fd; /**< File descriptor received via VFIO */
|
|
int32_t hw_id; /**< An unique ID of this DPIO device instance */
|
|
uint64_t dqrr_held;
|
|
uint8_t dqrr_size;
|
|
};
|
|
|
|
struct dpaa2_dpbp_dev {
|
|
TAILQ_ENTRY(dpaa2_dpbp_dev) next;
|
|
/**< Pointer to Next device instance */
|
|
struct fsl_mc_io dpbp; /** handle to DPBP portal object */
|
|
uint16_t token;
|
|
rte_atomic16_t in_use;
|
|
uint32_t dpbp_id; /*HW ID for DPBP object */
|
|
};
|
|
|
|
struct queue_storage_info_t {
|
|
struct qbman_result *dq_storage[NUM_DQS_PER_QUEUE];
|
|
struct qbman_result *active_dqs;
|
|
int active_dpio_id;
|
|
int toggle;
|
|
};
|
|
|
|
typedef void (dpaa2_queue_cb_dqrr_t)(struct qbman_swp *swp,
|
|
const struct qbman_fd *fd,
|
|
const struct qbman_result *dq,
|
|
struct rte_event *ev);
|
|
|
|
struct dpaa2_queue {
|
|
struct rte_mempool *mb_pool; /**< mbuf pool to populate RX ring. */
|
|
void *dev;
|
|
int32_t eventfd; /*!< Event Fd of this queue */
|
|
uint32_t fqid; /*!< Unique ID of this queue */
|
|
uint8_t tc_index; /*!< traffic class identifier */
|
|
uint16_t flow_id; /*!< To be used by DPAA2 frmework */
|
|
uint64_t rx_pkts;
|
|
uint64_t tx_pkts;
|
|
uint64_t err_pkts;
|
|
union {
|
|
struct queue_storage_info_t *q_storage;
|
|
struct qbman_result *cscn;
|
|
};
|
|
dpaa2_queue_cb_dqrr_t *cb;
|
|
};
|
|
|
|
struct swp_active_dqs {
|
|
struct qbman_result *global_active_dqs;
|
|
uint64_t reserved[7];
|
|
};
|
|
|
|
#define NUM_MAX_SWP 64
|
|
|
|
extern struct swp_active_dqs rte_global_active_dqs_list[NUM_MAX_SWP];
|
|
|
|
struct dpaa2_dpci_dev {
|
|
TAILQ_ENTRY(dpaa2_dpci_dev) next;
|
|
/**< Pointer to Next device instance */
|
|
struct fsl_mc_io dpci; /** handle to DPCI portal object */
|
|
uint16_t token;
|
|
rte_atomic16_t in_use;
|
|
uint32_t dpci_id; /*HW ID for DPCI object */
|
|
struct dpaa2_queue queue[DPAA2_DPCI_MAX_QUEUES];
|
|
};
|
|
|
|
/*! Global MCP list */
|
|
extern void *(*rte_mcp_ptr_list);
|
|
|
|
/* Refer to Table 7-3 in SEC BG */
|
|
struct qbman_fle {
|
|
uint32_t addr_lo;
|
|
uint32_t addr_hi;
|
|
uint32_t length;
|
|
/* FMT must be 00, MSB is final bit */
|
|
uint32_t fin_bpid_offset;
|
|
uint32_t frc;
|
|
uint32_t reserved[3]; /* Not used currently */
|
|
};
|
|
|
|
struct qbman_sge {
|
|
uint32_t addr_lo;
|
|
uint32_t addr_hi;
|
|
uint32_t length;
|
|
uint32_t fin_bpid_offset;
|
|
};
|
|
|
|
/* There are three types of frames: Single, Scatter Gather and Frame Lists */
|
|
enum qbman_fd_format {
|
|
qbman_fd_single = 0,
|
|
qbman_fd_list,
|
|
qbman_fd_sg
|
|
};
|
|
/*Macros to define operations on FD*/
|
|
#define DPAA2_SET_FD_ADDR(fd, addr) do { \
|
|
fd->simple.addr_lo = lower_32_bits((uint64_t)(addr)); \
|
|
fd->simple.addr_hi = upper_32_bits((uint64_t)(addr)); \
|
|
} while (0)
|
|
#define DPAA2_SET_FD_LEN(fd, length) (fd)->simple.len = length
|
|
#define DPAA2_SET_FD_BPID(fd, bpid) ((fd)->simple.bpid_offset |= bpid)
|
|
#define DPAA2_SET_FD_IVP(fd) ((fd->simple.bpid_offset |= 0x00004000))
|
|
#define DPAA2_SET_FD_OFFSET(fd, offset) \
|
|
((fd->simple.bpid_offset |= (uint32_t)(offset) << 16))
|
|
#define DPAA2_SET_FD_INTERNAL_JD(fd, len) fd->simple.frc = (0x80000000 | (len))
|
|
#define DPAA2_SET_FD_FRC(fd, frc) fd->simple.frc = frc
