71bdd8a178
Use RTE_DIM macro to calculate array size. Suggested-by: David Marchand <david.marchand@redhat.com> Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com> Acked-by: David Marchand <david.marchand@redhat.com>
583 lines
14 KiB
C
583 lines
14 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2010-2014 Intel Corporation
|
|
* Copyright(c) 2019 Arm Limited
|
|
*/
|
|
|
|
|
|
#include <stdio.h>
|
|
#include <inttypes.h>
|
|
#include <rte_ring.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_pause.h>
|
|
#include <string.h>
|
|
|
|
#include "test.h"
|
|
#include "test_ring.h"
|
|
|
|
/*
|
|
* Ring performance test cases, measures performance of various operations
|
|
* using rdtsc for legacy and 16B size ring elements.
|
|
*/
|
|
|
|
#define RING_NAME "RING_PERF"
|
|
#define RING_SIZE 4096
|
|
#define MAX_BURST 32
|
|
|
|
/*
|
|
* the sizes to enqueue and dequeue in testing
|
|
* (marked volatile so they won't be seen as compile-time constants)
|
|
*/
|
|
static const volatile unsigned bulk_sizes[] = { 8, 32 };
|
|
|
|
struct lcore_pair {
|
|
unsigned c1, c2;
|
|
};
|
|
|
|
static volatile unsigned lcore_count = 0;
|
|
|
|
static void
|
|
test_ring_print_test_string(unsigned int api_type, int esize,
|
|
unsigned int bsz, double value)
|
|
{
|
|
if (esize == -1)
|
|
printf("legacy APIs");
|
|
else
|
|
printf("elem APIs: element size %dB", esize);
|
|
|
|
if (api_type == TEST_RING_IGNORE_API_TYPE)
|
|
return;
|
|
|
|
if ((api_type & TEST_RING_THREAD_DEF) == TEST_RING_THREAD_DEF)
|
|
printf(": default enqueue/dequeue: ");
|
|
else if ((api_type & TEST_RING_THREAD_SPSC) == TEST_RING_THREAD_SPSC)
|
|
printf(": SP/SC: ");
|
|
else if ((api_type & TEST_RING_THREAD_MPMC) == TEST_RING_THREAD_MPMC)
|
|
printf(": MP/MC: ");
|
|
|
|
if ((api_type & TEST_RING_ELEM_SINGLE) == TEST_RING_ELEM_SINGLE)
|
|
printf("single: ");
|
|
else if ((api_type & TEST_RING_ELEM_BULK) == TEST_RING_ELEM_BULK)
|
|
printf("bulk (size: %u): ", bsz);
|
|
else if ((api_type & TEST_RING_ELEM_BURST) == TEST_RING_ELEM_BURST)
|
|
printf("burst (size: %u): ", bsz);
|
|
|
|
printf("%.2F\n", value);
|
|
}
|
|
|
|
/**** Functions to analyse our core mask to get cores for different tests ***/
|
|
|
|
static int
|
|
get_two_hyperthreads(struct lcore_pair *lcp)
|
|
{
|
|
unsigned id1, id2;
|
|
unsigned c1, c2, s1, s2;
|
|
RTE_LCORE_FOREACH(id1) {
|
|
/* inner loop just re-reads all id's. We could skip the first few
|
|
* elements, but since number of cores is small there is little point
|
|
*/
|
|
RTE_LCORE_FOREACH(id2) {
|
|
if (id1 == id2)
|
|
continue;
|
|
|
|
c1 = rte_lcore_to_cpu_id(id1);
|
|
c2 = rte_lcore_to_cpu_id(id2);
|
|
s1 = rte_lcore_to_socket_id(id1);
|
|
s2 = rte_lcore_to_socket_id(id2);
|
|
if ((c1 == c2) && (s1 == s2)){
|
|
lcp->c1 = id1;
|
|
lcp->c2 = id2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
get_two_cores(struct lcore_pair *lcp)
|
|
{
|
|
unsigned id1, id2;
|
|
unsigned c1, c2, s1, s2;
|
|
RTE_LCORE_FOREACH(id1) {
|
|
RTE_LCORE_FOREACH(id2) {
|
|
if (id1 == id2)
|
|
continue;
|
|
|
|
c1 = rte_lcore_to_cpu_id(id1);
|
|
c2 = rte_lcore_to_cpu_id(id2);
|
|
