68f7f31aaa
rte_timer_subsystem_initialized is a global variable that can be
accessed by multiple processes simultaneously. Hence, any access
to rte_timer_subsystem_initialized should be protected by
rte_mcfg_timer_lock.
Fixes: f9d6cd8bfe
("timer: fix resource leak in finalize")
Cc: stable@dpdk.org
Signed-off-by: Honnappa Nagarahalli <honnappa.nagarahalli@arm.com>
Reviewed-by: Gavin Hu <gavin.hu@arm.com>
Reviewed-by: Phil Yang <phil.yang@arm.com>
Acked-by: Erik Gabriel Carrillo <erik.g.carrillo@intel.com>
1054 lines
28 KiB
C
1054 lines
28 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <inttypes.h>
|
|
#include <assert.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_atomic.h>
|
|
#include <rte_common.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_branch_prediction.h>
|
|
#include <rte_spinlock.h>
|
|
#include <rte_random.h>
|
|
#include <rte_pause.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_malloc.h>
|
|
#include <rte_errno.h>
|
|
|
|
#include "rte_timer.h"
|
|
|
|
/**
|
|
* Per-lcore info for timers.
|
|
*/
|
|
struct priv_timer {
|
|
struct rte_timer pending_head; /**< dummy timer instance to head up list */
|
|
rte_spinlock_t list_lock; /**< lock to protect list access */
|
|
|
|
/** per-core variable that true if a timer was updated on this
|
|
* core since last reset of the variable */
|
|
int updated;
|
|
|
|
/** track the current depth of the skiplist */
|
|
unsigned curr_skiplist_depth;
|
|
|
|
unsigned prev_lcore; /**< used for lcore round robin */
|
|
|
|
/** running timer on this lcore now */
|
|
struct rte_timer *running_tim;
|
|
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
/** per-lcore statistics */
|
|
struct rte_timer_debug_stats stats;
|
|
#endif
|
|
} __rte_cache_aligned;
|
|
|
|
#define FL_ALLOCATED (1 << 0)
|
|
struct rte_timer_data {
|
|
struct priv_timer priv_timer[RTE_MAX_LCORE];
|
|
uint8_t internal_flags;
|
|
};
|
|
|
|
#define RTE_MAX_DATA_ELS 64
|
|
static const struct rte_memzone *rte_timer_data_mz;
|
|
static int *volatile rte_timer_mz_refcnt;
|
|
static struct rte_timer_data *rte_timer_data_arr;
|
|
static const uint32_t default_data_id;
|
|
static uint32_t rte_timer_subsystem_initialized;
|
|
|
|
/* when debug is enabled, store some statistics */
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
#define __TIMER_STAT_ADD(priv_timer, name, n) do { \
|
|
unsigned __lcore_id = rte_lcore_id(); \
|
|
if (__lcore_id < RTE_MAX_LCORE) \
|
|
priv_timer[__lcore_id].stats.name += (n); \
|
|
} while(0)
|
|
#else
|
|
#define __TIMER_STAT_ADD(priv_timer, name, n) do {} while (0)
|
|
#endif
|
|
|
|
static inline int
|
|
timer_data_valid(uint32_t id)
|
|
{
|
|
return rte_timer_data_arr &&
|
|
(rte_timer_data_arr[id].internal_flags & FL_ALLOCATED);
|
|
}
|
|
|
|
/* validate ID and retrieve timer data pointer, or return error value */
|
|
#define TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, retval) do { \
|
|
if (id >= RTE_MAX_DATA_ELS || !timer_data_valid(id)) \
|
|
return retval; \
|
|
timer_data = &rte_timer_data_arr[id]; \
|
|
} while (0)
|
|
|
|
int
|
|
rte_timer_data_alloc(uint32_t *id_ptr)
|
|
{
|
|
int i;
|
|
struct rte_timer_data *data;
|
|
|
|
if (!rte_timer_subsystem_initialized)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
|
|
data = &rte_timer_data_arr[i];
|
|
if (!(data->internal_flags & FL_ALLOCATED)) {
|
|
data->internal_flags |= FL_ALLOCATED;
|
|
|
|
if (id_ptr)
|
|
*id_ptr = i;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENOSPC;
|
|
}
|
|
|
|
int
|
|
rte_timer_data_dealloc(uint32_t id)
|
|
{
|
|
struct rte_timer_data *timer_data;
|
|
TIMER_DATA_VALID_GET_OR_ERR_RET(id, timer_data, -EINVAL);
|
|
|
|
timer_data->internal_flags &= ~(FL_ALLOCATED);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Init the timer library. Allocate an array of timer data structs in shared
|
|
* memory, and allocate the zeroth entry for use with original timer
|
|
* APIs. Since the intersection of the sets of lcore ids in primary and
|
|
* secondary processes should be empty, the zeroth entry can be shared by
|
|
* multiple processes.
