6167d81488
Secondary initialization will just sync memory map with primary process. Signed-off-by: Anatoly Burakov <anatoly.burakov@intel.com> Tested-by: Santosh Shukla <santosh.shukla@caviumnetworks.com> Tested-by: Hemant Agrawal <hemant.agrawal@nxp.com> Tested-by: Gowrishankar Muthukrishnan <gowrishankar.m@linux.vnet.ibm.com>
796 lines
20 KiB
C
796 lines
20 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_fbarray.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_eal_memconfig.h>
|
|
#include <rte_errno.h>
|
|
#include <rte_log.h>
|
|
|
|
#include "eal_memalloc.h"
|
|
#include "eal_private.h"
|
|
#include "eal_internal_cfg.h"
|
|
|
|
/*
|
|
* Try to mmap *size bytes in /dev/zero. If it is successful, return the
|
|
* pointer to the mmap'd area and keep *size unmodified. Else, retry
|
|
* with a smaller zone: decrease *size by hugepage_sz until it reaches
|
|
* 0. In this case, return NULL. Note: this function returns an address
|
|
* which is a multiple of hugepage size.
|
|
*/
|
|
|
|
#define MEMSEG_LIST_FMT "memseg-%" PRIu64 "k-%i-%i"
|
|
|
|
static uint64_t baseaddr_offset;
|
|
static uint64_t system_page_sz;
|
|
|
|
void *
|
|
eal_get_virtual_area(void *requested_addr, size_t *size,
|
|
size_t page_sz, int flags, int mmap_flags)
|
|
{
|
|
bool addr_is_hint, allow_shrink, unmap, no_align;
|
|
uint64_t map_sz;
|
|
void *mapped_addr, *aligned_addr;
|
|
|
|
if (system_page_sz == 0)
|
|
system_page_sz = sysconf(_SC_PAGESIZE);
|
|
|
|
mmap_flags |= MAP_PRIVATE | MAP_ANONYMOUS;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Ask a virtual area of 0x%zx bytes\n", *size);
|
|
|
|
addr_is_hint = (flags & EAL_VIRTUAL_AREA_ADDR_IS_HINT) > 0;
|
|
allow_shrink = (flags & EAL_VIRTUAL_AREA_ALLOW_SHRINK) > 0;
|
|
unmap = (flags & EAL_VIRTUAL_AREA_UNMAP) > 0;
|
|
|
|
if (requested_addr == NULL && internal_config.base_virtaddr != 0) {
|
|
requested_addr = (void *) (internal_config.base_virtaddr +
|
|
(size_t)baseaddr_offset);
|
|
requested_addr = RTE_PTR_ALIGN(requested_addr, page_sz);
|
|
addr_is_hint = true;
|
|
}
|
|
|
|
/* if requested address is not aligned by page size, or if requested
|
|
* address is NULL, add page size to requested length as we may get an
|
|
* address that's aligned by system page size, which can be smaller than
|
|
* our requested page size. additionally, we shouldn't try to align if
|
|
* system page size is the same as requested page size.
|
|
*/
|
|
no_align = (requested_addr != NULL &&
|
|
((uintptr_t)requested_addr & (page_sz - 1)) == 0) ||
|
|
page_sz == system_page_sz;
|
|
|
|
do {
|
|
map_sz = no_align ? *size : *size + page_sz;
|
|
|
|
mapped_addr = mmap(requested_addr, map_sz, PROT_READ,
|
|
mmap_flags, -1, 0);
|
|
if (mapped_addr == MAP_FAILED && allow_shrink)
|
|
*size -= page_sz;
|
|
} while (allow_shrink && mapped_addr == MAP_FAILED && *size > 0);
|
|
|
|
/* align resulting address - if map failed, we will ignore the value
|
|
* anyway, so no need to add additional checks.
