numam-dpdk/app/test-crypto-perf/cperf_test_verify.c
Fan Zhang d4ad392cbb app/crypto-perf: use separate session mempools
This patch uses the two session mempool approach to crypto perf
application. One mempool is for session header objects, and the other
is for session private data.

Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com>
Acked-by: Fiona Trahe <fiona.trahe@intel.com>
Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
2019-01-10 16:57:22 +01:00

430 lines
9.8 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2016-2017 Intel Corporation
*/
#include <rte_malloc.h>
#include <rte_cycles.h>
#include <rte_crypto.h>
#include <rte_cryptodev.h>
#include "cperf_test_verify.h"
#include "cperf_ops.h"
#include "cperf_test_common.h"
struct cperf_verify_ctx {
uint8_t dev_id;
uint16_t qp_id;
uint8_t lcore_id;
struct rte_mempool *pool;
struct rte_cryptodev_sym_session *sess;
cperf_populate_ops_t populate_ops;
uint32_t src_buf_offset;
uint32_t dst_buf_offset;
const struct cperf_options *options;
const struct cperf_test_vector *test_vector;
};
struct cperf_op_result {
enum rte_crypto_op_status status;
};
static void
cperf_verify_test_free(struct cperf_verify_ctx *ctx)
{
if (ctx) {
if (ctx->sess) {
rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
rte_cryptodev_sym_session_free(ctx->sess);
}
if (ctx->pool)
rte_mempool_free(ctx->pool);
rte_free(ctx);
}
}
void *
cperf_verify_test_constructor(struct rte_mempool *sess_mp,
struct rte_mempool *sess_priv_mp,
uint8_t dev_id, uint16_t qp_id,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector,
const struct cperf_op_fns *op_fns)
{
struct cperf_verify_ctx *ctx = NULL;
ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
if (ctx == NULL)
goto err;
ctx->dev_id = dev_id;
ctx->qp_id = qp_id;
ctx->populate_ops = op_fns->populate_ops;
ctx->options = options;
ctx->test_vector = test_vector;
/* IV goes at the end of the crypto operation */
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
sizeof(struct rte_crypto_sym_op);
ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
test_vector, iv_offset);
if (ctx->sess == NULL)
goto err;
if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
&ctx->src_buf_offset, &ctx->dst_buf_offset,
&ctx->pool) < 0)
goto err;
return ctx;
err:
cperf_verify_test_free(ctx);
return NULL;
}
static int
cperf_verify_op(struct rte_crypto_op *op,
const struct cperf_options *options,
const struct cperf_test_vector *vector)
{
const struct rte_mbuf *m;
uint32_t len;
uint16_t nb_segs;
uint8_t *data;
uint32_t cipher_offset, auth_offset;
uint8_t cipher, auth;
int res = 0;
if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
return 1;
if (op->sym->m_dst)
m = op->sym->m_dst;
else
m = op->sym->m_src;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
len += m->data_len;
m = m->next;
nb_segs--;
}
data = rte_malloc(NULL, len, 0);
if (data == NULL)
return 1;
if (op->sym->m_dst)
m = op->sym->m_dst;
else
m = op->sym->m_src;
nb_segs = m->nb_segs;
len = 0;
while (m && nb_segs != 0) {
memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
m->data_len);
len += m->data_len;
m = m->next;
nb_segs--;
}
switch (options->op_type) {
case CPERF_CIPHER_ONLY:
cipher = 1;
cipher_offset = 0;
auth = 0;
auth_offset = 0;
break;
case CPERF_CIPHER_THEN_AUTH:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = options->test_buffer_size;
break;
case CPERF_AUTH_ONLY:
cipher = 0;
cipher_offset = 0;
auth = 1;
auth_offset = options->test_buffer_size;
break;
case CPERF_AUTH_THEN_CIPHER:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = options->test_buffer_size;
break;
case CPERF_AEAD:
cipher = 1;
cipher_offset = 0;
auth = 1;
auth_offset = options->test_buffer_size;
break;
default:
res = 1;
goto out;
}
if (cipher == 1) {
if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
res += memcmp(data + cipher_offset,
vector->ciphertext.data,
options->test_buffer_size);
else
res += memcmp(data + cipher_offset,
vector->plaintext.data,
options->test_buffer_size);
}
if (auth == 1) {
if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
res += memcmp(data + auth_offset,
vector->digest.data,
options->digest_sz);
}
out:
rte_free(data);
return !!res;
}
static void
cperf_mbuf_set(struct rte_mbuf *mbuf,
const struct cperf_options *options,
const struct cperf_test_vector *test_vector)
{
uint32_t segment_sz = options->segment_sz;
uint8_t *mbuf_data;
uint8_t *test_data =
(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
test_vector->plaintext.data :
test_vector->ciphertext.data;
uint32_t remaining_bytes = options->max_buffer_size;
while (remaining_bytes) {
mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
if (remaining_bytes <= segment_sz) {
memcpy(mbuf_data, test_data, remaining_bytes);
return;
}
memcpy(mbuf_data, test_data, segment_sz);
remaining_bytes -= segment_sz;
test_data += segment_sz;
mbuf = mbuf->next;
}
}
int
cperf_verify_test_runner(void *test_ctx)
{
struct cperf_verify_ctx *ctx = test_ctx;
uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
uint64_t ops_failed = 0;
static int only_once;
uint64_t i;
uint16_t ops_unused = 0;
uint32_t imix_idx = 0;
struct rte_crypto_op *ops[ctx->options->max_burst_size];
struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
uint32_t lcore = rte_lcore_id();
#ifdef CPERF_LINEARIZATION_ENABLE
struct rte_cryptodev_info dev_info;
int linearize = 0;
/* Check if source mbufs require coalescing */
if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
if ((dev_info.feature_flags &
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
linearize = 1;
}
#endif /* CPERF_LINEARIZATION_ENABLE */
ctx->lcore_id = lcore;
if (!ctx->options->csv)
printf("\n# Running verify test on device: %u, lcore: %u\n",
ctx->dev_id, lcore);
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
sizeof(struct rte_crypto_sym_op);
while (ops_enqd_total < ctx->options->total_ops) {
uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
<= ctx->options->total_ops) ?