|
|
*/
|
|
int
|
|
rte_timer_subsystem_init(void)
|
|
{
|
|
const struct rte_memzone *mz;
|
|
struct rte_timer_data *data;
|
|
int i, lcore_id;
|
|
static const char *mz_name = "rte_timer_mz";
|
|
const size_t data_arr_size =
|
|
RTE_MAX_DATA_ELS * sizeof(*rte_timer_data_arr);
|
|
const size_t mem_size = data_arr_size + sizeof(*rte_timer_mz_refcnt);
|
|
bool do_full_init = true;
|
|
|
|
rte_mcfg_timer_lock();
|
|
|
|
if (rte_timer_subsystem_initialized) {
|
|
rte_mcfg_timer_unlock();
|
|
return -EALREADY;
|
|
}
|
|
|
|
mz = rte_memzone_lookup(mz_name);
|
|
if (mz == NULL) {
|
|
mz = rte_memzone_reserve_aligned(mz_name, mem_size,
|
|
SOCKET_ID_ANY, 0, RTE_CACHE_LINE_SIZE);
|
|
if (mz == NULL) {
|
|
rte_mcfg_timer_unlock();
|
|
return -ENOMEM;
|
|
}
|
|
do_full_init = true;
|
|
} else
|
|
do_full_init = false;
|
|
|
|
rte_timer_data_mz = mz;
|
|
rte_timer_data_arr = mz->addr;
|
|
rte_timer_mz_refcnt = (void *)((char *)mz->addr + data_arr_size);
|
|
|
|
if (do_full_init) {
|
|
for (i = 0; i < RTE_MAX_DATA_ELS; i++) {
|
|
data = &rte_timer_data_arr[i];
|
|
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE;
|
|
lcore_id++) {
|
|
rte_spinlock_init(
|
|
&data->priv_timer[lcore_id].list_lock);
|
|
data->priv_timer[lcore_id].prev_lcore =
|
|
lcore_id;
|
|
}
|
|
}
|
|
}
|
|
|
|
rte_timer_data_arr[default_data_id].internal_flags |= FL_ALLOCATED;
|
|
(*rte_timer_mz_refcnt)++;
|
|
|
|
rte_timer_subsystem_initialized = 1;
|
|
|
|
rte_mcfg_timer_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
rte_timer_subsystem_finalize(void)
|
|
{
|
|
rte_mcfg_timer_lock();
|
|
|
|
if (!rte_timer_subsystem_initialized) {
|
|
rte_mcfg_timer_unlock();
|
|
return;
|
|
}
|
|
|
|
if (--(*rte_timer_mz_refcnt) == 0)
|
|
rte_memzone_free(rte_timer_data_mz);
|
|
|
|
rte_timer_subsystem_initialized = 0;
|
|
|
|
rte_mcfg_timer_unlock();
|
|
}
|
|
|
|
/* Initialize the timer handle tim for use */
|
|
void
|
|
rte_timer_init(struct rte_timer *tim)
|
|
{
|
|
union rte_timer_status status;
|
|
|
|
status.state = RTE_TIMER_STOP;
|
|
status.owner = RTE_TIMER_NO_OWNER;
|
|
tim->status.u32 = status.u32;
|
|
}
|
|
|
|
/*
|
|
* if timer is pending or stopped (or running on the same core than
|
|
* us), mark timer as configuring, and on success return the previous
|
|
* status of the timer
|
|
*/
|
|
static int
|
|
timer_set_config_state(struct rte_timer *tim,
|
|
union rte_timer_status *ret_prev_status,
|
|
struct priv_timer *priv_timer)
|
|
{
|
|
union rte_timer_status prev_status, status;
|
|
int success = 0;
|
|
unsigned lcore_id;
|
|
|
|
lcore_id = rte_lcore_id();
|
|
|
|
/* wait that the timer is in correct status before update,
|
|
* and mark it as being configured */
|
|
while (success == 0) {
|
|
prev_status.u32 = tim->status.u32;
|
|
|
|
/* timer is running on another core
|
|
* or ready to run on local core, exit
|
|
*/
|
|
if (prev_status.state == RTE_TIMER_RUNNING &&
|
|
(prev_status.owner != (uint16_t)lcore_id ||
|
|
tim != priv_timer[lcore_id].running_tim))
|
|
return -1;
|
|
|
|
/* timer is being configured on another core */
|
|
if (prev_status.state == RTE_TIMER_CONFIG)
|
|
return -1;
|
|
|
|
/* here, we know that timer is stopped or pending,
|
|
* mark it atomically as being configured */
|
|
status.state = RTE_TIMER_CONFIG;
|
|
status.owner = (int16_t)lcore_id;
|
|
success = rte_atomic32_cmpset(&tim->status.u32,
|
|
prev_status.u32,
|
|
status.u32);
|
|
}
|
|
|
|
ret_prev_status->u32 = prev_status.u32;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* if timer is pending, mark timer as running
|
|
*/
|
|
static int
|
|
timer_set_running_state(struct rte_timer *tim)
|
|
{
|
|
union rte_timer_status prev_status, status;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
int success = 0;
|
|
|
|
/* wait that the timer is in correct status before update,
|
|
* and mark it as running */
|
|
while (success == 0) {
|
|
prev_status.u32 = tim->status.u32;
|
|
|
|
/* timer is not pending anymore */
|
|
if (prev_status.state != RTE_TIMER_PENDING)
|
|
return -1;
|
|
|
|
/* here, we know that timer is stopped or pending,
|
|
* mark it atomically as being configured */
|
|
status.state = RTE_TIMER_RUNNING;
|
|
status.owner = (int16_t)lcore_id;
|
|
success = rte_atomic32_cmpset(&tim->status.u32,
|
|
prev_status.u32,
|
|
status.u32);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return a skiplist level for a new entry.
