10aa375704
According to the programming guide, the rte_eal_init should be used pairs with rte_eal_cleanup. This patch add rte_eal_cleanup to examples to encourage new users of DPDK to use it. Fixes:aec9c13c52
("eal: add function to release internal resources") Fixes:3d0fad56b7
("examples/fips_validation: add crypto FIPS application") Fixes:c8e6ceeceb
("examples/ioat: add new sample app for ioat driver") Fixes:4ff457986f
("examples/l2fwd-event: add default poll mode routines") Fixes:08bd1a1744
("examples/l3fwd-graph: add graph-based l3fwd skeleton") Fixes:c5eebf85ba
("examples/ntb: add example for NTB") Fixes:b77f660028
("examples/pipeline: add new example application") Fixes:edbed86d1c
("examples/vdpa: introduce a new sample for vDPA") Fixes:c19beb3f38
("examples/vhost_blk: introduce vhost storage sample") Fixes:f5188211c7
("examples/vhost_crypto: add sample application") Cc: stable@dpdk.org Signed-off-by: Chengchang Tang <tangchengchang@huawei.com>
228 lines
6.3 KiB
C
228 lines
6.3 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause
|
|
* Copyright(c) 2017 Intel Corporation
|
|
*/
|
|
|
|
#include <unistd.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdint.h>
|
|
#include <errno.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <rte_memory.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_debug.h>
|
|
#include <rte_cycles.h>
|
|
|
|
/* allow application scheduling of the services */
|
|
#include <rte_service.h>
|
|
|
|
/* Allow application registration of its own services. An application does not
|
|
* have to register services, but it can be useful if it wishes to run a
|
|
* function on a core that is otherwise in use as a service core. In this
|
|
* example, all services are dummy services registered by the sample app itself.
|
|
*/
|
|
#include <rte_service_component.h>
|
|
|
|
#define PROFILE_CORES_MAX 8
|
|
#define PROFILE_SERVICE_PER_CORE 5
|
|
|
|
/* dummy function to do "work" */
|
|
static int32_t service_func(void *args)
|
|
{
|
|
RTE_SET_USED(args);
|
|
rte_delay_us(2000);
|
|
return 0;
|
|
}
|
|
|
|
static struct rte_service_spec services[] = {
|
|
{"service_1", service_func, NULL, 0, 0},
|
|
{"service_2", service_func, NULL, 0, 0},
|
|
{"service_3", service_func, NULL, 0, 0},
|
|
{"service_4", service_func, NULL, 0, 0},
|
|
{"service_5", service_func, NULL, 0, 0},
|
|
};
|
|
#define NUM_SERVICES RTE_DIM(services)
|
|
|
|
/* this struct holds the mapping of a particular core to all services */
|
|
struct profile_for_core {
|
|
uint32_t mapped_services[PROFILE_SERVICE_PER_CORE];
|
|
};
|
|
|
|
/* struct that can be applied as the service core mapping. Items in this
|
|
* struct will be passed to the ordinary rte_service_* APIs to configure the
|
|
* service cores at runtime, based on the requirements.
|
|
*
|
|
* These profiles can be considered a "configuration" for the service cores,
|
|
* where switching profile just changes the number of cores and the mappings
|
|
* for each of them. As a result, the core requirements and performance of the
|
|
* application scales.
|
|
*/
|
|
struct profile {
|
|
char name[64];
|
|
uint32_t num_cores;
|
|
struct profile_for_core cores[PROFILE_CORES_MAX];
|
|
};
|
|
|
|
static struct profile profiles[] = {
|
|
/* profile 0: high performance */
|
|
{
|
|
.name = "High Performance",
|
|
.num_cores = 5,
|
|
.cores[0] = {.mapped_services = {1, 0, 0, 0, 0} },
|
|
.cores[1] = {.mapped_services = {0, 1, 0, 0, 0} },
|
|
.cores[2] = {.mapped_services = {0, 0, 1, 0, 0} },
|
|
.cores[3] = {.mapped_services = {0, 0, 0, 1, 0} },
|
|
.cores[4] = {.mapped_services = {0, 0, 0, 0, 1} },
|
|
},
|
|
/* profile 1: mid performance with single service priority */
|
|
{
|
|
.name = "Mid-High Performance",
|
|
.num_cores = 3,
|
|
.cores[0] = {.mapped_services = {1, 1, 0, 0, 0} },
|
|
.cores[1] = {.mapped_services = {0, 0, 1, 1, 0} },
|
|
.cores[2] = {.mapped_services = {0, 0, 0, 0, 1} },
|
|