|
|
*/
|
|
aligned_addr = no_align ? mapped_addr :
|
|
RTE_PTR_ALIGN(mapped_addr, page_sz);
|
|
|
|
if (*size == 0) {
|
|
RTE_LOG(ERR, EAL, "Cannot get a virtual area of any size: %s\n",
|
|
strerror(errno));
|
|
rte_errno = errno;
|
|
return NULL;
|
|
} else if (mapped_addr == MAP_FAILED) {
|
|
RTE_LOG(ERR, EAL, "Cannot get a virtual area: %s\n",
|
|
strerror(errno));
|
|
/* pass errno up the call chain */
|
|
rte_errno = errno;
|
|
return NULL;
|
|
} else if (requested_addr != NULL && !addr_is_hint &&
|
|
aligned_addr != requested_addr) {
|
|
RTE_LOG(ERR, EAL, "Cannot get a virtual area at requested address: %p (got %p)\n",
|
|
requested_addr, aligned_addr);
|
|
munmap(mapped_addr, map_sz);
|
|
rte_errno = EADDRNOTAVAIL;
|
|
return NULL;
|
|
} else if (requested_addr != NULL && addr_is_hint &&
|
|
aligned_addr != requested_addr) {
|
|
RTE_LOG(WARNING, EAL, "WARNING! Base virtual address hint (%p != %p) not respected!\n",
|
|
requested_addr, aligned_addr);
|
|
RTE_LOG(WARNING, EAL, " This may cause issues with mapping memory into secondary processes\n");
|
|
}
|
|
|
|
if (unmap)
|
|
munmap(mapped_addr, map_sz);
|
|
|
|
RTE_LOG(DEBUG, EAL, "Virtual area found at %p (size = 0x%zx)\n",
|
|
aligned_addr, *size);
|
|
|
|
baseaddr_offset += *size;
|
|
|
|
return aligned_addr;
|
|
}
|
|
|
|
static uint64_t
|
|
get_mem_amount(uint64_t page_sz, uint64_t max_mem)
|
|
{
|
|
uint64_t area_sz, max_pages;
|
|
|
|
/* limit to RTE_MAX_MEMSEG_PER_LIST pages or RTE_MAX_MEM_MB_PER_LIST */
|
|
max_pages = RTE_MAX_MEMSEG_PER_LIST;
|
|
max_mem = RTE_MIN((uint64_t)RTE_MAX_MEM_MB_PER_LIST << 20, max_mem);
|
|
|
|
area_sz = RTE_MIN(page_sz * max_pages, max_mem);
|
|
|
|
/* make sure the list isn't smaller than the page size */
|
|
area_sz = RTE_MAX(area_sz, page_sz);
|
|
|
|
return RTE_ALIGN(area_sz, page_sz);
|
|
}
|
|
|
|
static int
|
|
alloc_memseg_list(struct rte_memseg_list *msl, uint64_t page_sz,
|
|
uint64_t max_mem, int socket_id, int type_msl_idx)
|
|
{
|
|
char name[RTE_FBARRAY_NAME_LEN];
|
|
uint64_t mem_amount;
|
|
int max_segs;
|
|
|
|
mem_amount = get_mem_amount(page_sz, max_mem);
|
|
max_segs = mem_amount / page_sz;
|
|
|
|
snprintf(name, sizeof(name), MEMSEG_LIST_FMT, page_sz >> 10, socket_id,
|
|
type_msl_idx);
|
|
if (rte_fbarray_init(&msl->memseg_arr, name, max_segs,
|
|
sizeof(struct rte_memseg))) {
|
|
RTE_LOG(ERR, EAL, "Cannot allocate memseg list: %s\n",
|
|
rte_strerror(rte_errno));
|
|
return -1;
|
|
}
|
|
|
|
msl->page_sz = page_sz;
|
|
msl->socket_id = socket_id;
|
|
msl->base_va = NULL;
|
|
|
|
RTE_LOG(DEBUG, EAL, "Memseg list allocated: 0x%zxkB at socket %i\n",
|
|
(size_t)page_sz >> 10, socket_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
alloc_va_space(struct rte_memseg_list *msl)
|
|
{
|
|
uint64_t page_sz;
|
|
size_t mem_sz;
|
|
void *addr;
|
|
int flags = 0;
|
|
|
|
#ifdef RTE_ARCH_PPC_64
|
|
flags |= MAP_HUGETLB;
|
|
#endif
|
|
|
|
page_sz = msl->page_sz;
|
|
mem_sz = page_sz * msl->memseg_arr.len;
|
|
|
|
addr = eal_get_virtual_area(msl->base_va, &mem_sz, page_sz, 0, flags);
|
|
if (addr == NULL) {
|
|
if (rte_errno == EADDRNOTAVAIL)
|
|
RTE_LOG(ERR, EAL, "Could not mmap %llu bytes at [%p] - please use '--base-virtaddr' option\n",
|
|
(unsigned long long)mem_sz, msl->base_va);
|
|
else
|
|
RTE_LOG(ERR, EAL, "Cannot reserve memory\n");
|
|
return -1;
|
|
}
|
|
msl->base_va = addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __rte_unused
|
|
memseg_primary_init_32(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int active_sockets, hpi_idx, msl_idx = 0;
|
|
unsigned int socket_id, i;
|
|
struct rte_memseg_list *msl;
|
|
uint64_t extra_mem_per_socket, total_extra_mem, total_requested_mem;
|
|
uint64_t max_mem;
|
|
|
|
/* no-huge does not need this at all */
|
|
if (internal_config.no_hugetlbfs)
|
|
return 0;
|
|
|
|
/* this is a giant hack, but desperate times call for desperate
|
|
* measures. in legacy 32-bit mode, we cannot preallocate VA space,
|
|
* because having upwards of 2 gigabytes of VA space already mapped will
|
|
* interfere with our ability to map and sort hugepages.