|
|
* This probabilistically gives a level with p=1/4 that an entry at level n
|
|
* will also appear at level n+1.
|
|
*/
|
|
static uint32_t
|
|
timer_get_skiplist_level(unsigned curr_depth)
|
|
{
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
static uint32_t i, count = 0;
|
|
static uint32_t levels[MAX_SKIPLIST_DEPTH] = {0};
|
|
#endif
|
|
|
|
/* probability value is 1/4, i.e. all at level 0, 1 in 4 is at level 1,
|
|
* 1 in 16 at level 2, 1 in 64 at level 3, etc. Calculated using lowest
|
|
* bit position of a (pseudo)random number.
|
|
*/
|
|
uint32_t rand = rte_rand() & (UINT32_MAX - 1);
|
|
uint32_t level = rand == 0 ? MAX_SKIPLIST_DEPTH : (rte_bsf32(rand)-1) / 2;
|
|
|
|
/* limit the levels used to one above our current level, so we don't,
|
|
* for instance, have a level 0 and a level 7 without anything between
|
|
*/
|
|
if (level > curr_depth)
|
|
level = curr_depth;
|
|
if (level >= MAX_SKIPLIST_DEPTH)
|
|
level = MAX_SKIPLIST_DEPTH-1;
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
count ++;
|
|
levels[level]++;
|
|
if (count % 10000 == 0)
|
|
for (i = 0; i < MAX_SKIPLIST_DEPTH; i++)
|
|
printf("Level %u: %u\n", (unsigned)i, (unsigned)levels[i]);
|
|
#endif
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* For a given time value, get the entries at each level which
|
|
* are <= that time value.
|
|
*/
|
|
static void
|
|
timer_get_prev_entries(uint64_t time_val, unsigned tim_lcore,
|
|
struct rte_timer **prev, struct priv_timer *priv_timer)
|
|
{
|
|
unsigned lvl = priv_timer[tim_lcore].curr_skiplist_depth;
|
|
prev[lvl] = &priv_timer[tim_lcore].pending_head;
|
|
while(lvl != 0) {
|
|
lvl--;
|
|
prev[lvl] = prev[lvl+1];
|
|
while (prev[lvl]->sl_next[lvl] &&
|
|
prev[lvl]->sl_next[lvl]->expire <= time_val)
|
|
prev[lvl] = prev[lvl]->sl_next[lvl];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given a timer node in the skiplist, find the previous entries for it at
|
|
* all skiplist levels.
|
|
*/
|
|
static void
|
|
timer_get_prev_entries_for_node(struct rte_timer *tim, unsigned tim_lcore,
|
|
struct rte_timer **prev,
|
|
struct priv_timer *priv_timer)
|
|
{
|
|
int i;
|
|
|
|
/* to get a specific entry in the list, look for just lower than the time
|
|
* values, and then increment on each level individually if necessary
|
|
*/
|
|
timer_get_prev_entries(tim->expire - 1, tim_lcore, prev, priv_timer);
|
|
for (i = priv_timer[tim_lcore].curr_skiplist_depth - 1; i >= 0; i--) {
|
|
while (prev[i]->sl_next[i] != NULL &&
|
|
prev[i]->sl_next[i] != tim &&
|
|
prev[i]->sl_next[i]->expire <= tim->expire)
|
|
prev[i] = prev[i]->sl_next[i];
|
|
}
|
|
}
|
|
|
|
/* call with lock held as necessary
|
|
* add in list
|
|
* timer must be in config state
|
|
* timer must not be in a list
|
|
*/
|
|
static void
|
|
timer_add(struct rte_timer *tim, unsigned int tim_lcore,
|
|
struct priv_timer *priv_timer)
|
|
{
|
|
unsigned lvl;
|
|
struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
|
|
|
|
/* find where exactly this element goes in the list of elements
|
|
* for each depth. */
|
|
timer_get_prev_entries(tim->expire, tim_lcore, prev, priv_timer);
|
|
|
|
/* now assign it a new level and add at that level */
|
|
const unsigned tim_level = timer_get_skiplist_level(
|
|
priv_timer[tim_lcore].curr_skiplist_depth);
|
|
if (tim_level == priv_timer[tim_lcore].curr_skiplist_depth)
|
|
priv_timer[tim_lcore].curr_skiplist_depth++;
|
|
|
|
lvl = tim_level;
|
|
while (lvl > 0) {
|
|
tim->sl_next[lvl] = prev[lvl]->sl_next[lvl];
|
|
prev[lvl]->sl_next[lvl] = tim;
|
|
lvl--;
|
|
}
|
|
tim->sl_next[0] = prev[0]->sl_next[0];
|
|
prev[0]->sl_next[0] = tim;
|
|
|
|
/* save the lowest list entry into the expire field of the dummy hdr
|
|
* NOTE: this is not atomic on 32-bit*/
|
|
priv_timer[tim_lcore].pending_head.expire = priv_timer[tim_lcore].\
|
|
pending_head.sl_next[0]->expire;
|
|
}
|
|
|
|
/*
|
|
* del from list, lock if needed
|
|
* timer must be in config state
|
|
* timer must be in a list
|
|
*/
|
|
static void
|
|
timer_del(struct rte_timer *tim, union rte_timer_status prev_status,
|
|
int local_is_locked, struct priv_timer *priv_timer)
|
|
{
|
|
unsigned lcore_id = rte_lcore_id();
|
|
unsigned prev_owner = prev_status.owner;
|
|
int i;
|
|
struct rte_timer *prev[MAX_SKIPLIST_DEPTH+1];
|
|
|
|
/* if timer needs is pending another core, we need to lock the
|
|
* list; if it is on local core, we need to lock if we are not
|
|
* called from rte_timer_manage() */
|
|
if (prev_owner != lcore_id || !local_is_locked)
|
|
rte_spinlock_lock(&priv_timer[prev_owner].list_lock);
|
|
|
|
/* save the lowest list entry into the expire field of the dummy hdr.