|
|
#define DPAA2_RESET_FD_CTRL(fd) (fd)->simple.ctrl = 0
|
|
|
|
#define DPAA2_SET_FD_ASAL(fd, asal) ((fd)->simple.ctrl |= (asal << 16))
|
|
#define DPAA2_SET_FD_FLC(fd, addr) do { \
|
|
fd->simple.flc_lo = lower_32_bits((uint64_t)(addr)); \
|
|
fd->simple.flc_hi = upper_32_bits((uint64_t)(addr)); \
|
|
} while (0)
|
|
#define DPAA2_SET_FLE_INTERNAL_JD(fle, len) (fle->frc = (0x80000000 | (len)))
|
|
#define DPAA2_GET_FLE_ADDR(fle) \
|
|
(uint64_t)((((uint64_t)(fle->addr_hi)) << 32) + fle->addr_lo)
|
|
#define DPAA2_SET_FLE_ADDR(fle, addr) do { \
|
|
fle->addr_lo = lower_32_bits((uint64_t)addr); \
|
|
fle->addr_hi = upper_32_bits((uint64_t)addr); \
|
|
} while (0)
|
|
#define DPAA2_GET_FLE_CTXT(fle) \
|
|
(uint64_t)((((uint64_t)((fle)->reserved[1])) << 32) + \
|
|
(fle)->reserved[0])
|
|
#define DPAA2_FLE_SAVE_CTXT(fle, addr) do { \
|
|
fle->reserved[0] = lower_32_bits((uint64_t)addr); \
|
|
fle->reserved[1] = upper_32_bits((uint64_t)addr); \
|
|
} while (0)
|
|
#define DPAA2_SET_FLE_OFFSET(fle, offset) \
|
|
((fle)->fin_bpid_offset |= (uint32_t)(offset) << 16)
|
|
#define DPAA2_SET_FLE_BPID(fle, bpid) ((fle)->fin_bpid_offset |= (uint64_t)bpid)
|
|
#define DPAA2_GET_FLE_BPID(fle) ((fle)->fin_bpid_offset & 0x000000ff)
|
|
#define DPAA2_SET_FLE_FIN(fle) (fle->fin_bpid_offset |= (uint64_t)1 << 31)
|
|
#define DPAA2_SET_FLE_IVP(fle) (((fle)->fin_bpid_offset |= 0x00004000))
|
|
#define DPAA2_SET_FD_COMPOUND_FMT(fd) \
|
|
(fd->simple.bpid_offset |= (uint32_t)1 << 28)
|
|
#define DPAA2_GET_FD_ADDR(fd) \
|
|
((uint64_t)((((uint64_t)((fd)->simple.addr_hi)) << 32) + (fd)->simple.addr_lo))
|
|
|
|
#define DPAA2_GET_FD_LEN(fd) ((fd)->simple.len)
|
|
#define DPAA2_GET_FD_BPID(fd) (((fd)->simple.bpid_offset & 0x00003FFF))
|
|
#define DPAA2_GET_FD_IVP(fd) ((fd->simple.bpid_offset & 0x00004000) >> 14)
|
|
#define DPAA2_GET_FD_OFFSET(fd) (((fd)->simple.bpid_offset & 0x0FFF0000) >> 16)
|
|
#define DPAA2_GET_FLE_OFFSET(fle) (((fle)->fin_bpid_offset & 0x0FFF0000) >> 16)
|
|
#define DPAA2_SET_FLE_SG_EXT(fle) (fle->fin_bpid_offset |= (uint64_t)1 << 29)
|
|
#define DPAA2_IS_SET_FLE_SG_EXT(fle) \
|
|
((fle->fin_bpid_offset & ((uint64_t)1 << 29)) ? 1 : 0)
|
|
|
|
#define DPAA2_INLINE_MBUF_FROM_BUF(buf, meta_data_size) \
|
|
((struct rte_mbuf *)((uint64_t)(buf) - (meta_data_size)))
|
|
|
|
#define DPAA2_ASAL_VAL (DPAA2_MBUF_HW_ANNOTATION / 64)
|
|
|
|
#define DPAA2_FD_SET_FORMAT(fd, format) do { \
|
|
(fd)->simple.bpid_offset &= 0xCFFFFFFF; \
|
|
(fd)->simple.bpid_offset |= (uint32_t)format << 28; \
|
|
} while (0)
|
|
#define DPAA2_FD_GET_FORMAT(fd) (((fd)->simple.bpid_offset >> 28) & 0x3)
|
|
|
|
#define DPAA2_SG_SET_FINAL(sg, fin) do { \
|
|
(sg)->fin_bpid_offset &= 0x7FFFFFFF; \
|
|
(sg)->fin_bpid_offset |= (uint32_t)fin << 31; \
|
|
} while (0)
|
|
#define DPAA2_SG_IS_FINAL(sg) (!!((sg)->fin_bpid_offset >> 31))
|
|
/* Only Enqueue Error responses will be
|
|
* pushed on FQID_ERR of Enqueue FQ
|
|
*/
|
|
#define DPAA2_EQ_RESP_ERR_FQ 0
|
|
/* All Enqueue responses will be pushed on address
|
|
* set with qbman_eq_desc_set_response
|
|
*/
|
|
#define DPAA2_EQ_RESP_ALWAYS 1
|
|
|
|
#ifdef RTE_LIBRTE_DPAA2_USE_PHYS_IOVA
|
|