|
|
*
|
|
* therefore, in legacy 32-bit mode, we will be initializing memseg
|
|
* lists much later - in eal_memory.c, right after we unmap all the
|
|
* unneeded pages. this will not affect secondary processes, as those
|
|
* should be able to mmap the space without (too many) problems.
|
|
*/
|
|
if (internal_config.legacy_mem)
|
|
return 0;
|
|
|
|
/* 32-bit mode is a very special case. we cannot know in advance where
|
|
* the user will want to allocate their memory, so we have to do some
|
|
* heuristics.
|
|
*/
|
|
active_sockets = 0;
|
|
total_requested_mem = 0;
|
|
if (internal_config.force_sockets)
|
|
for (i = 0; i < rte_socket_count(); i++) {
|
|
uint64_t mem;
|
|
|
|
socket_id = rte_socket_id_by_idx(i);
|
|
mem = internal_config.socket_mem[socket_id];
|
|
|
|
if (mem == 0)
|
|
continue;
|
|
|
|
active_sockets++;
|
|
total_requested_mem += mem;
|
|
}
|
|
else
|
|
total_requested_mem = internal_config.memory;
|
|
|
|
max_mem = (uint64_t) RTE_MAX_MEM_MB_PER_TYPE << 20;
|
|
if (total_requested_mem > max_mem) {
|
|
RTE_LOG(ERR, EAL, "Invalid parameters: 32-bit process can at most use %uM of memory\n",
|
|
(unsigned int)(max_mem >> 20));
|
|
return -1;
|
|
}
|
|
total_extra_mem = max_mem - total_requested_mem;
|
|
extra_mem_per_socket = active_sockets == 0 ? total_extra_mem :
|
|
total_extra_mem / active_sockets;
|
|
|
|
/* the allocation logic is a little bit convoluted, but here's how it
|
|
* works, in a nutshell:
|
|
* - if user hasn't specified on which sockets to allocate memory via
|
|
* --socket-mem, we allocate all of our memory on master core socket.
|
|
* - if user has specified sockets to allocate memory on, there may be
|
|
* some "unused" memory left (e.g. if user has specified --socket-mem
|
|
* such that not all memory adds up to 2 gigabytes), so add it to all
|
|
* sockets that are in use equally.
|
|
*
|
|
* page sizes are sorted by size in descending order, so we can safely
|
|
* assume that we dispense with bigger page sizes first.