|
|
* NOTE: this is not atomic on 32-bit */
|
|
if (tim == priv_timer[prev_owner].pending_head.sl_next[0])
|
|
priv_timer[prev_owner].pending_head.expire =
|
|
((tim->sl_next[0] == NULL) ? 0 : tim->sl_next[0]->expire);
|
|
|
|
/* adjust pointers from previous entries to point past this */
|
|
timer_get_prev_entries_for_node(tim, prev_owner, prev, priv_timer);
|
|
for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--) {
|
|
if (prev[i]->sl_next[i] == tim)
|
|
prev[i]->sl_next[i] = tim->sl_next[i];
|
|
}
|
|
|
|
/* in case we deleted last entry at a level, adjust down max level */
|
|
for (i = priv_timer[prev_owner].curr_skiplist_depth - 1; i >= 0; i--)
|
|
if (priv_timer[prev_owner].pending_head.sl_next[i] == NULL)
|
|
priv_timer[prev_owner].curr_skiplist_depth --;
|
|
else
|
|
break;
|
|
|
|
if (prev_owner != lcore_id || !local_is_locked)
|
|
rte_spinlock_unlock(&priv_timer[prev_owner].list_lock);
|
|
}
|
|
|
|
/* Reset and start the timer associated with the timer handle (private func) */
|
|
static int
|
|
__rte_timer_reset(struct rte_timer *tim, uint64_t expire,
|
|
uint64_t period, unsigned tim_lcore,
|
|
rte_timer_cb_t fct, void *arg,
|
|
int local_is_locked,
|
|
struct rte_timer_data *timer_data)
|
|
{
|
|
union rte_timer_status prev_status, status;
|
|
int ret;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
struct priv_timer *priv_timer = timer_data->priv_timer;
|
|
|
|
/* round robin for tim_lcore */
|
|
if (tim_lcore == (unsigned)LCORE_ID_ANY) {
|
|
if (lcore_id < RTE_MAX_LCORE) {
|
|
/* EAL thread with valid lcore_id */
|
|
tim_lcore = rte_get_next_lcore(
|
|
priv_timer[lcore_id].prev_lcore,
|
|
0, 1);
|
|
priv_timer[lcore_id].prev_lcore = tim_lcore;
|
|
} else
|
|
/* non-EAL thread do not run rte_timer_manage(),
|
|
* so schedule the timer on the first enabled lcore. */
|
|
tim_lcore = rte_get_next_lcore(LCORE_ID_ANY, 0, 1);
|
|
}
|
|
|
|
/* wait that the timer is in correct status before update,
|
|
* and mark it as being configured */
|
|
ret = timer_set_config_state(tim, &prev_status, priv_timer);
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
__TIMER_STAT_ADD(priv_timer, reset, 1);
|
|
if (prev_status.state == RTE_TIMER_RUNNING &&
|
|
lcore_id < RTE_MAX_LCORE) {
|
|
priv_timer[lcore_id].updated = 1;
|
|
}
|
|
|
|
/* remove it from list */
|
|
if (prev_status.state == RTE_TIMER_PENDING) {
|
|
timer_del(tim, prev_status, local_is_locked, priv_timer);
|
|
__TIMER_STAT_ADD(priv_timer, pending, -1);
|
|
}
|
|
|
|
tim->period = period;
|
|
tim->expire = expire;
|
|
tim->f = fct;
|
|
tim->arg = arg;
|
|
|
|
/* if timer needs to be scheduled on another core, we need to
|
|
* lock the destination list; if it is on local core, we need to lock if
|
|
* we are not called from rte_timer_manage()
|
|
*/
|
|
if (tim_lcore != lcore_id || !local_is_locked)
|
|
rte_spinlock_lock(&priv_timer[tim_lcore].list_lock);
|
|
|
|
__TIMER_STAT_ADD(priv_timer, pending, 1);
|
|
timer_add(tim, tim_lcore, priv_timer);
|
|
|
|
/* update state: as we are in CONFIG state, only us can modify
|
|
* the state so we don't need to use cmpset() here */
|
|
rte_wmb();
|
|
status.state = RTE_TIMER_PENDING;
|
|
status.owner = (int16_t)tim_lcore;
|
|
tim->status.u32 = status.u32;
|
|
|
|
if (tim_lcore != lcore_id || !local_is_locked)
|
|
rte_spinlock_unlock(&priv_timer[tim_lcore].list_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Reset and start the timer associated with the timer handle tim */
|
|
int
|
|
rte_timer_reset(struct rte_timer *tim, uint64_t ticks,
|
|
enum rte_timer_type type, unsigned int tim_lcore,
|
|
rte_timer_cb_t fct, void *arg)
|
|
{
|
|
return rte_timer_alt_reset(default_data_id, tim, ticks, type,
|
|
tim_lcore, fct, arg);
|
|
}
|
|
|
|
int
|
|
