numam-dpdk/app/test-eventdev/test_pipeline_atq.c
Pavan Nikhilesh 2eaa37b866 app/eventdev: add vector mode in pipeline test
Add event vector support in pipeline tests. By default this mode
is disabled, it can be enabled by using the option --enable_vector.
example:
	dpdk-test-eventdev -l 7-23 -s 0xff00 -- --prod_type_ethdev
	--nb_pkts=0 --verbose 2 --test=pipeline_atq --stlist=a
	--wlcores=20-23  --enable_vector

Additional options to configure vector size and vector timeout are
also implemented and can be used by specifying --vector_size and
--vector_tmo_ns

This patch also adds a new option to set the number of Rx queues
configured per event eth rx adapter.
example:
	dpdk-test-eventdev -l 7-23 -s 0xff00 -- --prod_type_ethdev
	--nb_pkts=0 --verbose 2 --test=pipeline_atq --stlist=a
	--wlcores=20-23  --nb_eth_queues 4

Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
Acked-by: Jerin Jacob <jerinj@marvell.com>
2021-04-12 09:23:34 +02:00

783 lines
18 KiB
C

/*
* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2017 Cavium, Inc.
*/
#include "test_pipeline_common.h"
/* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */
static __rte_always_inline int
pipeline_atq_nb_event_queues(struct evt_options *opt)
{
RTE_SET_USED(opt);
return rte_eth_dev_count_avail();
}
typedef int (*pipeline_atq_worker_t)(void *arg);
static __rte_noinline int
pipeline_atq_worker_single_stage_tx(void *arg)
{
PIPELINE_WORKER_SINGLE_STAGE_INIT;
while (t->done == false) {
uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
if (!event) {
rte_pause();
continue;
}
pipeline_event_tx(dev, port, &ev);
w->processed_pkts++;
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_single_stage_fwd(void *arg)
{
PIPELINE_WORKER_SINGLE_STAGE_INIT;
const uint8_t *tx_queue = t->tx_evqueue_id;
while (t->done == false) {
uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
if (!event) {
rte_pause();
continue;
}
ev.queue_id = tx_queue[ev.mbuf->port];
pipeline_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
pipeline_event_enqueue(dev, port, &ev);
w->processed_pkts++;
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_single_stage_burst_tx(void *arg)
{
PIPELINE_WORKER_SINGLE_STAGE_BURST_INIT;
while (t->done == false) {
uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
BURST_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
for (i = 0; i < nb_rx; i++) {
rte_prefetch0(ev[i + 1].mbuf);
rte_event_eth_tx_adapter_txq_set(ev[i].mbuf, 0);
}
pipeline_event_tx_burst(dev, port, ev, nb_rx);
w->processed_pkts += nb_rx;
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_single_stage_burst_fwd(void *arg)
{
PIPELINE_WORKER_SINGLE_STAGE_BURST_INIT;
const uint8_t *tx_queue = t->tx_evqueue_id;
while (t->done == false) {
uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
BURST_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
for (i = 0; i < nb_rx; i++) {
rte_prefetch0(ev[i + 1].mbuf);
rte_event_eth_tx_adapter_txq_set(ev[i].mbuf, 0);
ev[i].queue_id = tx_queue[ev[i].mbuf->port];
pipeline_fwd_event(&ev[i], RTE_SCHED_TYPE_ATOMIC);
}
pipeline_event_enqueue_burst(dev, port, ev, nb_rx);
w->processed_pkts += nb_rx;
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_single_stage_tx_vector(void *arg)
{
PIPELINE_WORKER_SINGLE_STAGE_INIT;
uint16_t vector_sz;
while (!t->done) {
uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
if (!event) {
rte_pause();
continue;
}
vector_sz = ev.vec->nb_elem;
pipeline_event_tx_vector(dev, port, &ev);
w->processed_pkts += vector_sz;
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_single_stage_fwd_vector(void *arg)