s1 = rte_lcore_to_socket_id(id1);
|
|
s2 = rte_lcore_to_socket_id(id2);
|
|
if ((c1 != c2) && (s1 == s2)){
|
|
lcp->c1 = id1;
|
|
lcp->c2 = id2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
get_two_sockets(struct lcore_pair *lcp)
|
|
{
|
|
unsigned id1, id2;
|
|
unsigned s1, s2;
|
|
RTE_LCORE_FOREACH(id1) {
|
|
RTE_LCORE_FOREACH(id2) {
|
|
if (id1 == id2)
|
|
continue;
|
|
s1 = rte_lcore_to_socket_id(id1);
|
|
s2 = rte_lcore_to_socket_id(id2);
|
|
if (s1 != s2){
|
|
lcp->c1 = id1;
|
|
lcp->c2 = id2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Get cycle counts for dequeuing from an empty ring. Should be 2 or 3 cycles */
|
|
static void
|
|
test_empty_dequeue(struct rte_ring *r, const int esize,
|
|
const unsigned int api_type)
|
|
{
|
|
const unsigned int iter_shift = 26;
|
|
const unsigned int iterations = 1 << iter_shift;
|
|
unsigned int i = 0;
|
|
void *burst[MAX_BURST];
|
|
|
|
const uint64_t start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
test_ring_dequeue(r, burst, esize, bulk_sizes[0], api_type);
|
|
const uint64_t end = rte_rdtsc();
|
|
|
|
test_ring_print_test_string(api_type, esize, bulk_sizes[0],
|
|
((double)(end - start)) / iterations);
|
|
}
|
|
|
|
/*
|
|
* for the separate enqueue and dequeue threads they take in one param
|
|
* and return two. Input = burst size, output = cycle average for sp/sc & mp/mc
|
|
*/
|
|
struct thread_params {
|
|
struct rte_ring *r;
|
|
unsigned size; /* input value, the burst size */
|
|
double spsc, mpmc; /* output value, the single or multi timings */
|
|
};
|
|
|
|
/*
|
|
* Helper function to call bulk SP/MP enqueue functions.
|
|
* flag == 0 -> enqueue
|
|
* flag == 1 -> dequeue
|
|
*/
|
|
static __rte_always_inline int
|
|
enqueue_dequeue_bulk_helper(const unsigned int flag, const int esize,
|
|
struct thread_params *p)
|
|
{
|
|
int ret;
|
|
const unsigned int iter_shift = 23;
|
|
const unsigned int iterations = 1 << iter_shift;
|
|
struct rte_ring *r = p->r;
|
|
unsigned int bsize = p->size;
|
|
unsigned int i;
|
|
void *burst = NULL;
|
|
|
|
#ifdef RTE_USE_C11_MEM_MODEL
|
|
if (__atomic_add_fetch(&lcore_count, 1, __ATOMIC_RELAXED) != 2)
|
|
#else
|
|
if (__sync_add_and_fetch(&lcore_count, 1) != 2)
|
|
#endif
|
|
while(lcore_count != 2)
|
|
rte_pause();
|
|
|
|
burst = test_ring_calloc(MAX_BURST, esize);
|
|
if (burst == NULL)
|
|
return -1;
|
|
|
|
const uint64_t sp_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
do {
|
|
if (flag == 0)
|
|
ret = test_ring_enqueue(r, burst, esize, bsize,
|
|
TEST_RING_THREAD_SPSC |
|
|
TEST_RING_ELEM_BULK);
|
|
else if (flag == 1)
|
|
ret = test_ring_dequeue(r, burst, esize, bsize,
|
|
TEST_RING_THREAD_SPSC |
|
|
TEST_RING_ELEM_BULK);
|
|
if (ret == 0)
|
|
rte_pause();
|
|
} while (!ret);
|
|
const uint64_t sp_end = rte_rdtsc();
|
|
|
|
const uint64_t mp_start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++)
|
|
do {
|
|
if (flag == 0)
|
|
ret = test_ring_enqueue(r, burst, esize, bsize,
|
|
TEST_RING_THREAD_MPMC |
|
|
TEST_RING_ELEM_BULK);
|
|
else if (flag == 1)
|
|
ret = test_ring_dequeue(r, burst, esize, bsize,
|
|
TEST_RING_THREAD_MPMC |
