d4ad392cbb
This patch uses the two session mempool approach to crypto perf application. One mempool is for session header objects, and the other is for session private data. Signed-off-by: Fan Zhang <roy.fan.zhang@intel.com> Acked-by: Fiona Trahe <fiona.trahe@intel.com> Acked-by: Akhil Goyal <akhil.goyal@nxp.com>
430 lines
9.8 KiB
C
430 lines
9.8 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2016-2017 Intel Corporation
|
|
*/
|
|
|
|
#include <rte_malloc.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_crypto.h>
|
|
#include <rte_cryptodev.h>
|
|
|
|
#include "cperf_test_verify.h"
|
|
#include "cperf_ops.h"
|
|
#include "cperf_test_common.h"
|
|
|
|
struct cperf_verify_ctx {
|
|
uint8_t dev_id;
|
|
uint16_t qp_id;
|
|
uint8_t lcore_id;
|
|
|
|
struct rte_mempool *pool;
|
|
|
|
struct rte_cryptodev_sym_session *sess;
|
|
|
|
cperf_populate_ops_t populate_ops;
|
|
|
|
uint32_t src_buf_offset;
|
|
uint32_t dst_buf_offset;
|
|
|
|
const struct cperf_options *options;
|
|
const struct cperf_test_vector *test_vector;
|
|
};
|
|
|
|
struct cperf_op_result {
|
|
enum rte_crypto_op_status status;
|
|
};
|
|
|
|
static void
|
|
cperf_verify_test_free(struct cperf_verify_ctx *ctx)
|
|
{
|
|
if (ctx) {
|
|
if (ctx->sess) {
|
|
rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
|
|
rte_cryptodev_sym_session_free(ctx->sess);
|
|
}
|
|
|
|
if (ctx->pool)
|
|
rte_mempool_free(ctx->pool);
|
|
|
|
rte_free(ctx);
|
|
}
|
|
}
|
|
|
|
void *
|
|
cperf_verify_test_constructor(struct rte_mempool *sess_mp,
|
|
struct rte_mempool *sess_priv_mp,
|
|
uint8_t dev_id, uint16_t qp_id,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector,
|
|
const struct cperf_op_fns *op_fns)
|
|
{
|
|
struct cperf_verify_ctx *ctx = NULL;
|
|
|
|
ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
|
|
if (ctx == NULL)
|
|
goto err;
|
|
|
|
ctx->dev_id = dev_id;
|
|
ctx->qp_id = qp_id;
|
|
|
|
ctx->populate_ops = op_fns->populate_ops;
|
|
ctx->options = options;
|
|
ctx->test_vector = test_vector;
|
|
|
|
/* IV goes at the end of the crypto operation */
|
|
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op);
|
|
|
|
ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
|
|
test_vector, iv_offset);
|
|
if (ctx->sess == NULL)
|
|
goto err;
|
|
|
|
if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
|
|
&ctx->src_buf_offset, &ctx->dst_buf_offset,
|
|
&ctx->pool) < 0)
|
|
goto err;
|
|
|
|
return ctx;
|
|
err:
|
|
cperf_verify_test_free(ctx);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
cperf_verify_op(struct rte_crypto_op *op,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *vector)
|
|
{
|
|
const struct rte_mbuf *m;
|
|
uint32_t len;
|
|
uint16_t nb_segs;
|
|
uint8_t *data;
|
|
uint32_t cipher_offset, auth_offset;
|
|
uint8_t cipher, auth;
|
|
int res = 0;
|
|
|
|
if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
|
|
return 1;
|
|
|
|
if (op->sym->m_dst)
|
|
m = op->sym->m_dst;
|
|
else
|
|
m = op->sym->m_src;
|
|
nb_segs = m->nb_segs;
|
|
len = 0;
|
|
while (m && nb_segs != 0) {
|
|
len += m->data_len;
|
|
m = m->next;
|
|
nb_segs--;
|
|
}
|
|
|
|
data = rte_malloc(NULL, len, 0);
|
|
if (data == NULL)
|
|
return 1;
|
|
|
|
if (op->sym->m_dst)
|
|
m = op->sym->m_dst;
|
|
else
|
|
m = op->sym->m_src;
|
|
nb_segs = m->nb_segs;
|
|
len = 0;
|
|
while (m && nb_segs != 0) {
|
|
memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
|
|
m->data_len);
|
|
len += m->data_len;
|
|
m = m->next;
|
|
nb_segs--;
|
|
}