|
|
*/
|
|
|
|
/* create memseg lists */
|
|
for (i = 0; i < rte_socket_count(); i++) {
|
|
int hp_sizes = (int) internal_config.num_hugepage_sizes;
|
|
uint64_t max_socket_mem, cur_socket_mem;
|
|
unsigned int master_lcore_socket;
|
|
struct rte_config *cfg = rte_eal_get_configuration();
|
|
bool skip;
|
|
|
|
socket_id = rte_socket_id_by_idx(i);
|
|
|
|
#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
if (socket_id > 0)
|
|
break;
|
|
#endif
|
|
|
|
/* if we didn't specifically request memory on this socket */
|
|
skip = active_sockets != 0 &&
|
|
internal_config.socket_mem[socket_id] == 0;
|
|
/* ...or if we didn't specifically request memory on *any*
|
|
* socket, and this is not master lcore
|
|
*/
|
|
master_lcore_socket = rte_lcore_to_socket_id(cfg->master_lcore);
|
|
skip |= active_sockets == 0 && socket_id != master_lcore_socket;
|
|
|
|
if (skip) {
|
|
RTE_LOG(DEBUG, EAL, "Will not preallocate memory on socket %u\n",
|
|
socket_id);
|
|
continue;
|
|
}
|
|
|
|
/* max amount of memory on this socket */
|
|
max_socket_mem = (active_sockets != 0 ?
|
|
internal_config.socket_mem[socket_id] :
|
|
internal_config.memory) +
|
|
extra_mem_per_socket;
|
|
cur_socket_mem = 0;
|
|
|
|
for (hpi_idx = 0; hpi_idx < hp_sizes; hpi_idx++) {
|
|
uint64_t max_pagesz_mem, cur_pagesz_mem = 0;
|
|
uint64_t hugepage_sz;
|
|
struct hugepage_info *hpi;
|
|
int type_msl_idx, max_segs, total_segs = 0;
|
|
|
|
hpi = &internal_config.hugepage_info[hpi_idx];
|
|
hugepage_sz = hpi->hugepage_sz;
|
|
|
|
max_segs = RTE_MAX_MEMSEG_PER_TYPE;
|
|
max_pagesz_mem = max_socket_mem - cur_socket_mem;
|
|
|
|
/* make it multiple of page size */
|
|
max_pagesz_mem = RTE_ALIGN_FLOOR(max_pagesz_mem,
|
|
hugepage_sz);
|
|
|
|
RTE_LOG(DEBUG, EAL, "Attempting to preallocate "
|
|
"%" PRIu64 "M on socket %i\n",
|
|
max_pagesz_mem >> 20, socket_id);
|
|
|
|
type_msl_idx = 0;
|
|
while (cur_pagesz_mem < max_pagesz_mem &&
|
|
total_segs < max_segs) {
|
|
if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
|
|
RTE_LOG(ERR, EAL,
|
|
"No more space in memseg lists, please increase %s\n",
|
|
RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
|
|
return -1;
|
|
}
|
|
|
|
msl = &mcfg->memsegs[msl_idx++];
|
|
|
|
if (alloc_memseg_list(msl, hugepage_sz,
|
|
max_pagesz_mem, socket_id,
|
|
type_msl_idx))
|
|
return -1;
|
|
|
|
total_segs += msl->memseg_arr.len;
|
|
cur_pagesz_mem = total_segs * hugepage_sz;
|
|
type_msl_idx++;
|
|
|
|
if (alloc_va_space(msl)) {
|
|
RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
|
|
return -1;
|
|
}
|
|
}
|
|
cur_socket_mem += cur_pagesz_mem;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __rte_unused
|
|
memseg_primary_init(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int i, socket_id, hpi_idx, msl_idx = 0;
|
|
struct rte_memseg_list *msl;
|
|
uint64_t max_mem, total_mem;
|
|
|
|
/* no-huge does not need this at all */
|
|
if (internal_config.no_hugetlbfs)
|
|
return 0;
|
|
|
|
max_mem = (uint64_t)RTE_MAX_MEM_MB << 20;
|
|
total_mem = 0;
|
|
|
|
/* create memseg lists */
|
|
for (hpi_idx = 0; hpi_idx < (int) internal_config.num_hugepage_sizes;
|
|
hpi_idx++) {
|
|
struct hugepage_info *hpi;
|
|
uint64_t hugepage_sz;
|
|
|
|
hpi = &internal_config.hugepage_info[hpi_idx];
|
|
hugepage_sz = hpi->hugepage_sz;
|
|
|
|
