numam-dpdk/doc/guides/nics/i40e.rst
Beilei Xing 0284624f14 net/i40e: fix floating VEB
Turning off S-TAG identification will impact floating VEB,
VFs can't communicate with each other.
This patch fixes this issue by judging whether floating
VEB is enabled, S-TAG identification will be turned off
only when floating VEB is disabled.

Fixes: 4d61120d5c ("net/i40e: fix dropping packets with ethertype 0x88A8")

Signed-off-by: Beilei Xing <beilei.xing@intel.com>
Acked-by: Jingjing Wu <jingjing.wu@intel.com>
2016-11-07 17:43:09 +01:00

462 lines
15 KiB
ReStructuredText

.. BSD LICENSE
Copyright(c) 2016 Intel Corporation. All rights reserved.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
I40E Poll Mode Driver
======================
The I40E PMD (librte_pmd_i40e) provides poll mode driver support
for the Intel X710/XL710/X722 10/40 Gbps family of adapters.
Features
--------
Features of the I40E PMD are:
- Multiple queues for TX and RX
- Receiver Side Scaling (RSS)
- MAC/VLAN filtering
- Packet type information
- Flow director
- Cloud filter
- Checksum offload
- VLAN/QinQ stripping and inserting
- TSO offload
- Promiscuous mode
- Multicast mode
- Port hardware statistics
- Jumbo frames
- Link state information
- Link flow control
- Mirror on port, VLAN and VSI
- Interrupt mode for RX
- Scattered and gather for TX and RX
- Vector Poll mode driver
- DCB
- VMDQ
- SR-IOV VF
- Hot plug
- IEEE1588/802.1AS timestamping
Prerequisites
-------------
- Identifying your adapter using `Intel Support
<http://www.intel.com/support>`_ and get the latest NVM/FW images.
- Follow the DPDK :ref:`Getting Started Guide for Linux <linux_gsg>` to setup the basic DPDK environment.
- To get better performance on Intel platforms, please follow the "How to get best performance with NICs on Intel platforms"
section of the :ref:`Getting Started Guide for Linux <linux_gsg>`.
Pre-Installation Configuration
------------------------------
Config File Options
~~~~~~~~~~~~~~~~~~~
The following options can be modified in the ``config`` file.
Please note that enabling debugging options may affect system performance.
- ``CONFIG_RTE_LIBRTE_I40E_PMD`` (default ``y``)
Toggle compilation of the ``librte_pmd_i40e`` driver.
- ``CONFIG_RTE_LIBRTE_I40E_DEBUG_*`` (default ``n``)
Toggle display of generic debugging messages.
- ``CONFIG_RTE_LIBRTE_I40E_RX_ALLOW_BULK_ALLOC`` (default ``y``)
Toggle bulk allocation for RX.
- ``CONFIG_RTE_LIBRTE_I40E_INC_VECTOR`` (default ``n``)
Toggle the use of Vector PMD instead of normal RX/TX path.
To enable vPMD for RX, bulk allocation for Rx must be allowed.
- ``CONFIG_RTE_LIBRTE_I40E_RX_OLFLAGS_ENABLE`` (default ``y``)
Toggle to enable RX ``olflags``.
This is only meaningful when Vector PMD is used.
- ``CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC`` (default ``n``)
Toggle to use a 16-byte RX descriptor, by default the RX descriptor is 32 byte.
- ``CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_PF`` (default ``64``)
Number of queues reserved for PF.
- ``CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VF`` (default ``4``)
Number of queues reserved for each SR-IOV VF.
- ``CONFIG_RTE_LIBRTE_I40E_QUEUE_NUM_PER_VM`` (default ``4``)
Number of queues reserved for each VMDQ Pool.
- ``CONFIG_RTE_LIBRTE_I40E_ITR_INTERVAL`` (default ``-1``)
Interrupt Throttling interval.
Driver Compilation
~~~~~~~~~~~~~~~~~~
To compile the I40E PMD see :ref:`Getting Started Guide for Linux <linux_gsg>` or
:ref:`Getting Started Guide for FreeBSD <freebsd_gsg>` depending on your platform.
Linux
-----
Running testpmd
~~~~~~~~~~~~~~~
This section demonstrates how to launch ``testpmd`` with Intel XL710/X710
devices managed by ``librte_pmd_i40e`` in the Linux operating system.