|
|
TEST_RING_ELEM_BULK);
|
|
if (ret == 0)
|
|
rte_pause();
|
|
} while (!ret);
|
|
const uint64_t mp_end = rte_rdtsc();
|
|
|
|
p->spsc = ((double)(sp_end - sp_start))/(iterations * bsize);
|
|
p->mpmc = ((double)(mp_end - mp_start))/(iterations * bsize);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function that uses rdtsc to measure timing for ring enqueue. Needs pair
|
|
* thread running dequeue_bulk function
|
|
*/
|
|
static int
|
|
enqueue_bulk(void *p)
|
|
{
|
|
struct thread_params *params = p;
|
|
|
|
return enqueue_dequeue_bulk_helper(0, -1, params);
|
|
}
|
|
|
|
static int
|
|
enqueue_bulk_16B(void *p)
|
|
{
|
|
struct thread_params *params = p;
|
|
|
|
return enqueue_dequeue_bulk_helper(0, 16, params);
|
|
}
|
|
|
|
/*
|
|
* Function that uses rdtsc to measure timing for ring dequeue. Needs pair
|
|
* thread running enqueue_bulk function
|
|
*/
|
|
static int
|
|
dequeue_bulk(void *p)
|
|
{
|
|
struct thread_params *params = p;
|
|
|
|
return enqueue_dequeue_bulk_helper(1, -1, params);
|
|
}
|
|
|
|
static int
|
|
dequeue_bulk_16B(void *p)
|
|
{
|
|
struct thread_params *params = p;
|
|
|
|
return enqueue_dequeue_bulk_helper(1, 16, params);
|
|
}
|
|
|
|
/*
|
|
* Function that calls the enqueue and dequeue bulk functions on pairs of cores.
|
|
* used to measure ring perf between hyperthreads, cores and sockets.
|
|
*/
|
|
static int
|
|
run_on_core_pair(struct lcore_pair *cores, struct rte_ring *r, const int esize)
|
|
{
|
|
lcore_function_t *f1, *f2;
|
|
struct thread_params param1 = {0}, param2 = {0};
|
|
unsigned i;
|
|
|
|
if (esize == -1) {
|
|
f1 = enqueue_bulk;
|
|
f2 = dequeue_bulk;
|
|
} else {
|
|
f1 = enqueue_bulk_16B;
|
|
f2 = dequeue_bulk_16B;
|
|
}
|
|
|
|
for (i = 0; i < RTE_DIM(bulk_sizes); i++) {
|
|
lcore_count = 0;
|
|
param1.size = param2.size = bulk_sizes[i];
|
|
param1.r = param2.r = r;
|
|
if (cores->c1 == rte_get_master_lcore()) {
|
|
rte_eal_remote_launch(f2, ¶m2, cores->c2);
|
|
f1(¶m1);
|
|
rte_eal_wait_lcore(cores->c2);
|
|
} else {
|
|
rte_eal_remote_launch(f1, ¶m1, cores->c1);
|
|
rte_eal_remote_launch(f2, ¶m2, cores->c2);
|
|
if (rte_eal_wait_lcore(cores->c1) < 0)
|
|
return -1;
|
|
if (rte_eal_wait_lcore(cores->c2) < 0)
|
|
return -1;
|
|
}
|
|
test_ring_print_test_string(
|
|
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_BULK,
|
|
esize, bulk_sizes[i], param1.spsc + param2.spsc);
|
|
test_ring_print_test_string(
|
|
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK,
|
|
esize, bulk_sizes[i], param1.mpmc + param2.mpmc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static rte_atomic32_t synchro;
|
|
static uint64_t queue_count[RTE_MAX_LCORE];
|
|
|
|
#define TIME_MS 100
|
|
|
|
static int
|
|
load_loop_fn_helper(struct thread_params *p, const int esize)
|
|
{
|
|
uint64_t time_diff = 0;
|
|
uint64_t begin = 0;
|
|
uint64_t hz = rte_get_timer_hz();
|
|
uint64_t lcount = 0;
|
|
const unsigned int lcore = rte_lcore_id();
|
|
struct thread_params *params = p;
|
|
void *burst = NULL;
|
|
|
|
burst = test_ring_calloc(MAX_BURST, esize);
|
|
if (burst == NULL)
|
|
return -1;
|
|
|
|