ctx->options->max_burst_size :
ctx->options->total_ops -
ops_enqd_total;
uint16_t ops_needed = burst_size - ops_unused;
/* Allocate objects containing crypto operations and mbufs */
if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
ops_needed) != 0) {
RTE_LOG(ERR, USER1,
"Failed to allocate more crypto operations "
"from the crypto operation pool.\n"
"Consider increasing the pool size "
"with --pool-sz\n");
return -1;
}
/* Setup crypto op, attach mbuf etc */
(ctx->populate_ops)(ops, ctx->src_buf_offset,
ctx->dst_buf_offset,
ops_needed, ctx->sess, ctx->options,
ctx->test_vector, iv_offset, &imix_idx);
/* Populate the mbuf with the test vector, for verification */
for (i = 0; i < ops_needed; i++)
cperf_mbuf_set(ops[i]->sym->m_src,
ctx->options,
ctx->test_vector);
#ifdef CPERF_LINEARIZATION_ENABLE
if (linearize) {
/* PMD doesn't support scatter-gather and source buffer
* is segmented.
* We need to linearize it before enqueuing.
*/
for (i = 0; i < burst_size; i++)
rte_pktmbuf_linearize(ops[i]->sym->m_src);
}
#endif /* CPERF_LINEARIZATION_ENABLE */
/* Enqueue burst of ops on crypto device */
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
ops, burst_size);
if (ops_enqd < burst_size)
ops_enqd_failed++;
/**
* Calculate number of ops not enqueued (mainly for hw
* accelerators whose ingress queue can fill up).
*/
ops_unused = burst_size - ops_enqd;
ops_enqd_total += ops_enqd;
/* Dequeue processed burst of ops from crypto device */
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
ops_processed, ctx->options->max_burst_size);
if (ops_deqd == 0) {
/**
* Count dequeue polls which didn't return any
* processed operations. This statistic is mainly
* relevant to hw accelerators.
*/
ops_deqd_failed++;
continue;
}
for (i = 0; i < ops_deqd; i++) {
if (cperf_verify_op(ops_processed[i], ctx->options,
ctx->test_vector))
ops_failed++;
}
/* Free crypto ops so they can be reused. */
rte_mempool_put_bulk(ctx->pool,
(void **)ops_processed, ops_deqd);
ops_deqd_total += ops_deqd;
}
/* Dequeue any operations still in the crypto device */
while (ops_deqd_total < ctx->options->total_ops) {
/* Sending 0 length burst to flush sw crypto device */
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
/* dequeue burst */
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
ops_processed, ctx->options->max_burst_size);
if (ops_deqd == 0) {
ops_deqd_failed++;
continue;
}
for (i = 0; i < ops_deqd; i++) {
if (cperf_verify_op(ops_processed[i], ctx->options,
ctx->test_vector))
ops_failed++;
}
/* Free crypto ops so they can be reused. */
rte_mempool_put_bulk(ctx->pool,
(void **)ops_processed, ops_deqd);
ops_deqd_total += ops_deqd;
}
if (!ctx->options->csv) {
if (!only_once)
printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
"lcore id", "Buf Size", "Burst size",
"Enqueued", "Dequeued", "Failed Enq",
"Failed Deq", "Failed Ops");
only_once = 1;
printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
"%12"PRIu64"%12"PRIu64"\n",
ctx->lcore_id,
ctx->options->max_buffer_size,
ctx->options->max_burst_size,
ops_enqd_total,
ops_deqd_total,
ops_enqd_failed,
ops_deqd_failed,
ops_failed);
} else {
if (!only_once)
printf("\n# lcore id, Buffer Size(B), "
"Burst Size,Enqueued,Dequeued,Failed Enq,"
"Failed Deq,Failed Ops\n");
only_once = 1;
printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
"%"PRIu64"\n",
ctx->lcore_id,
ctx->options->max_buffer_size,
ctx->options->max_burst_size,
ops_enqd_total,
ops_deqd_total,
ops_enqd_failed,
ops_deqd_failed,
ops_failed);
}
return 0;
}
void
cperf_verify_test_destructor(void *arg)
{
struct cperf_verify_ctx *ctx = arg;
if (ctx == NULL)
return;
cperf_verify_test_free(ctx);
}