#. Load ``igb_uio`` or ``vfio-pci`` driver:
.. code-block:: console
modprobe uio
insmod ./x86_64-native-linuxapp-gcc/kmod/igb_uio.ko
or
.. code-block:: console
modprobe vfio-pci
#. Bind the XL710/X710 adapters to ``igb_uio`` or ``vfio-pci`` loaded in the previous step:
.. code-block:: console
./tools/dpdk-devbind.py --bind igb_uio 0000:83:00.0
Or setup VFIO permissions for regular users and then bind to ``vfio-pci``:
.. code-block:: console
./tools/dpdk-devbind.py --bind vfio-pci 0000:83:00.0
#. Start ``testpmd`` with basic parameters:
.. code-block:: console
./x86_64-native-linuxapp-gcc/app/testpmd -c 0xf -n 4 -w 83:00.0 -- -i
Example output:
.. code-block:: console
...
EAL: PCI device 0000:83:00.0 on NUMA socket 1
EAL: probe driver: 8086:1572 rte_i40e_pmd
EAL: PCI memory mapped at 0x7f7f80000000
EAL: PCI memory mapped at 0x7f7f80800000
PMD: eth_i40e_dev_init(): FW 5.0 API 1.5 NVM 05.00.02 eetrack 8000208a
Interactive-mode selected
Configuring Port 0 (socket 0)
...
PMD: i40e_dev_rx_queue_setup(): Rx Burst Bulk Alloc Preconditions are
satisfied.Rx Burst Bulk Alloc function will be used on port=0, queue=0.
...
Port 0: 68:05:CA:26:85:84
Checking link statuses...
Port 0 Link Up - speed 10000 Mbps - full-duplex
Done
testpmd>
SR-IOV: Prerequisites and sample Application Notes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#. Load the kernel module:
.. code-block:: console
modprobe i40e
Check the output in dmesg:
.. code-block:: console
i40e 0000:83:00.1 ens802f0: renamed from eth0
#. Bring up the PF ports:
.. code-block:: console
ifconfig ens802f0 up
#. Create VF device(s):
Echo the number of VFs to be created into the ``sriov_numvfs`` sysfs entry
of the parent PF.
Example:
.. code-block:: console
echo 2 > /sys/devices/pci0000:00/0000:00:03.0/0000:81:00.0/sriov_numvfs
#. Assign VF MAC address:
Assign MAC address to the VF using iproute2 utility. The syntax is:
.. code-block:: console
ip link set <PF netdev id> vf <VF id> mac <macaddr>
Example:
.. code-block:: console
ip link set ens802f0 vf 0 mac a0:b0:c0:d0:e0:f0
#. Assign VF to VM, and bring up the VM.
Please see the documentation for the *I40E/IXGBE/IGB Virtual Function Driver*.
Sample Application Notes
------------------------
Vlan filter
~~~~~~~~~~~
Vlan filter only works when Promiscuous mode is off.
To start ``testpmd``, and add vlan 10 to port 0:
.. code-block:: console
./app/testpmd -c ffff -n 4 -- -i --forward-mode=mac
...
testpmd> set promisc 0 off
testpmd> rx_vlan add 10 0
Flow Director
~~~~~~~~~~~~~
The Flow Director works in receive mode to identify specific flows or sets of flows and route them to specific queues.
The Flow Director filters can match the different fields for different type of packet: flow type, specific input set per flow type and the flexible payload.
The default input set of each flow type is::
ipv4-other : src_ip_address, dst_ip_address
ipv4-frag : src_ip_address, dst_ip_address
ipv4-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv4-sctp : src_ip_address, dst_ip_address, src_port, dst_port,
verification_tag
ipv6-other : src_ip_address, dst_ip_address
ipv6-frag : src_ip_address, dst_ip_address
ipv6-tcp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-udp : src_ip_address, dst_ip_address, src_port, dst_port
ipv6-sctp : src_ip_address, dst_ip_address, src_port, dst_port,
verification_tag
l2_payload : ether_type
The flex payload is selected from offset 0 to 15 of packet's payload by default, while it is masked out from matching.
Start ``testpmd`` with ``--disable-rss`` and ``--pkt-filter-mode=perfect``:
.. code-block:: console
./app/testpmd -c ffff -n 4 -- -i --disable-rss --pkt-filter-mode=perfect \
--rxq=8 --txq=8 --nb-cores=8 --nb-ports=1
Add a rule to direct ``ipv4-udp`` packet whose ``dst_ip=2.2.2.5, src_ip=2.2.2.3, src_port=32, dst_port=32`` to queue 1:
.. code-block:: console
testpmd> flow_director_filter 0 mode IP add flow ipv4-udp \
src 2.2.2.3 32 dst 2.2.2.5 32 vlan 0 flexbytes () \
fwd pf queue 1 fd_id 1
Check the flow director status:
.. code-block:: console
testpmd> show port fdir 0
######################## FDIR infos for port 0 ####################
MODE: PERFECT
SUPPORTED FLOW TYPE: ipv4-frag ipv4-tcp ipv4-udp ipv4-sctp ipv4-other
ipv6-frag ipv6-tcp ipv6-udp ipv6-sctp ipv6-other
l2_payload
FLEX PAYLOAD INFO:
max_len: 16 payload_limit: 480
payload_unit: 2 payload_seg: 3
bitmask_unit: 2 bitmask_num: 2
MASK:
vlan_tci: 0x0000,
src_ipv4: 0x00000000,
dst_ipv4: 0x00000000,
src_port: 0x0000,
dst_port: 0x0000
src_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000,
dst_ipv6: 0x00000000,0x00000000,0x00000000,0x00000000
FLEX PAYLOAD SRC OFFSET:
L2_PAYLOAD: 0 1 2 3 4 5 6 ...