rte_timer_alt_reset(uint32_t timer_data_id, struct rte_timer *tim,
|
|
uint64_t ticks, enum rte_timer_type type,
|
|
unsigned int tim_lcore, rte_timer_cb_t fct, void *arg)
|
|
{
|
|
uint64_t cur_time = rte_get_timer_cycles();
|
|
uint64_t period;
|
|
struct rte_timer_data *timer_data;
|
|
|
|
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
|
|
|
|
if (type == PERIODICAL)
|
|
period = ticks;
|
|
else
|
|
period = 0;
|
|
|
|
return __rte_timer_reset(tim, cur_time + ticks, period, tim_lcore,
|
|
fct, arg, 0, timer_data);
|
|
}
|
|
|
|
/* loop until rte_timer_reset() succeed */
|
|
void
|
|
rte_timer_reset_sync(struct rte_timer *tim, uint64_t ticks,
|
|
enum rte_timer_type type, unsigned tim_lcore,
|
|
rte_timer_cb_t fct, void *arg)
|
|
{
|
|
while (rte_timer_reset(tim, ticks, type, tim_lcore,
|
|
fct, arg) != 0)
|
|
rte_pause();
|
|
}
|
|
|
|
static int
|
|
__rte_timer_stop(struct rte_timer *tim, int local_is_locked,
|
|
struct rte_timer_data *timer_data)
|
|
{
|
|
union rte_timer_status prev_status, status;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
int ret;
|
|
struct priv_timer *priv_timer = timer_data->priv_timer;
|
|
|
|
/* wait that the timer is in correct status before update,
|
|
* and mark it as being configured */
|
|
ret = timer_set_config_state(tim, &prev_status, priv_timer);
|
|
if (ret < 0)
|
|
return -1;
|
|
|
|
__TIMER_STAT_ADD(priv_timer, stop, 1);
|
|
if (prev_status.state == RTE_TIMER_RUNNING &&
|
|
lcore_id < RTE_MAX_LCORE) {
|
|
priv_timer[lcore_id].updated = 1;
|
|
}
|
|
|
|
/* remove it from list */
|
|
if (prev_status.state == RTE_TIMER_PENDING) {
|
|
timer_del(tim, prev_status, local_is_locked, priv_timer);
|
|
__TIMER_STAT_ADD(priv_timer, pending, -1);
|
|
}
|
|
|
|
/* mark timer as stopped */
|
|
rte_wmb();
|
|
status.state = RTE_TIMER_STOP;
|
|
status.owner = RTE_TIMER_NO_OWNER;
|
|
tim->status.u32 = status.u32;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Stop the timer associated with the timer handle tim */
|
|
int
|
|
rte_timer_stop(struct rte_timer *tim)
|
|
{
|
|
return rte_timer_alt_stop(default_data_id, tim);
|
|
}
|
|
|
|
int
|
|
rte_timer_alt_stop(uint32_t timer_data_id, struct rte_timer *tim)
|
|
{
|
|
struct rte_timer_data *timer_data;
|
|
|
|
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
|
|
|
|
return __rte_timer_stop(tim, 0, timer_data);
|
|
}
|
|
|
|
/* loop until rte_timer_stop() succeed */
|
|
void
|
|
rte_timer_stop_sync(struct rte_timer *tim)
|
|
{
|
|
while (rte_timer_stop(tim) != 0)
|
|
rte_pause();
|
|
}
|
|
|
|
/* Test the PENDING status of the timer handle tim */
|
|
int
|
|
rte_timer_pending(struct rte_timer *tim)
|
|
{
|
|
return tim->status.state == RTE_TIMER_PENDING;
|
|
}
|
|
|
|
/* must be called periodically, run all timer that expired */
|
|
static void
|
|
__rte_timer_manage(struct rte_timer_data *timer_data)
|
|
{
|
|
union rte_timer_status status;
|
|
struct rte_timer *tim, *next_tim;
|
|
struct rte_timer *run_first_tim, **pprev;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
|
|
uint64_t cur_time;
|
|
int i, ret;
|
|
struct priv_timer *priv_timer = timer_data->priv_timer;
|
|
|
|
/* timer manager only runs on EAL thread with valid lcore_id */
|
|
assert(lcore_id < RTE_MAX_LCORE);
|
|
|
|
__TIMER_STAT_ADD(priv_timer, manage, 1);
|
|
/* optimize for the case where per-cpu list is empty */
|
|
if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL)
|
|
return;
|
|
cur_time = rte_get_timer_cycles();
|
|
|
|
#ifdef RTE_ARCH_64
|
|
/* on 64-bit the value cached in the pending_head.expired will be
|
|
* updated atomically, so we can consult that for a quick check here
|
|
* outside the lock */
|
|
if (likely(priv_timer[lcore_id].pending_head.expire > cur_time))
|
|
return;
|