/* wait synchro for slaves */
|
|
if (lcore != rte_get_master_lcore())
|
|
while (rte_atomic32_read(&synchro) == 0)
|
|
rte_pause();
|
|
|
|
begin = rte_get_timer_cycles();
|
|
while (time_diff < hz * TIME_MS / 1000) {
|
|
test_ring_enqueue(params->r, burst, esize, params->size,
|
|
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK);
|
|
test_ring_dequeue(params->r, burst, esize, params->size,
|
|
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK);
|
|
lcount++;
|
|
time_diff = rte_get_timer_cycles() - begin;
|
|
}
|
|
queue_count[lcore] = lcount;
|
|
|
|
rte_free(burst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
load_loop_fn(void *p)
|
|
{
|
|
struct thread_params *params = p;
|
|
|
|
return load_loop_fn_helper(params, -1);
|
|
}
|
|
|
|
static int
|
|
load_loop_fn_16B(void *p)
|
|
{
|
|
struct thread_params *params = p;
|
|
|
|
return load_loop_fn_helper(params, 16);
|
|
}
|
|
|
|
static int
|
|
run_on_all_cores(struct rte_ring *r, const int esize)
|
|
{
|
|
uint64_t total = 0;
|
|
struct thread_params param;
|
|
lcore_function_t *lcore_f;
|
|
unsigned int i, c;
|
|
|
|
if (esize == -1)
|
|
lcore_f = load_loop_fn;
|
|
else
|
|
lcore_f = load_loop_fn_16B;
|
|
|
|
memset(¶m, 0, sizeof(struct thread_params));
|
|
for (i = 0; i < RTE_DIM(bulk_sizes); i++) {
|
|
printf("\nBulk enq/dequeue count on size %u\n", bulk_sizes[i]);
|
|
param.size = bulk_sizes[i];
|
|
param.r = r;
|
|
|
|
/* clear synchro and start slaves */
|
|
rte_atomic32_set(&synchro, 0);
|
|
if (rte_eal_mp_remote_launch(lcore_f, ¶m, SKIP_MASTER) < 0)
|
|
return -1;
|
|
|
|
/* start synchro and launch test on master */
|
|
rte_atomic32_set(&synchro, 1);
|
|
lcore_f(¶m);
|
|
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
RTE_LCORE_FOREACH(c) {
|
|
printf("Core [%u] count = %"PRIu64"\n",
|
|
c, queue_count[c]);
|
|
total += queue_count[c];
|
|
}
|
|
|
|
printf("Total count (size: %u): %"PRIu64"\n",
|
|
bulk_sizes[i], total);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Test function that determines how long an enqueue + dequeue of a single item
|
|
* takes on a single lcore. Result is for comparison with the bulk enq+deq.
|
|
*/
|
|
static int
|
|
test_single_enqueue_dequeue(struct rte_ring *r, const int esize,
|
|
const unsigned int api_type)
|
|
{
|
|
const unsigned int iter_shift = 24;
|
|
const unsigned int iterations = 1 << iter_shift;
|
|
unsigned int i = 0;
|
|
void *burst = NULL;
|
|
|
|
/* alloc dummy object pointers */
|
|
burst = test_ring_calloc(1, esize);
|
|
if (burst == NULL)
|
|
return -1;
|
|
|
|
const uint64_t start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
test_ring_enqueue(r, burst, esize, 1, api_type);
|
|
test_ring_dequeue(r, burst, esize, 1, api_type);
|
|
}
|
|
const uint64_t end = rte_rdtsc();
|
|
|
|
test_ring_print_test_string(api_type, esize, 1,
|
|
((double)(end - start)) / iterations);
|
|
|
|
rte_free(burst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Test that does both enqueue and dequeue on a core using the burst/bulk API
|
|
* calls Results should be the same as for the bulk function called on a
|
|
* single lcore.