L3_PAYLOAD: 0 1 2 3 4 5 6 ...
L4_PAYLOAD: 0 1 2 3 4 5 6 ...
FLEX MASK CFG:
ipv4-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv4-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-udp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-tcp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-sctp: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-other: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ipv6-frag: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
l2_payload: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
guarant_count: 1 best_count: 0
guarant_space: 512 best_space: 7168
collision: 0 free: 0
maxhash: 0 maxlen: 0
add: 0 remove: 0
f_add: 0 f_remove: 0
Delete all flow director rules on a port:
.. code-block:: console
testpmd> flush_flow_director 0
Floating VEB
~~~~~~~~~~~~~
The Intel® Ethernet Controller X710 and XL710 Family support a feature called
"Floating VEB".
A Virtual Ethernet Bridge (VEB) is an IEEE Edge Virtual Bridging (EVB) term
for functionality that allows local switching between virtual endpoints within
a physical endpoint and also with an external bridge/network.
A "Floating" VEB doesn't have an uplink connection to the outside world so all
switching is done internally and remains within the host. As such, this
feature provides security benefits.
In addition, a Floating VEB overcomes a limitation of normal VEBs where they
cannot forward packets when the physical link is down. Floating VEBs don't need
to connect to the NIC port so they can still forward traffic from VF to VF
even when the physical link is down.
Therefore, with this feature enabled VFs can be limited to communicating with
each other but not an outside network, and they can do so even when there is
no physical uplink on the associated NIC port.
To enable this feature, the user should pass a ``devargs`` parameter to the
EAL, for example::
-w 84:00.0,enable_floating_veb=1
In this configuration the PMD will use the floating VEB feature for all the
VFs created by this PF device.
Alternatively, the user can specify which VFs need to connect to this floating
VEB using the ``floating_veb_list`` argument::
-w 84:00.0,enable_floating_veb=1,floating_veb_list=1;3-4
In this example ``VF1``, ``VF3`` and ``VF4`` connect to the floating VEB,
while other VFs connect to the normal VEB.
The current implementation only supports one floating VEB and one regular
VEB. VFs can connect to a floating VEB or a regular VEB according to the
configuration passed on the EAL command line.
The floating VEB functionality requires a NIC firmware version of 5.0
or greater.
Limitations or Known issues
---------------------------
MPLS packet classification on X710/XL710
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For firmware versions prior to 5.0, MPLS packets are not recognized by the NIC.
The L2 Payload flow type in flow director can be used to classify MPLS packet
by using a command in testpmd like:
testpmd> flow_director_filter 0 mode IP add flow l2_payload ether \
0x8847 flexbytes () fwd pf queue <N> fd_id <M>
With the NIC firmware version 5.0 or greater, some limited MPLS support
is added: Native MPLS (MPLS in Ethernet) skip is implemented, while no
new packet type, no classification or offload are possible. With this change,
L2 Payload flow type in flow director cannot be used to classify MPLS packet
as with previous firmware versions. Meanwhile, the Ethertype filter can be
used to classify MPLS packet by using a command in testpmd like:
testpmd> ethertype_filter 0 add mac_ignr 00:00:00:00:00:00 ethertype \
0x8847 fwd queue <M>
16 Byte Descriptor cannot be used on DPDK VF
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the Linux i40e kernel driver is used as host driver, while DPDK i40e PMD
is used as the VF driver, DPDK cannot choose 16 byte receive descriptor. That
is to say, user should keep ``CONFIG_RTE_LIBRTE_I40E_16BYTE_RX_DESC=n`` in
config file.
Link down with i40e kernel driver after DPDK application exist
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After DPDK application quit, and the device is bound back to Linux i40e
kernel driver, the link cannot be up after ``ifconfig <dev> up``.
To work around this issue, ``ethtool -s <dev> autoneg on`` should be
set first and then the link can be brought up through ``ifconfig <dev> up``.
NOTE: requires Linux kernel i40e driver version >= 1.4.X
Receive packets with Ethertype 0x88A8
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Due to the FW limitation, PF can receive packets with Ethertype 0x88A8
only when floating VEB is disabled.