|
#endif
|
|
|
|
/* browse ordered list, add expired timers in 'expired' list */
|
|
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
|
|
|
|
/* if nothing to do just unlock and return */
|
|
if (priv_timer[lcore_id].pending_head.sl_next[0] == NULL ||
|
|
priv_timer[lcore_id].pending_head.sl_next[0]->expire > cur_time) {
|
|
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
|
|
return;
|
|
}
|
|
|
|
/* save start of list of expired timers */
|
|
tim = priv_timer[lcore_id].pending_head.sl_next[0];
|
|
|
|
/* break the existing list at current time point */
|
|
timer_get_prev_entries(cur_time, lcore_id, prev, priv_timer);
|
|
for (i = priv_timer[lcore_id].curr_skiplist_depth -1; i >= 0; i--) {
|
|
if (prev[i] == &priv_timer[lcore_id].pending_head)
|
|
continue;
|
|
priv_timer[lcore_id].pending_head.sl_next[i] =
|
|
prev[i]->sl_next[i];
|
|
if (prev[i]->sl_next[i] == NULL)
|
|
priv_timer[lcore_id].curr_skiplist_depth--;
|
|
prev[i] ->sl_next[i] = NULL;
|
|
}
|
|
|
|
/* transition run-list from PENDING to RUNNING */
|
|
run_first_tim = tim;
|
|
pprev = &run_first_tim;
|
|
|
|
for ( ; tim != NULL; tim = next_tim) {
|
|
next_tim = tim->sl_next[0];
|
|
|
|
ret = timer_set_running_state(tim);
|
|
if (likely(ret == 0)) {
|
|
pprev = &tim->sl_next[0];
|
|
} else {
|
|
/* another core is trying to re-config this one,
|
|
* remove it from local expired list
|
|
*/
|
|
*pprev = next_tim;
|
|
}
|
|
}
|
|
|
|
/* update the next to expire timer value */
|
|
priv_timer[lcore_id].pending_head.expire =
|
|
(priv_timer[lcore_id].pending_head.sl_next[0] == NULL) ? 0 :
|
|
priv_timer[lcore_id].pending_head.sl_next[0]->expire;
|
|
|
|
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
|
|
|
|
/* now scan expired list and call callbacks */
|
|
for (tim = run_first_tim; tim != NULL; tim = next_tim) {
|
|
next_tim = tim->sl_next[0];
|
|
priv_timer[lcore_id].updated = 0;
|
|
priv_timer[lcore_id].running_tim = tim;
|
|
|
|
/* execute callback function with list unlocked */
|
|
tim->f(tim, tim->arg);
|
|
|
|
__TIMER_STAT_ADD(priv_timer, pending, -1);
|
|
/* the timer was stopped or reloaded by the callback
|
|
* function, we have nothing to do here */
|
|
if (priv_timer[lcore_id].updated == 1)
|
|
continue;
|
|
|
|
if (tim->period == 0) {
|
|
/* remove from done list and mark timer as stopped */
|
|
status.state = RTE_TIMER_STOP;
|
|
status.owner = RTE_TIMER_NO_OWNER;
|
|
rte_wmb();
|
|
tim->status.u32 = status.u32;
|
|
}
|
|
else {
|
|
/* keep it in list and mark timer as pending */
|
|
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
|
|
status.state = RTE_TIMER_PENDING;
|
|
__TIMER_STAT_ADD(priv_timer, pending, 1);
|
|
status.owner = (int16_t)lcore_id;
|
|
rte_wmb();
|
|
tim->status.u32 = status.u32;
|
|
__rte_timer_reset(tim, tim->expire + tim->period,
|
|
tim->period, lcore_id, tim->f, tim->arg, 1,
|
|
timer_data);
|
|
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
|
|
}
|
|
}
|
|
priv_timer[lcore_id].running_tim = NULL;
|
|
}
|
|
|
|
int
|
|
rte_timer_manage(void)
|
|
{
|
|
struct rte_timer_data *timer_data;
|
|
|
|
TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL);
|
|
|
|
__rte_timer_manage(timer_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
rte_timer_alt_manage(uint32_t timer_data_id,
|
|
unsigned int *poll_lcores,
|
|
int nb_poll_lcores,
|
|
rte_timer_alt_manage_cb_t f)
|
|
{
|
|
unsigned int default_poll_lcores[] = {rte_lcore_id()};
|
|
union rte_timer_status status;
|
|
struct rte_timer *tim, *next_tim, **pprev;
|
|
struct rte_timer *run_first_tims[RTE_MAX_LCORE];
|
|
unsigned int this_lcore = rte_lcore_id();
|
|
struct rte_timer *prev[MAX_SKIPLIST_DEPTH + 1];
|
|
uint64_t cur_time;
|
|
int i, j, ret;
|
|
int nb_runlists = 0;
|
|