for (i = 0; i < (int) rte_socket_count(); i++) {
|
|
uint64_t max_type_mem, total_type_mem = 0;
|
|
int type_msl_idx, max_segs, total_segs = 0;
|
|
|
|
socket_id = rte_socket_id_by_idx(i);
|
|
|
|
#ifndef RTE_EAL_NUMA_AWARE_HUGEPAGES
|
|
if (socket_id > 0)
|
|
break;
|
|
#endif
|
|
|
|
max_type_mem = RTE_MIN(max_mem - total_mem,
|
|
(uint64_t)RTE_MAX_MEM_MB_PER_TYPE << 20);
|
|
max_segs = RTE_MAX_MEMSEG_PER_TYPE;
|
|
|
|
type_msl_idx = 0;
|
|
while (total_type_mem < max_type_mem &&
|
|
total_segs < max_segs) {
|
|
uint64_t cur_max_mem;
|
|
if (msl_idx >= RTE_MAX_MEMSEG_LISTS) {
|
|
RTE_LOG(ERR, EAL,
|
|
"No more space in memseg lists, please increase %s\n",
|
|
RTE_STR(CONFIG_RTE_MAX_MEMSEG_LISTS));
|
|
return -1;
|
|
}
|
|
|
|
msl = &mcfg->memsegs[msl_idx++];
|
|
|
|
cur_max_mem = max_type_mem - total_type_mem;
|
|
if (alloc_memseg_list(msl, hugepage_sz,
|
|
cur_max_mem, socket_id,
|
|
type_msl_idx))
|
|
return -1;
|
|
|
|
total_segs += msl->memseg_arr.len;
|
|
total_type_mem = total_segs * hugepage_sz;
|
|
type_msl_idx++;
|
|
|
|
if (alloc_va_space(msl)) {
|
|
RTE_LOG(ERR, EAL, "Cannot allocate VA space for memseg list\n");
|
|
return -1;
|
|
}
|
|
}
|
|
total_mem += total_type_mem;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
memseg_secondary_init(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int msl_idx = 0;
|
|
struct rte_memseg_list *msl;
|
|
|
|
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
|
|
|
|
msl = &mcfg->memsegs[msl_idx];
|
|
|
|
/* skip empty memseg lists */
|
|
if (msl->memseg_arr.len == 0)
|
|
continue;
|
|
|
|
if (rte_fbarray_attach(&msl->memseg_arr)) {
|
|
RTE_LOG(ERR, EAL, "Cannot attach to primary process memseg lists\n");
|
|
return -1;
|
|
}
|
|
|
|
/* preallocate VA space */
|
|
if (alloc_va_space(msl)) {
|
|
RTE_LOG(ERR, EAL, "Cannot preallocate VA space for hugepage memory\n");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct rte_memseg *
|
|
virt2memseg(const void *addr, const struct rte_memseg_list *msl)
|
|
{
|
|
const struct rte_fbarray *arr;
|
|
void *start, *end;
|
|
int ms_idx;
|
|
|
|
/* a memseg list was specified, check if it's the right one */
|
|
start = msl->base_va;
|
|
end = RTE_PTR_ADD(start, (size_t)msl->page_sz * msl->memseg_arr.len);
|
|
|
|
if (addr < start || addr >= end)
|
|
return NULL;
|
|
|
|
/* now, calculate index */
|
|
arr = &msl->memseg_arr;
|
|
ms_idx = RTE_PTR_DIFF(addr, msl->base_va) / msl->page_sz;
|
|
return rte_fbarray_get(arr, ms_idx);
|
|
}
|
|
|
|
static struct rte_memseg_list *
|
|
virt2memseg_list(const void *addr)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
struct rte_memseg_list *msl;
|
|
int msl_idx;
|
|
|
|
for (msl_idx = 0; msl_idx < RTE_MAX_MEMSEG_LISTS; msl_idx++) {
|
|
void *start, *end;
|
|
msl = &mcfg->memsegs[msl_idx];
|
|
|
|
start = msl->base_va;
|
|
end = RTE_PTR_ADD(start,
|
|
(size_t)msl->page_sz * msl->memseg_arr.len);
|
|
if (addr >= start && addr < end)
|
|
break;
|
|
}
|
|
/* if we didn't find our memseg list */
|
|
if (msl_idx == RTE_MAX_MEMSEG_LISTS)
|
|
return NULL;
|
|
return msl;
|
|
}
|
|
|
|
__rte_experimental struct rte_memseg_list *
|
|
rte_mem_virt2memseg_list(const void *addr)
|
|
{
|
|
return virt2memseg_list(addr);
|
|
}
|
|
|
|
struct virtiova {
|
|
rte_iova_t iova;
|
|
void *virt;
|
|
};
|
|
static int
|
|