|
|
|
|
switch (options->op_type) {
|
|
case CPERF_CIPHER_ONLY:
|
|
cipher = 1;
|
|
cipher_offset = 0;
|
|
auth = 0;
|
|
auth_offset = 0;
|
|
break;
|
|
case CPERF_CIPHER_THEN_AUTH:
|
|
cipher = 1;
|
|
cipher_offset = 0;
|
|
auth = 1;
|
|
auth_offset = options->test_buffer_size;
|
|
break;
|
|
case CPERF_AUTH_ONLY:
|
|
cipher = 0;
|
|
cipher_offset = 0;
|
|
auth = 1;
|
|
auth_offset = options->test_buffer_size;
|
|
break;
|
|
case CPERF_AUTH_THEN_CIPHER:
|
|
cipher = 1;
|
|
cipher_offset = 0;
|
|
auth = 1;
|
|
auth_offset = options->test_buffer_size;
|
|
break;
|
|
case CPERF_AEAD:
|
|
cipher = 1;
|
|
cipher_offset = 0;
|
|
auth = 1;
|
|
auth_offset = options->test_buffer_size;
|
|
break;
|
|
default:
|
|
res = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (cipher == 1) {
|
|
if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
|
|
res += memcmp(data + cipher_offset,
|
|
vector->ciphertext.data,
|
|
options->test_buffer_size);
|
|
else
|
|
res += memcmp(data + cipher_offset,
|
|
vector->plaintext.data,
|
|
options->test_buffer_size);
|
|
}
|
|
|
|
if (auth == 1) {
|
|
if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
|
|
res += memcmp(data + auth_offset,
|
|
vector->digest.data,
|
|
options->digest_sz);
|
|
}
|
|
|
|
out:
|
|
rte_free(data);
|
|
return !!res;
|
|
}
|
|
|
|
static void
|
|
cperf_mbuf_set(struct rte_mbuf *mbuf,
|
|
const struct cperf_options *options,
|
|
const struct cperf_test_vector *test_vector)
|
|
{
|
|
uint32_t segment_sz = options->segment_sz;
|
|
uint8_t *mbuf_data;
|
|
uint8_t *test_data =
|
|
(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
|
|
test_vector->plaintext.data :
|
|
test_vector->ciphertext.data;
|
|
uint32_t remaining_bytes = options->max_buffer_size;
|
|
|
|
while (remaining_bytes) {
|
|
mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
|
|
|
|
if (remaining_bytes <= segment_sz) {
|
|
memcpy(mbuf_data, test_data, remaining_bytes);
|
|
return;
|
|
}
|
|
|
|
memcpy(mbuf_data, test_data, segment_sz);
|
|
remaining_bytes -= segment_sz;
|
|
test_data += segment_sz;
|
|
mbuf = mbuf->next;
|
|
}
|
|
}
|
|
|
|
int
|
|
cperf_verify_test_runner(void *test_ctx)
|
|
{
|
|
struct cperf_verify_ctx *ctx = test_ctx;
|
|
|
|
uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
|
|
uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
|
|
uint64_t ops_failed = 0;
|
|
|
|
static int only_once;
|
|
|
|
uint64_t i;
|
|
uint16_t ops_unused = 0;
|
|
uint32_t imix_idx = 0;
|
|
|
|
struct rte_crypto_op *ops[ctx->options->max_burst_size];
|
|
struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
|
|
|
|
uint32_t lcore = rte_lcore_id();
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
struct rte_cryptodev_info dev_info;
|
|
int linearize = 0;
|
|
|
|
/* Check if source mbufs require coalescing */
|
|
if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
|
|
rte_cryptodev_info_get(ctx->dev_id, &dev_info);
|
|
if ((dev_info.feature_flags &
|
|
RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
|
|
linearize = 1;
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
ctx->lcore_id = lcore;
|
|
|
|
if (!ctx->options->csv)
|
|
printf("\n# Running verify test on device: %u, lcore: %u\n",
|
|
ctx->dev_id, lcore);
|
|
|
|
uint16_t iv_offset = sizeof(struct rte_crypto_op) +
|
|
sizeof(struct rte_crypto_sym_op);
|
|
|
|
while (ops_enqd_total < ctx->options->total_ops) {
|
|
|
|
uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
|
|
<= ctx->options->total_ops) ?