struct rte_timer_data *data;
|
|
struct priv_timer *privp;
|
|
uint32_t poll_lcore;
|
|
|
|
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, data, -EINVAL);
|
|
|
|
/* timer manager only runs on EAL thread with valid lcore_id */
|
|
assert(this_lcore < RTE_MAX_LCORE);
|
|
|
|
__TIMER_STAT_ADD(data->priv_timer, manage, 1);
|
|
|
|
if (poll_lcores == NULL) {
|
|
poll_lcores = default_poll_lcores;
|
|
nb_poll_lcores = RTE_DIM(default_poll_lcores);
|
|
}
|
|
|
|
for (i = 0; i < nb_poll_lcores; i++) {
|
|
poll_lcore = poll_lcores[i];
|
|
privp = &data->priv_timer[poll_lcore];
|
|
|
|
/* optimize for the case where per-cpu list is empty */
|
|
if (privp->pending_head.sl_next[0] == NULL)
|
|
continue;
|
|
cur_time = rte_get_timer_cycles();
|
|
|
|
#ifdef RTE_ARCH_64
|
|
/* on 64-bit the value cached in the pending_head.expired will
|
|
* be updated atomically, so we can consult that for a quick
|
|
* check here outside the lock
|
|
*/
|
|
if (likely(privp->pending_head.expire > cur_time))
|
|
continue;
|
|
#endif
|
|
|
|
/* browse ordered list, add expired timers in 'expired' list */
|
|
rte_spinlock_lock(&privp->list_lock);
|
|
|
|
/* if nothing to do just unlock and return */
|
|
if (privp->pending_head.sl_next[0] == NULL ||
|
|
privp->pending_head.sl_next[0]->expire > cur_time) {
|
|
rte_spinlock_unlock(&privp->list_lock);
|
|
continue;
|
|
}
|
|
|
|
/* save start of list of expired timers */
|
|
tim = privp->pending_head.sl_next[0];
|
|
|
|
/* break the existing list at current time point */
|
|
timer_get_prev_entries(cur_time, poll_lcore, prev,
|
|
data->priv_timer);
|
|
for (j = privp->curr_skiplist_depth - 1; j >= 0; j--) {
|
|
if (prev[j] == &privp->pending_head)
|
|
continue;
|
|
privp->pending_head.sl_next[j] =
|
|
prev[j]->sl_next[j];
|
|
if (prev[j]->sl_next[j] == NULL)
|
|
privp->curr_skiplist_depth--;
|
|
|
|
prev[j]->sl_next[j] = NULL;
|
|
}
|
|
|
|
/* transition run-list from PENDING to RUNNING */
|
|
run_first_tims[nb_runlists] = tim;
|
|
pprev = &run_first_tims[nb_runlists];
|
|
nb_runlists++;
|
|
|
|
for ( ; tim != NULL; tim = next_tim) {
|
|
next_tim = tim->sl_next[0];
|
|
|
|
ret = timer_set_running_state(tim);
|
|
if (likely(ret == 0)) {
|
|
pprev = &tim->sl_next[0];
|
|
} else {
|
|
/* another core is trying to re-config this one,
|
|
* remove it from local expired list
|
|
*/
|
|
*pprev = next_tim;
|
|
}
|
|
}
|
|
|
|
/* update the next to expire timer value */
|
|
privp->pending_head.expire =
|
|
(privp->pending_head.sl_next[0] == NULL) ? 0 :
|
|
privp->pending_head.sl_next[0]->expire;
|
|
|
|
rte_spinlock_unlock(&privp->list_lock);
|
|
}
|
|
|
|
/* Now process the run lists */
|
|
while (1) {
|
|
bool done = true;
|
|
uint64_t min_expire = UINT64_MAX;
|
|
int min_idx = 0;
|
|
|
|
/* Find the next oldest timer to process */
|
|
for (i = 0; i < nb_runlists; i++) {
|
|
tim = run_first_tims[i];
|
|
|
|
if (tim != NULL && tim->expire < min_expire) {
|
|
min_expire = tim->expire;
|
|
min_idx = i;
|
|
done = false;
|
|
}
|
|
}
|
|
|
|
if (done)
|
|
break;
|
|
|
|
tim = run_first_tims[min_idx];
|
|
|
|
/* Move down the runlist from which we picked a timer to
|
|
* execute
|
|
*/
|
|
run_first_tims[min_idx] = run_first_tims[min_idx]->sl_next[0];
|
|
|
|
data->priv_timer[this_lcore].updated = 0;
|
|
data->priv_timer[this_lcore].running_tim = tim;
|
|
|
|
/* Call the provided callback function */
|
|
f(tim);
|
|
|
|
__TIMER_STAT_ADD(data->priv_timer, pending, -1);
|
|
|
|
/* the timer was stopped or reloaded by the callback
|
|
* function, we have nothing to do here
|
|
*/
|
|
if (data->priv_timer[this_lcore].updated == 1)
|
|
continue;
|
|
|
|
if (tim->period == 0) {
|
|
/* remove from done list and mark timer as stopped */
|
|
status.state = RTE_TIMER_STOP;
|
|