{
PIPELINE_WORKER_SINGLE_STAGE_INIT;
const uint8_t *tx_queue = t->tx_evqueue_id;
uint16_t vector_sz;
while (!t->done) {
uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
if (!event) {
rte_pause();
continue;
}
vector_sz = ev.vec->nb_elem;
ev.queue_id = tx_queue[ev.vec->port];
ev.vec->queue = 0;
pipeline_fwd_event_vector(&ev, RTE_SCHED_TYPE_ATOMIC);
pipeline_event_enqueue(dev, port, &ev);
w->processed_pkts += vector_sz;
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_single_stage_burst_tx_vector(void *arg)
{
PIPELINE_WORKER_SINGLE_STAGE_BURST_INIT;
uint16_t vector_sz;
while (!t->done) {
uint16_t nb_rx =
rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
vector_sz = 0;
for (i = 0; i < nb_rx; i++) {
vector_sz += ev[i].vec->nb_elem;
ev[i].vec->queue = 0;
}
pipeline_event_tx_burst(dev, port, ev, nb_rx);
w->processed_pkts += vector_sz;
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_single_stage_burst_fwd_vector(void *arg)
{
PIPELINE_WORKER_SINGLE_STAGE_BURST_INIT;
const uint8_t *tx_queue = t->tx_evqueue_id;
uint16_t vector_sz;
while (!t->done) {
uint16_t nb_rx =
rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
vector_sz = 0;
for (i = 0; i < nb_rx; i++) {
ev[i].queue_id = tx_queue[ev[i].vec->port];
ev[i].vec->queue = 0;
vector_sz += ev[i].vec->nb_elem;
pipeline_fwd_event_vector(&ev[i],
RTE_SCHED_TYPE_ATOMIC);
}
pipeline_event_enqueue_burst(dev, port, ev, nb_rx);
w->processed_pkts += vector_sz;
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_multi_stage_tx(void *arg)
{
PIPELINE_WORKER_MULTI_STAGE_INIT;
while (t->done == false) {
uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
if (!event) {
rte_pause();
continue;
}
cq_id = ev.sub_event_type % nb_stages;
if (cq_id == last_queue) {
pipeline_event_tx(dev, port, &ev);
w->processed_pkts++;
continue;
}
ev.sub_event_type++;
pipeline_fwd_event(&ev, sched_type_list[cq_id]);
pipeline_event_enqueue(dev, port, &ev);
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_multi_stage_fwd(void *arg)
{
PIPELINE_WORKER_MULTI_STAGE_INIT;
const uint8_t *tx_queue = t->tx_evqueue_id;
while (t->done == false) {
uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
if (!event) {
rte_pause();
continue;
}
cq_id = ev.sub_event_type % nb_stages;
if (cq_id == last_queue) {
ev.queue_id = tx_queue[ev.mbuf->port];
pipeline_fwd_event(&ev, RTE_SCHED_TYPE_ATOMIC);
w->processed_pkts++;
} else {
ev.sub_event_type++;
pipeline_fwd_event(&ev, sched_type_list[cq_id]);
}
pipeline_event_enqueue(dev, port, &ev);
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_multi_stage_burst_tx(void *arg)
{
PIPELINE_WORKER_MULTI_STAGE_BURST_INIT;
while (t->done == false) {
uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
BURST_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
for (i = 0; i < nb_rx; i++) {
rte_prefetch0(ev[i + 1].mbuf);
cq_id = ev[i].sub_event_type % nb_stages;
if (cq_id == last_queue) {
pipeline_event_tx(dev, port, &ev[i]);
ev[i].op = RTE_EVENT_OP_RELEASE;
w->processed_pkts++;
continue;
}
ev[i].sub_event_type++;
pipeline_fwd_event(&ev[i], sched_type_list[cq_id]);
}
pipeline_event_enqueue_burst(dev, port, ev, nb_rx);
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_multi_stage_burst_fwd(void *arg)
{
PIPELINE_WORKER_MULTI_STAGE_BURST_INIT;
const uint8_t *tx_queue = t->tx_evqueue_id;
while (t->done == false) {
uint16_t nb_rx = rte_event_dequeue_burst(dev, port, ev,
BURST_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
for (i = 0; i < nb_rx; i++) {
rte_prefetch0(ev[i + 1].mbuf);
cq_id = ev[i].sub_event_type % nb_stages;
if (cq_id == last_queue) {