static void *dpaa2_mem_ptov(phys_addr_t paddr) __attribute__((unused));
|
|
/* todo - this is costly, need to write a fast coversion routine */
|
|
static void *dpaa2_mem_ptov(phys_addr_t paddr)
|
|
{
|
|
const struct rte_memseg *memseg = rte_eal_get_physmem_layout();
|
|
int i;
|
|
|
|
for (i = 0; i < RTE_MAX_MEMSEG && memseg[i].addr_64 != 0; i++) {
|
|
if (paddr >= memseg[i].phys_addr &&
|
|
(char *)paddr < (char *)memseg[i].phys_addr + memseg[i].len)
|
|
return (void *)(memseg[i].addr_64
|
|
+ (paddr - memseg[i].phys_addr));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr) __attribute__((unused));
|
|
static phys_addr_t dpaa2_mem_vtop(uint64_t vaddr)
|
|
{
|
|
const struct rte_memseg *memseg = rte_eal_get_physmem_layout();
|
|
int i;
|
|
|
|
for (i = 0; i < RTE_MAX_MEMSEG && memseg[i].addr_64 != 0; i++) {
|
|
if (vaddr >= memseg[i].addr_64 &&
|
|
vaddr < memseg[i].addr_64 + memseg[i].len)
|
|
return memseg[i].phys_addr
|
|
+ (vaddr - memseg[i].addr_64);
|
|
}
|
|
return (phys_addr_t)(NULL);
|
|
}
|
|
|
|
/**
|
|
* When we are using Physical addresses as IO Virtual Addresses,
|
|
* Need to call conversion routines dpaa2_mem_vtop & dpaa2_mem_ptov
|
|
* wherever required.
|
|
* These routines are called with help of below MACRO's
|
|
*/
|
|
|
|
#define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_physaddr)
|
|
#define DPAA2_OP_VADDR_TO_IOVA(op) (op->phys_addr)
|
|
|
|
/**
|
|
* macro to convert Virtual address to IOVA
|
|
*/
|
|
#define DPAA2_VADDR_TO_IOVA(_vaddr) dpaa2_mem_vtop((uint64_t)(_vaddr))
|
|
|
|
/**
|
|
* macro to convert IOVA to Virtual address
|
|
*/
|
|
#define DPAA2_IOVA_TO_VADDR(_iova) dpaa2_mem_ptov((phys_addr_t)(_iova))
|
|
|
|
/**
|
|
* macro to convert modify the memory containing IOVA to Virtual address
|
|
*/
|
|
#define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type) \
|
|
{_mem = (_type)(dpaa2_mem_ptov((phys_addr_t)(_mem))); }
|
|
|
|
#else /* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */
|
|
|
|
#define DPAA2_MBUF_VADDR_TO_IOVA(mbuf) ((mbuf)->buf_addr)
|
|
#define DPAA2_OP_VADDR_TO_IOVA(op) (op)
|
|
#define DPAA2_VADDR_TO_IOVA(_vaddr) (_vaddr)
|
|
#define DPAA2_IOVA_TO_VADDR(_iova) (_iova)
|
|
#define DPAA2_MODIFY_IOVA_TO_VADDR(_mem, _type)
|
|
|
|
#endif /* RTE_LIBRTE_DPAA2_USE_PHYS_IOVA */
|
|
|
|
static inline
|
|
int check_swp_active_dqs(uint16_t dpio_index)
|
|
{
|
|
if (rte_global_active_dqs_list[dpio_index].global_active_dqs != NULL)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static inline
|
|
void clear_swp_active_dqs(uint16_t dpio_index)
|
|
{
|
|
rte_global_active_dqs_list[dpio_index].global_active_dqs = NULL;
|
|
}
|
|
|
|
static inline
|
|
struct qbman_result *get_swp_active_dqs(uint16_t dpio_index)
|
|
{
|
|
return rte_global_active_dqs_list[dpio_index].global_active_dqs;
|
|
}
|
|
|
|
static inline
|
|
void set_swp_active_dqs(uint16_t dpio_index, struct qbman_result *dqs)
|
|
{
|
|
rte_global_active_dqs_list[dpio_index].global_active_dqs = dqs;
|
|
}
|
|
struct dpaa2_dpbp_dev *dpaa2_alloc_dpbp_dev(void);
|
|
void dpaa2_free_dpbp_dev(struct dpaa2_dpbp_dev *dpbp);
|
|
|
|
struct dpaa2_dpci_dev *rte_dpaa2_alloc_dpci_dev(void);
|
|
void rte_dpaa2_free_dpci_dev(struct dpaa2_dpci_dev *dpci);
|
|
|
|
#endif
|