|
|
ctx->options->max_burst_size :
|
|
ctx->options->total_ops -
|
|
ops_enqd_total;
|
|
|
|
uint16_t ops_needed = burst_size - ops_unused;
|
|
|
|
/* Allocate objects containing crypto operations and mbufs */
|
|
if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
|
|
ops_needed) != 0) {
|
|
RTE_LOG(ERR, USER1,
|
|
"Failed to allocate more crypto operations "
|
|
"from the crypto operation pool.\n"
|
|
"Consider increasing the pool size "
|
|
"with --pool-sz\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Setup crypto op, attach mbuf etc */
|
|
(ctx->populate_ops)(ops, ctx->src_buf_offset,
|
|
ctx->dst_buf_offset,
|
|
ops_needed, ctx->sess, ctx->options,
|
|
ctx->test_vector, iv_offset, &imix_idx);
|
|
|
|
|
|
/* Populate the mbuf with the test vector, for verification */
|
|
for (i = 0; i < ops_needed; i++)
|
|
cperf_mbuf_set(ops[i]->sym->m_src,
|
|
ctx->options,
|
|
ctx->test_vector);
|
|
|
|
#ifdef CPERF_LINEARIZATION_ENABLE
|
|
if (linearize) {
|
|
/* PMD doesn't support scatter-gather and source buffer
|
|
* is segmented.
|
|
* We need to linearize it before enqueuing.
|
|
*/
|
|
for (i = 0; i < burst_size; i++)
|
|
rte_pktmbuf_linearize(ops[i]->sym->m_src);
|
|
}
|
|
#endif /* CPERF_LINEARIZATION_ENABLE */
|
|
|
|
/* Enqueue burst of ops on crypto device */
|
|
ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops, burst_size);
|
|
if (ops_enqd < burst_size)
|
|
ops_enqd_failed++;
|
|
|
|
/**
|
|
* Calculate number of ops not enqueued (mainly for hw
|
|
* accelerators whose ingress queue can fill up).
|
|
*/
|
|
ops_unused = burst_size - ops_enqd;
|
|
ops_enqd_total += ops_enqd;
|
|
|
|
|
|
/* Dequeue processed burst of ops from crypto device */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, ctx->options->max_burst_size);
|
|
|
|
if (ops_deqd == 0) {
|
|
/**
|
|
* Count dequeue polls which didn't return any
|
|
* processed operations. This statistic is mainly
|
|
* relevant to hw accelerators.
|
|
*/
|
|
ops_deqd_failed++;
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < ops_deqd; i++) {
|
|
if (cperf_verify_op(ops_processed[i], ctx->options,
|
|
ctx->test_vector))
|
|
ops_failed++;
|
|
}
|
|
/* Free crypto ops so they can be reused. */
|
|
rte_mempool_put_bulk(ctx->pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
ops_deqd_total += ops_deqd;
|
|
}
|
|
|
|
/* Dequeue any operations still in the crypto device */
|
|
|
|
while (ops_deqd_total < ctx->options->total_ops) {
|
|
/* Sending 0 length burst to flush sw crypto device */
|
|
rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
|
|
|
|
/* dequeue burst */
|
|
ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
|
|
ops_processed, ctx->options->max_burst_size);
|
|
if (ops_deqd == 0) {
|
|
ops_deqd_failed++;
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i < ops_deqd; i++) {
|
|
if (cperf_verify_op(ops_processed[i], ctx->options,
|
|
ctx->test_vector))
|
|
ops_failed++;
|
|
}
|
|
/* Free crypto ops so they can be reused. */
|
|
rte_mempool_put_bulk(ctx->pool,
|
|
(void **)ops_processed, ops_deqd);
|
|
ops_deqd_total += ops_deqd;
|
|
}
|
|
|
|
if (!ctx->options->csv) {
|
|
if (!only_once)
|
|
printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
|
|
"lcore id", "Buf Size", "Burst size",
|
|
"Enqueued", "Dequeued", "Failed Enq",
|
|
"Failed Deq", "Failed Ops");
|
|
only_once = 1;
|
|
|
|
printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
|
|
"%12"PRIu64"%12"PRIu64"\n",
|
|
ctx->lcore_id,
|
|
ctx->options->max_buffer_size,
|
|
ctx->options->max_burst_size,
|
|
ops_enqd_total,
|
|
ops_deqd_total,
|
|
ops_enqd_failed,
|
|
ops_deqd_failed,
|
|
ops_failed);
|
|
} else {
|
|
if (!only_once)
|
|
printf("\n# lcore id, Buffer Size(B), "
|
|
"Burst Size,Enqueued,Dequeued,Failed Enq,"
|
|
"Failed Deq,Failed Ops\n");
|
|
only_once = 1;
|
|
|
|
printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
|
|
"%"PRIu64"\n",
|
|
ctx->lcore_id,
|
|
ctx->options->max_buffer_size,
|
|
ctx->options->max_burst_size,
|
|
ops_enqd_total,
|
|
ops_deqd_total,
|
|
ops_enqd_failed,
|
|
ops_deqd_failed,
|
|
ops_failed);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
cperf_verify_test_destructor(void *arg)
|
|
{
|
|
struct cperf_verify_ctx *ctx = arg;
|
|
|
|
if (ctx == NULL)
|
|
return;
|
|
|
|
cperf_verify_test_free(ctx);
|
|
}
|