numam-dpdk/drivers/net/avf/base/avf_osdep.h
Ilya Maximets fd61c749db drivers/net: use sleep delay by default for Intel NICs
NICs uses different delays up to a second during their
configuration. It makes no sense to busy-wait so long wasting
CPU cycles and preventing any other threads to execute on the
same CPU core. These busy polling are the rudiments that came
from the kernel drivers where you can not sleep in interrupt
context, but as we're in userspace, we're able and should
sleep to allow other threads to run.
Delays never called on rx/tx path, so this should not affect
performance.

Signed-off-by: Ilya Maximets <i.maximets@samsung.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
2018-10-26 22:14:06 +02:00

188 lines
4.7 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Intel Corporation
*/
#ifndef _AVF_OSDEP_H_
#define _AVF_OSDEP_H_
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdarg.h>
#include <rte_common.h>
#include <rte_memcpy.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include <rte_byteorder.h>
#include <rte_cycles.h>
#include <rte_spinlock.h>
#include <rte_log.h>
#include <rte_io.h>
#include "../avf_log.h"
#define INLINE inline
#define STATIC static
typedef uint8_t u8;
typedef int8_t s8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint64_t u64;
#define __iomem
#define hw_dbg(hw, S, A...) do {} while (0)
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
#define lower_32_bits(n) ((u32)(n))
#ifndef ETH_ADDR_LEN
#define ETH_ADDR_LEN 6
#endif
#ifndef __le16
#define __le16 uint16_t
#endif
#ifndef __le32
#define __le32 uint32_t
#endif
#ifndef __le64
#define __le64 uint64_t
#endif
#ifndef __be16
#define __be16 uint16_t
#endif
#ifndef __be32
#define __be32 uint32_t
#endif
#ifndef __be64
#define __be64 uint64_t
#endif
#define FALSE 0
#define TRUE 1
#define false 0
#define true 1
#define min(a,b) RTE_MIN(a,b)
#define max(a,b) RTE_MAX(a,b)
#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
#define ASSERT(x) if(!(x)) rte_panic("AVF: x")
#define DEBUGOUT(S) PMD_DRV_LOG_RAW(DEBUG, S)
#define DEBUGOUT2(S, A...) PMD_DRV_LOG_RAW(DEBUG, S, ##A)
#define DEBUGFUNC(F) DEBUGOUT(F "\n")
#define CPU_TO_LE16(o) rte_cpu_to_le_16(o)
#define CPU_TO_LE32(s) rte_cpu_to_le_32(s)
#define CPU_TO_LE64(h) rte_cpu_to_le_64(h)
#define LE16_TO_CPU(a) rte_le_to_cpu_16(a)
#define LE32_TO_CPU(c) rte_le_to_cpu_32(c)
#define LE64_TO_CPU(k) rte_le_to_cpu_64(k)
#define cpu_to_le16(o) rte_cpu_to_le_16(o)
#define cpu_to_le32(s) rte_cpu_to_le_32(s)
#define cpu_to_le64(h) rte_cpu_to_le_64(h)
#define le16_to_cpu(a) rte_le_to_cpu_16(a)
#define le32_to_cpu(c) rte_le_to_cpu_32(c)
#define le64_to_cpu(k) rte_le_to_cpu_64(k)
#define avf_memset(a, b, c, d) memset((a), (b), (c))
#define avf_memcpy(a, b, c, d) rte_memcpy((a), (b), (c))
#define avf_usec_delay(x) rte_delay_us_sleep(x)
#define avf_msec_delay(x) avf_usec_delay(1000 * (x))
#define AVF_PCI_REG(reg) rte_read32(reg)
#define AVF_PCI_REG_ADDR(a, reg) \
((volatile uint32_t *)((char *)(a)->hw_addr + (reg)))
#define AVF_PCI_REG_WRITE(reg, value) \
rte_write32((rte_cpu_to_le_32(value)), reg)
#define AVF_PCI_REG_WRITE_RELAXED(reg, value) \
rte_write32_relaxed((rte_cpu_to_le_32(value)), reg)
static inline
uint32_t avf_read_addr(volatile void *addr)
{
return rte_le_to_cpu_32(AVF_PCI_REG(addr));
}
#define AVF_READ_REG(hw, reg) \
avf_read_addr(AVF_PCI_REG_ADDR((hw), (reg)))
#define AVF_WRITE_REG(hw, reg, value) \
AVF_PCI_REG_WRITE(AVF_PCI_REG_ADDR((hw), (reg)), (value))
#define AVF_WRITE_FLUSH(a) \
AVF_READ_REG(a, AVFGEN_RSTAT)
#define rd32(a, reg) avf_read_addr(AVF_PCI_REG_ADDR((a), (reg)))
#define wr32(a, reg, value) \
AVF_PCI_REG_WRITE(AVF_PCI_REG_ADDR((a), (reg)), (value))
#define ARRAY_SIZE(arr) (sizeof(arr)/sizeof(arr[0]))
#define avf_debug(h, m, s, ...) \
do { \
if (((m) & (h)->debug_mask)) \
PMD_DRV_LOG_RAW(DEBUG, "avf %02x.%x " s, \
(h)->bus.device, (h)->bus.func, \
##__VA_ARGS__); \
} while (0)
/* memory allocation tracking */
struct avf_dma_mem {
void *va;
u64 pa;
u32 size;
const void *zone;
} __attribute__((packed));
struct avf_virt_mem {
void *va;
u32 size;
} __attribute__((packed));
/* SW spinlock */
struct avf_spinlock {
rte_spinlock_t spinlock;
};
#define avf_allocate_dma_mem(h, m, unused, s, a) \
avf_allocate_dma_mem_d(h, m, s, a)
#define avf_free_dma_mem(h, m) avf_free_dma_mem_d(h, m)
#define avf_allocate_virt_mem(h, m, s) avf_allocate_virt_mem_d(h, m, s)
#define avf_free_virt_mem(h, m) avf_free_virt_mem_d(h, m)
static inline void
avf_init_spinlock_d(struct avf_spinlock *sp)
{
rte_spinlock_init(&sp->spinlock);
}
static inline void
avf_acquire_spinlock_d(struct avf_spinlock *sp)
{
rte_spinlock_lock(&sp->spinlock);
}
static inline void
avf_release_spinlock_d(struct avf_spinlock *sp)
{
rte_spinlock_unlock(&sp->spinlock);
}
static inline void
avf_destroy_spinlock_d(__rte_unused struct avf_spinlock *sp)
{
}
#define avf_init_spinlock(_sp) avf_init_spinlock_d(_sp)
#define avf_acquire_spinlock(_sp) avf_acquire_spinlock_d(_sp)
#define avf_release_spinlock(_sp) avf_release_spinlock_d(_sp)
#define avf_destroy_spinlock(_sp) avf_destroy_spinlock_d(_sp)
#endif /* _AVF_OSDEP_H_ */