find_virt(const struct rte_memseg_list *msl __rte_unused,
|
|
const struct rte_memseg *ms, void *arg)
|
|
{
|
|
struct virtiova *vi = arg;
|
|
if (vi->iova >= ms->iova && vi->iova < (ms->iova + ms->len)) {
|
|
size_t offset = vi->iova - ms->iova;
|
|
vi->virt = RTE_PTR_ADD(ms->addr, offset);
|
|
/* stop the walk */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
static int
|
|
find_virt_legacy(const struct rte_memseg_list *msl __rte_unused,
|
|
const struct rte_memseg *ms, size_t len, void *arg)
|
|
{
|
|
struct virtiova *vi = arg;
|
|
if (vi->iova >= ms->iova && vi->iova < (ms->iova + len)) {
|
|
size_t offset = vi->iova - ms->iova;
|
|
vi->virt = RTE_PTR_ADD(ms->addr, offset);
|
|
/* stop the walk */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__rte_experimental void *
|
|
rte_mem_iova2virt(rte_iova_t iova)
|
|
{
|
|
struct virtiova vi;
|
|
|
|
memset(&vi, 0, sizeof(vi));
|
|
|
|
vi.iova = iova;
|
|
/* for legacy mem, we can get away with scanning VA-contiguous segments,
|
|
* as we know they are PA-contiguous as well
|
|
*/
|
|
if (internal_config.legacy_mem)
|
|
rte_memseg_contig_walk(find_virt_legacy, &vi);
|
|
else
|
|
rte_memseg_walk(find_virt, &vi);
|
|
|
|
return vi.virt;
|
|
}
|
|
|
|
__rte_experimental struct rte_memseg *
|
|
rte_mem_virt2memseg(const void *addr, const struct rte_memseg_list *msl)
|
|
{
|
|
return virt2memseg(addr, msl != NULL ? msl :
|
|
rte_mem_virt2memseg_list(addr));
|
|
}
|
|
|
|
static int
|
|
physmem_size(const struct rte_memseg_list *msl, void *arg)
|
|
{
|
|
uint64_t *total_len = arg;
|
|
|
|
*total_len += msl->memseg_arr.count * msl->page_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* get the total size of memory */
|
|
uint64_t
|
|
rte_eal_get_physmem_size(void)
|
|
{
|
|
uint64_t total_len = 0;
|
|
|
|
rte_memseg_list_walk(physmem_size, &total_len);
|
|
|
|
return total_len;
|
|
}
|
|
|
|
static int
|
|
dump_memseg(const struct rte_memseg_list *msl, const struct rte_memseg *ms,
|
|
void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int msl_idx, ms_idx;
|
|
FILE *f = arg;
|
|
|
|
msl_idx = msl - mcfg->memsegs;
|
|
if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
|
|
return -1;
|
|
|
|
ms_idx = rte_fbarray_find_idx(&msl->memseg_arr, ms);
|
|
if (ms_idx < 0)
|
|
return -1;
|
|
|
|
fprintf(f, "Segment %i-%i: IOVA:0x%"PRIx64", len:%zu, "
|
|
"virt:%p, socket_id:%"PRId32", "
|
|
"hugepage_sz:%"PRIu64", nchannel:%"PRIx32", "
|
|
"nrank:%"PRIx32"\n",
|
|
msl_idx, ms_idx,
|
|
ms->iova,
|
|
ms->len,
|
|
ms->addr,
|
|
ms->socket_id,
|
|
ms->hugepage_sz,
|
|
ms->nchannel,
|
|
ms->nrank);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Dump the physical memory layout on console */
|
|
void
|
|
rte_dump_physmem_layout(FILE *f)
|
|
{
|
|
rte_memseg_walk(dump_memseg, f);
|
|
}
|
|
|
|
/* return the number of memory channels */
|
|
unsigned rte_memory_get_nchannel(void)
|
|
{
|
|
return rte_eal_get_configuration()->mem_config->nchannel;
|
|
}
|
|
|
|
/* return the number of memory rank */
|
|
unsigned rte_memory_get_nrank(void)
|
|
{
|
|
return rte_eal_get_configuration()->mem_config->nrank;
|
|
}
|
|
|
|
static int
|
|
rte_eal_memdevice_init(void)
|
|
{
|
|
struct rte_config *config;
|
|
|
|
if (rte_eal_process_type() == RTE_PROC_SECONDARY)
|
|
return 0;
|
|
|
|
config = rte_eal_get_configuration();
|
|