w->processed_pkts++;
ev[i].queue_id = tx_queue[ev[i].mbuf->port];
pipeline_fwd_event(&ev[i],
RTE_SCHED_TYPE_ATOMIC);
} else {
ev[i].sub_event_type++;
pipeline_fwd_event(&ev[i],
sched_type_list[cq_id]);
}
}
pipeline_event_enqueue_burst(dev, port, ev, nb_rx);
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_multi_stage_tx_vector(void *arg)
{
PIPELINE_WORKER_MULTI_STAGE_INIT;
uint16_t vector_sz;
while (!t->done) {
uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
if (!event) {
rte_pause();
continue;
}
cq_id = ev.sub_event_type % nb_stages;
if (cq_id == last_queue) {
vector_sz = ev.vec->nb_elem;
pipeline_event_tx_vector(dev, port, &ev);
w->processed_pkts += vector_sz;
continue;
}
ev.sub_event_type++;
pipeline_fwd_event_vector(&ev, sched_type_list[cq_id]);
pipeline_event_enqueue(dev, port, &ev);
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_multi_stage_fwd_vector(void *arg)
{
PIPELINE_WORKER_MULTI_STAGE_INIT;
const uint8_t *tx_queue = t->tx_evqueue_id;
uint16_t vector_sz;
while (!t->done) {
uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
if (!event) {
rte_pause();
continue;
}
cq_id = ev.sub_event_type % nb_stages;
if (cq_id == last_queue) {
ev.queue_id = tx_queue[ev.vec->port];
ev.vec->queue = 0;
vector_sz = ev.vec->nb_elem;
pipeline_fwd_event_vector(&ev, RTE_SCHED_TYPE_ATOMIC);
pipeline_event_enqueue(dev, port, &ev);
w->processed_pkts += vector_sz;
} else {
ev.sub_event_type++;
pipeline_fwd_event_vector(&ev, sched_type_list[cq_id]);
pipeline_event_enqueue(dev, port, &ev);
}
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_multi_stage_burst_tx_vector(void *arg)
{
PIPELINE_WORKER_MULTI_STAGE_BURST_INIT;
uint16_t vector_sz;
while (!t->done) {
uint16_t nb_rx =
rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
for (i = 0; i < nb_rx; i++) {
cq_id = ev[i].sub_event_type % nb_stages;
if (cq_id == last_queue) {
vector_sz = ev[i].vec->nb_elem;
pipeline_event_tx_vector(dev, port, &ev[i]);
ev[i].op = RTE_EVENT_OP_RELEASE;
w->processed_pkts += vector_sz;
continue;
}
ev[i].sub_event_type++;
pipeline_fwd_event_vector(&ev[i],
sched_type_list[cq_id]);
}
pipeline_event_enqueue_burst(dev, port, ev, nb_rx);
}
return 0;
}
static __rte_noinline int
pipeline_atq_worker_multi_stage_burst_fwd_vector(void *arg)
{
PIPELINE_WORKER_MULTI_STAGE_BURST_INIT;
const uint8_t *tx_queue = t->tx_evqueue_id;
uint16_t vector_sz;
while (!t->done) {
uint16_t nb_rx =
rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0);
if (!nb_rx) {
rte_pause();
continue;
}
for (i = 0; i < nb_rx; i++) {
cq_id = ev[i].sub_event_type % nb_stages;
if (cq_id == last_queue) {
vector_sz = ev[i].vec->nb_elem;
ev[i].queue_id = tx_queue[ev[i].vec->port];
ev[i].vec->queue = 0;
pipeline_fwd_event_vector(
&ev[i], RTE_SCHED_TYPE_ATOMIC);
w->processed_pkts += vector_sz;
} else {
ev[i].sub_event_type++;
pipeline_fwd_event_vector(
&ev[i], sched_type_list[cq_id]);
}
}
pipeline_event_enqueue_burst(dev, port, ev, nb_rx);
}
return 0;
}
static int
worker_wrapper(void *arg)
{
struct worker_data *w = arg;
struct evt_options *opt = w->t->opt;
const bool burst = evt_has_burst_mode(w->dev_id);
const bool internal_port = w->t->internal_port;
const uint8_t nb_stages = opt->nb_stages;
/*vector/burst/internal_port*/
const pipeline_atq_worker_t
pipeline_atq_worker_single_stage[2][2][2] = {
[0][0][0] = pipeline_atq_worker_single_stage_fwd,
[0][0][1] = pipeline_atq_worker_single_stage_tx,
[0][1][0] = pipeline_atq_worker_single_stage_burst_fwd,
[0][1][1] = pipeline_atq_worker_single_stage_burst_tx,
[1][0][0] = pipeline_atq_worker_single_stage_fwd_vector,