|
|
*/
|
|
static int
|
|
test_burst_bulk_enqueue_dequeue(struct rte_ring *r, const int esize,
|
|
const unsigned int api_type)
|
|
{
|
|
const unsigned int iter_shift = 23;
|
|
const unsigned int iterations = 1 << iter_shift;
|
|
unsigned int sz, i = 0;
|
|
void **burst = NULL;
|
|
|
|
burst = test_ring_calloc(MAX_BURST, esize);
|
|
if (burst == NULL)
|
|
return -1;
|
|
|
|
for (sz = 0; sz < RTE_DIM(bulk_sizes); sz++) {
|
|
const uint64_t start = rte_rdtsc();
|
|
for (i = 0; i < iterations; i++) {
|
|
test_ring_enqueue(r, burst, esize, bulk_sizes[sz],
|
|
api_type);
|
|
test_ring_dequeue(r, burst, esize, bulk_sizes[sz],
|
|
api_type);
|
|
}
|
|
const uint64_t end = rte_rdtsc();
|
|
|
|
test_ring_print_test_string(api_type, esize, bulk_sizes[sz],
|
|
((double)(end - start)) / iterations);
|
|
}
|
|
|
|
rte_free(burst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Run all tests for a given element size */
|
|
static __rte_always_inline int
|
|
test_ring_perf_esize(const int esize)
|
|
{
|
|
struct lcore_pair cores;
|
|
struct rte_ring *r = NULL;
|
|
|
|
/*
|
|
* Performance test for legacy/_elem APIs
|
|
* SP-SC/MP-MC, single
|
|
*/
|
|
r = test_ring_create(RING_NAME, esize, RING_SIZE, rte_socket_id(), 0);
|
|
if (r == NULL)
|
|
goto test_fail;
|
|
|
|
printf("\n### Testing single element enq/deq ###\n");
|
|
if (test_single_enqueue_dequeue(r, esize,
|
|
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_SINGLE) < 0)
|
|
goto test_fail;
|
|
if (test_single_enqueue_dequeue(r, esize,
|
|
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_SINGLE) < 0)
|
|
goto test_fail;
|
|
|
|
printf("\n### Testing burst enq/deq ###\n");
|
|
if (test_burst_bulk_enqueue_dequeue(r, esize,
|
|
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_BURST) < 0)
|
|
goto test_fail;
|
|
if (test_burst_bulk_enqueue_dequeue(r, esize,
|
|
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BURST) < 0)
|
|
goto test_fail;
|
|
|
|
printf("\n### Testing bulk enq/deq ###\n");
|
|
if (test_burst_bulk_enqueue_dequeue(r, esize,
|
|
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_BULK) < 0)
|
|
goto test_fail;
|
|
if (test_burst_bulk_enqueue_dequeue(r, esize,
|
|
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK) < 0)
|
|
goto test_fail;
|
|
|
|
printf("\n### Testing empty bulk deq ###\n");
|
|
test_empty_dequeue(r, esize,
|
|
TEST_RING_THREAD_SPSC | TEST_RING_ELEM_BULK);
|
|
test_empty_dequeue(r, esize,
|
|
TEST_RING_THREAD_MPMC | TEST_RING_ELEM_BULK);
|
|
|
|
if (get_two_hyperthreads(&cores) == 0) {
|
|
printf("\n### Testing using two hyperthreads ###\n");
|
|
if (run_on_core_pair(&cores, r, esize) < 0)
|
|
goto test_fail;
|
|
}
|
|
|
|
if (get_two_cores(&cores) == 0) {
|
|
printf("\n### Testing using two physical cores ###\n");
|
|
if (run_on_core_pair(&cores, r, esize) < 0)
|
|
goto test_fail;
|
|
}
|
|
if (get_two_sockets(&cores) == 0) {
|
|
printf("\n### Testing using two NUMA nodes ###\n");
|
|
if (run_on_core_pair(&cores, r, esize) < 0)
|
|
goto test_fail;
|
|
}
|
|
|
|
printf("\n### Testing using all slave nodes ###\n");
|
|
if (run_on_all_cores(r, esize) < 0)
|
|
goto test_fail;
|
|
|
|
rte_ring_free(r);
|
|
|
|
return 0;
|
|
|
|
test_fail:
|
|
rte_ring_free(r);
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
test_ring_perf(void)
|
|
{
|
|
/* Run all the tests for different element sizes */
|
|
if (test_ring_perf_esize(-1) == -1)
|
|
return -1;
|
|
|
|
if (test_ring_perf_esize(16) == -1)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
REGISTER_TEST_COMMAND(ring_perf_autotest, test_ring_perf);
|