config->mem_config->nchannel = internal_config.force_nchannel;
|
|
config->mem_config->nrank = internal_config.force_nrank;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Lock page in physical memory and prevent from swapping. */
|
|
int
|
|
rte_mem_lock_page(const void *virt)
|
|
{
|
|
unsigned long virtual = (unsigned long)virt;
|
|
int page_size = getpagesize();
|
|
unsigned long aligned = (virtual & ~(page_size - 1));
|
|
return mlock((void *)aligned, page_size);
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_contig_walk(rte_memseg_contig_walk_t func, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int i, ms_idx, ret = 0;
|
|
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *msl = &mcfg->memsegs[i];
|
|
const struct rte_memseg *ms;
|
|
struct rte_fbarray *arr;
|
|
|
|
if (msl->memseg_arr.count == 0)
|
|
continue;
|
|
|
|
arr = &msl->memseg_arr;
|
|
|
|
ms_idx = rte_fbarray_find_next_used(arr, 0);
|
|
while (ms_idx >= 0) {
|
|
int n_segs;
|
|
size_t len;
|
|
|
|
ms = rte_fbarray_get(arr, ms_idx);
|
|
|
|
/* find how many more segments there are, starting with
|
|
* this one.
|
|
*/
|
|
n_segs = rte_fbarray_find_contig_used(arr, ms_idx);
|
|
len = n_segs * msl->page_sz;
|
|
|
|
ret = func(msl, ms, len, arg);
|
|
if (ret < 0)
|
|
return -1;
|
|
else if (ret > 0)
|
|
return 1;
|
|
ms_idx = rte_fbarray_find_next_used(arr,
|
|
ms_idx + n_segs);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_walk(rte_memseg_walk_t func, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int i, ms_idx, ret = 0;
|
|
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *msl = &mcfg->memsegs[i];
|
|
const struct rte_memseg *ms;
|
|
struct rte_fbarray *arr;
|
|
|
|
if (msl->memseg_arr.count == 0)
|
|
continue;
|
|
|
|
arr = &msl->memseg_arr;
|
|
|
|
ms_idx = rte_fbarray_find_next_used(arr, 0);
|
|
while (ms_idx >= 0) {
|
|
ms = rte_fbarray_get(arr, ms_idx);
|
|
ret = func(msl, ms, arg);
|
|
if (ret < 0)
|
|
return -1;
|
|
else if (ret > 0)
|
|
return 1;
|
|
ms_idx = rte_fbarray_find_next_used(arr, ms_idx + 1);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __rte_experimental
|
|
rte_memseg_list_walk(rte_memseg_list_walk_t func, void *arg)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int i, ret = 0;
|
|
|
|
for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
|
|
struct rte_memseg_list *msl = &mcfg->memsegs[i];
|
|
|
|
if (msl->base_va == NULL)
|
|
continue;
|
|
|
|
ret = func(msl, arg);
|
|
if (ret < 0)
|
|
return -1;
|
|
if (ret > 0)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* init memory subsystem */
|
|
int
|
|
rte_eal_memory_init(void)
|
|
{
|
|
struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
|
|
int retval;
|
|
RTE_LOG(DEBUG, EAL, "Setting up physically contiguous memory...\n");
|
|
|
|
if (!mcfg)
|
|
return -1;
|
|
|
|
retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
|
|
#ifndef RTE_ARCH_64
|
|
memseg_primary_init_32() :
|
|
#else
|
|
memseg_primary_init() :
|
|
#endif
|
|
memseg_secondary_init();
|
|
|
|
if (retval < 0)
|
|
return -1;
|
|
|
|
retval = rte_eal_process_type() == RTE_PROC_PRIMARY ?
|
|
rte_eal_hugepage_init() :
|
|
rte_eal_hugepage_attach();
|
|
if (retval < 0)
|
|
return -1;
|
|
|
|
if (internal_config.no_shconf == 0 && rte_eal_memdevice_init() < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|