[1][0][1] = pipeline_atq_worker_single_stage_tx_vector,
[1][1][0] = pipeline_atq_worker_single_stage_burst_fwd_vector,
[1][1][1] = pipeline_atq_worker_single_stage_burst_tx_vector,
};
const pipeline_atq_worker_t
pipeline_atq_worker_multi_stage[2][2][2] = {
[0][0][0] = pipeline_atq_worker_multi_stage_fwd,
[0][0][1] = pipeline_atq_worker_multi_stage_tx,
[0][1][0] = pipeline_atq_worker_multi_stage_burst_fwd,
[0][1][1] = pipeline_atq_worker_multi_stage_burst_tx,
[1][0][0] = pipeline_atq_worker_multi_stage_fwd_vector,
[1][0][1] = pipeline_atq_worker_multi_stage_tx_vector,
[1][1][0] = pipeline_atq_worker_multi_stage_burst_fwd_vector,
[1][1][1] = pipeline_atq_worker_multi_stage_burst_tx_vector,
};
if (nb_stages == 1)
return (pipeline_atq_worker_single_stage[opt->ena_vector][burst]
[internal_port])(arg);
else
return (pipeline_atq_worker_multi_stage[opt->ena_vector][burst]
[internal_port])(arg);
rte_panic("invalid worker\n");
}
static int
pipeline_atq_launch_lcores(struct evt_test *test, struct evt_options *opt)
{
return pipeline_launch_lcores(test, opt, worker_wrapper);
}
static int
pipeline_atq_eventdev_setup(struct evt_test *test, struct evt_options *opt)
{
int ret;
int nb_ports;
int nb_queues;
uint8_t queue, is_prod;
uint8_t tx_evqueue_id[RTE_MAX_ETHPORTS];
uint8_t queue_arr[RTE_EVENT_MAX_QUEUES_PER_DEV];
uint8_t nb_worker_queues = 0;
uint8_t tx_evport_id = 0;
uint16_t prod = 0;
struct rte_event_dev_info info;
struct test_pipeline *t = evt_test_priv(test);
nb_ports = evt_nr_active_lcores(opt->wlcores);
nb_queues = rte_eth_dev_count_avail();
memset(tx_evqueue_id, 0, sizeof(uint8_t) * RTE_MAX_ETHPORTS);
memset(queue_arr, 0, sizeof(uint8_t) * RTE_EVENT_MAX_QUEUES_PER_DEV);
/* One queue for Tx adapter per port */
if (!t->internal_port) {
RTE_ETH_FOREACH_DEV(prod) {
tx_evqueue_id[prod] = nb_queues;
nb_queues++;
}
}
rte_event_dev_info_get(opt->dev_id, &info);
ret = evt_configure_eventdev(opt, nb_queues, nb_ports);
if (ret) {
evt_err("failed to configure eventdev %d", opt->dev_id);
return ret;
}
struct rte_event_queue_conf q_conf = {
.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
.nb_atomic_flows = opt->nb_flows,
.nb_atomic_order_sequences = opt->nb_flows,
};
/* queue configurations */
for (queue = 0; queue < nb_queues; queue++) {
q_conf.event_queue_cfg = RTE_EVENT_QUEUE_CFG_ALL_TYPES;
if (!t->internal_port) {
is_prod = false;
RTE_ETH_FOREACH_DEV(prod) {
if (queue == tx_evqueue_id[prod]) {
q_conf.event_queue_cfg =
RTE_EVENT_QUEUE_CFG_SINGLE_LINK;
is_prod = true;
break;
}
}
if (!is_prod) {
queue_arr[nb_worker_queues] = queue;
nb_worker_queues++;
}
}
ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf);
if (ret) {
evt_err("failed to setup queue=%d", queue);
return ret;
}
}
if (opt->wkr_deq_dep > info.max_event_port_dequeue_depth)
opt->wkr_deq_dep = info.max_event_port_dequeue_depth;
/* port configuration */
const struct rte_event_port_conf p_conf = {
.dequeue_depth = opt->wkr_deq_dep,
.enqueue_depth = info.max_event_port_dequeue_depth,
.new_event_threshold = info.max_num_events,
};
if (!t->internal_port)
ret = pipeline_event_port_setup(test, opt, queue_arr,
nb_worker_queues, p_conf);
else
ret = pipeline_event_port_setup(test, opt, NULL, nb_queues,
p_conf);
if (ret)
return ret;
/*
* The pipelines are setup in the following manner:
*
* eth_dev_count = 2, nb_stages = 2, atq mode
*
* eth0, eth1 have Internal port capability :
* queues = 2
* stride = 1
*
* event queue pipelines:
* eth0 -> q0 ->Tx
* eth1 -> q1 ->Tx
*
* q0, q1 are configured as ATQ so, all the different stages can
* be enqueued on the same queue.