status.owner = RTE_TIMER_NO_OWNER;
|
|
rte_wmb();
|
|
tim->status.u32 = status.u32;
|
|
} else {
|
|
/* keep it in list and mark timer as pending */
|
|
rte_spinlock_lock(
|
|
&data->priv_timer[this_lcore].list_lock);
|
|
status.state = RTE_TIMER_PENDING;
|
|
__TIMER_STAT_ADD(data->priv_timer, pending, 1);
|
|
status.owner = (int16_t)this_lcore;
|
|
rte_wmb();
|
|
tim->status.u32 = status.u32;
|
|
__rte_timer_reset(tim, tim->expire + tim->period,
|
|
tim->period, this_lcore, tim->f, tim->arg, 1,
|
|
data);
|
|
rte_spinlock_unlock(
|
|
&data->priv_timer[this_lcore].list_lock);
|
|
}
|
|
|
|
data->priv_timer[this_lcore].running_tim = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Walk pending lists, stopping timers and calling user-specified function */
|
|
int
|
|
rte_timer_stop_all(uint32_t timer_data_id, unsigned int *walk_lcores,
|
|
int nb_walk_lcores,
|
|
rte_timer_stop_all_cb_t f, void *f_arg)
|
|
{
|
|
int i;
|
|
struct priv_timer *priv_timer;
|
|
uint32_t walk_lcore;
|
|
struct rte_timer *tim, *next_tim;
|
|
struct rte_timer_data *timer_data;
|
|
|
|
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
|
|
|
|
for (i = 0; i < nb_walk_lcores; i++) {
|
|
walk_lcore = walk_lcores[i];
|
|
priv_timer = &timer_data->priv_timer[walk_lcore];
|
|
|
|
rte_spinlock_lock(&priv_timer->list_lock);
|
|
|
|
for (tim = priv_timer->pending_head.sl_next[0];
|
|
tim != NULL;
|
|
tim = next_tim) {
|
|
next_tim = tim->sl_next[0];
|
|
|
|
/* Call timer_stop with lock held */
|
|
__rte_timer_stop(tim, 1, timer_data);
|
|
|
|
if (f)
|
|
f(tim, f_arg);
|
|
}
|
|
|
|
rte_spinlock_unlock(&priv_timer->list_lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int64_t
|
|
rte_timer_next_ticks(void)
|
|
{
|
|
unsigned int lcore_id = rte_lcore_id();
|
|
struct rte_timer_data *timer_data;
|
|
struct priv_timer *priv_timer;
|
|
const struct rte_timer *tm;
|
|
uint64_t cur_time;
|
|
int64_t left = -ENOENT;
|
|
|
|
TIMER_DATA_VALID_GET_OR_ERR_RET(default_data_id, timer_data, -EINVAL);
|
|
|
|
priv_timer = timer_data->priv_timer;
|
|
cur_time = rte_get_timer_cycles();
|
|
|
|
rte_spinlock_lock(&priv_timer[lcore_id].list_lock);
|
|
tm = priv_timer[lcore_id].pending_head.sl_next[0];
|
|
if (tm) {
|
|
left = tm->expire - cur_time;
|
|
if (left < 0)
|
|
left = 0;
|
|
}
|
|
rte_spinlock_unlock(&priv_timer[lcore_id].list_lock);
|
|
|
|
return left;
|
|
}
|
|
|
|
/* dump statistics about timers */
|
|
static void
|
|
__rte_timer_dump_stats(struct rte_timer_data *timer_data __rte_unused, FILE *f)
|
|
{
|
|
#ifdef RTE_LIBRTE_TIMER_DEBUG
|
|
struct rte_timer_debug_stats sum;
|
|
unsigned lcore_id;
|
|
struct priv_timer *priv_timer = timer_data->priv_timer;
|
|
|
|
memset(&sum, 0, sizeof(sum));
|
|
for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) {
|
|
sum.reset += priv_timer[lcore_id].stats.reset;
|
|
sum.stop += priv_timer[lcore_id].stats.stop;
|
|
sum.manage += priv_timer[lcore_id].stats.manage;
|
|
sum.pending += priv_timer[lcore_id].stats.pending;
|
|
}
|
|
fprintf(f, "Timer statistics:\n");
|
|
fprintf(f, " reset = %"PRIu64"\n", sum.reset);
|
|
fprintf(f, " stop = %"PRIu64"\n", sum.stop);
|
|
fprintf(f, " manage = %"PRIu64"\n", sum.manage);
|
|
fprintf(f, " pending = %"PRIu64"\n", sum.pending);
|
|
#else
|
|
fprintf(f, "No timer statistics, RTE_LIBRTE_TIMER_DEBUG is disabled\n");
|
|
#endif
|
|
}
|
|
|
|
int
|
|
rte_timer_dump_stats(FILE *f)
|
|
{
|
|
return rte_timer_alt_dump_stats(default_data_id, f);
|
|
}
|
|
|
|
int
|
|
rte_timer_alt_dump_stats(uint32_t timer_data_id __rte_unused, FILE *f)
|
|
{
|
|
struct rte_timer_data *timer_data;
|
|
|
|
TIMER_DATA_VALID_GET_OR_ERR_RET(timer_data_id, timer_data, -EINVAL);
|
|
|
|
__rte_timer_dump_stats(timer_data, f);
|
|
|
|
return 0;
|
|
}
|