*
* eth0, eth1 use Tx adapters service core :
* queues = 4
* stride = 1
*
* event queue pipelines:
* eth0 -> q0 -> q2 -> Tx
* eth1 -> q1 -> q3 -> Tx
*
* q0, q1 are configured as stated above.
* q2, q3 configured as SINGLE_LINK.
*/
ret = pipeline_event_rx_adapter_setup(opt, 1, p_conf);
if (ret)
return ret;
ret = pipeline_event_tx_adapter_setup(opt, p_conf);
if (ret)
return ret;
if (!evt_has_distributed_sched(opt->dev_id)) {
uint32_t service_id;
rte_event_dev_service_id_get(opt->dev_id, &service_id);
ret = evt_service_setup(service_id);
if (ret) {
evt_err("No service lcore found to run event dev.");
return ret;
}
}
/* Connect the tx_evqueue_id to the Tx adapter port */
if (!t->internal_port) {
RTE_ETH_FOREACH_DEV(prod) {
ret = rte_event_eth_tx_adapter_event_port_get(prod,
&tx_evport_id);
if (ret) {
evt_err("Unable to get Tx adapter[%d]", prod);
return ret;
}
if (rte_event_port_link(opt->dev_id, tx_evport_id,
&tx_evqueue_id[prod],
NULL, 1) != 1) {
evt_err("Unable to link Tx adptr[%d] evprt[%d]",
prod, tx_evport_id);
return ret;
}
}
}
ret = rte_event_dev_start(opt->dev_id);
if (ret) {
evt_err("failed to start eventdev %d", opt->dev_id);
return ret;
}
RTE_ETH_FOREACH_DEV(prod) {
ret = rte_eth_dev_start(prod);
if (ret) {
evt_err("Ethernet dev [%d] failed to start."
" Using synthetic producer", prod);
return ret;
}
}
RTE_ETH_FOREACH_DEV(prod) {
ret = rte_event_eth_rx_adapter_start(prod);
if (ret) {
evt_err("Rx adapter[%d] start failed", prod);
return ret;
}
ret = rte_event_eth_tx_adapter_start(prod);
if (ret) {
evt_err("Tx adapter[%d] start failed", prod);
return ret;
}
}
memcpy(t->tx_evqueue_id, tx_evqueue_id, sizeof(uint8_t) *
RTE_MAX_ETHPORTS);
return 0;
}
static void
pipeline_atq_opt_dump(struct evt_options *opt)
{
pipeline_opt_dump(opt, pipeline_atq_nb_event_queues(opt));
}
static int
pipeline_atq_opt_check(struct evt_options *opt)
{
return pipeline_opt_check(opt, pipeline_atq_nb_event_queues(opt));
}
static bool
pipeline_atq_capability_check(struct evt_options *opt)
{
struct rte_event_dev_info dev_info;
rte_event_dev_info_get(opt->dev_id, &dev_info);
if (dev_info.max_event_queues < pipeline_atq_nb_event_queues(opt) ||
dev_info.max_event_ports <
evt_nr_active_lcores(opt->wlcores)) {
evt_err("not enough eventdev queues=%d/%d or ports=%d/%d",
pipeline_atq_nb_event_queues(opt),
dev_info.max_event_queues,
evt_nr_active_lcores(opt->wlcores),
dev_info.max_event_ports);
}
if (!evt_has_all_types_queue(opt->dev_id))
return false;
return true;
}
static const struct evt_test_ops pipeline_atq = {
.cap_check = pipeline_atq_capability_check,
.opt_check = pipeline_atq_opt_check,
.opt_dump = pipeline_atq_opt_dump,
.test_setup = pipeline_test_setup,
.mempool_setup = pipeline_mempool_setup,
.ethdev_setup = pipeline_ethdev_setup,
.eventdev_setup = pipeline_atq_eventdev_setup,
.launch_lcores = pipeline_atq_launch_lcores,
.eventdev_destroy = pipeline_eventdev_destroy,
.mempool_destroy = pipeline_mempool_destroy,
.ethdev_destroy = pipeline_ethdev_destroy,
.test_result = pipeline_test_result,
.test_destroy = pipeline_test_destroy,
};
EVT_TEST_REGISTER(pipeline_atq);