.cores[3] = {.mapped_services = {0, 0, 0, 0, 0} },
|
|
.cores[4] = {.mapped_services = {0, 0, 0, 0, 0} },
|
|
},
|
|
/* profile 2: mid performance with single service priority */
|
|
{
|
|
.name = "Mid-Low Performance",
|
|
.num_cores = 2,
|
|
.cores[0] = {.mapped_services = {1, 1, 1, 0, 0} },
|
|
.cores[1] = {.mapped_services = {1, 1, 0, 1, 1} },
|
|
.cores[2] = {.mapped_services = {0, 0, 0, 0, 0} },
|
|
.cores[3] = {.mapped_services = {0, 0, 0, 0, 0} },
|
|
.cores[4] = {.mapped_services = {0, 0, 0, 0, 0} },
|
|
},
|
|
/* profile 3: scale down performance on single core */
|
|
{
|
|
.name = "Scale down performance",
|
|
.num_cores = 1,
|
|
.cores[0] = {.mapped_services = {1, 1, 1, 1, 1} },
|
|
.cores[1] = {.mapped_services = {0, 0, 0, 0, 0} },
|
|
.cores[2] = {.mapped_services = {0, 0, 0, 0, 0} },
|
|
.cores[3] = {.mapped_services = {0, 0, 0, 0, 0} },
|
|
.cores[4] = {.mapped_services = {0, 0, 0, 0, 0} },
|
|
},
|
|
};
|
|
#define NUM_PROFILES RTE_DIM(profiles)
|
|
|
|
static void
|
|
apply_profile(int profile_id)
|
|
{
|
|
uint32_t i;
|
|
uint32_t s;
|
|
int ret;
|
|
struct profile *p = &profiles[profile_id];
|
|
const uint8_t core_off = 1;
|
|
|
|
if (p->num_cores > rte_lcore_count() + 1) {
|
|
printf("insufficent cores to run (%s)",
|
|
p->name);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < p->num_cores; i++) {
|
|
uint32_t core = i + core_off;
|
|
ret = rte_service_lcore_add(core);
|
|
if (ret && ret != -EALREADY)
|
|
printf("core %d added ret %d\n", core, ret);
|
|
|
|
ret = rte_service_lcore_start(core);
|
|
if (ret && ret != -EALREADY)
|
|
printf("core %d start ret %d\n", core, ret);
|
|
|
|
for (s = 0; s < NUM_SERVICES; s++) {
|
|
if (rte_service_map_lcore_set(s, core,
|
|
p->cores[i].mapped_services[s]))
|
|
printf("failed to map lcore %d\n", core);
|
|
}
|
|
}
|
|
|
|
for ( ; i < PROFILE_CORES_MAX; i++) {
|
|
uint32_t core = i + core_off;
|
|
for (s = 0; s < NUM_SERVICES; s++) {
|
|
ret = rte_service_map_lcore_set(s, core, 0);
|
|
if (ret && ret != -EINVAL) {
|
|
printf("%s %d: map lcore set = %d\n", __func__,
|
|
__LINE__, ret);
|
|
}
|
|
}
|
|
ret = rte_service_lcore_stop(core);
|
|
if (ret && ret != -EALREADY) {
|
|
printf("%s %d: lcore stop = %d\n", __func__,
|
|
__LINE__, ret);
|
|
}
|
|
ret = rte_service_lcore_del(core);
|
|
if (ret && ret != -EINVAL) {
|
|
printf("%s %d: lcore del = %d\n", __func__,
|
|
__LINE__, ret);
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
main(int argc, char **argv)
|
|
{
|
|
int ret;
|
|
|
|
ret = rte_eal_init(argc, argv);
|
|
if (ret < 0)
|
|
rte_panic("Cannot init EAL\n");
|
|
|
|
uint32_t i;
|
|
for (i = 0; i < NUM_SERVICES; i++) {
|
|
services[i].callback_userdata = 0;
|
|
uint32_t id;
|
|
ret = rte_service_component_register(&services[i], &id);
|
|
if (ret)
|
|
rte_exit(-1, "service register() failed");
|
|
|
|
/* set the service itself to be ready to run. In the case of
|
|
* ethdev, eventdev etc PMDs, this will be set when the
|
|
* appropriate configure or setup function is called.
|
|
*/
|
|
rte_service_component_runstate_set(id, 1);
|
|
|
|
/* Collect statistics for the service */
|
|
rte_service_set_stats_enable(id, 1);
|
|
|
|
/* the application sets the service to be active. Note that the
|
|
* previous component_runstate_set() is the PMD indicating
|
|
* ready, while this function is the application setting the
|
|
* service to run. Applications can choose to not run a service
|
|
* by setting runstate to 0 at any time.
|
|
*/
|
|
ret = rte_service_runstate_set(id, 1);
|
|
if (ret)
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
i = 0;
|
|
while (1) {
|
|
const char clr[] = { 27, '[', '2', 'J', '\0' };
|
|
const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
|
|
printf("%s%s", clr, topLeft);
|
|
|
|
apply_profile(i);
|
|
printf("\n==> Profile: %s\n\n", profiles[i].name);
|
|
|
|
rte_delay_us_sleep(1 * US_PER_S);
|
|
rte_service_dump(stdout, UINT32_MAX);
|
|
|
|
rte_delay_us_sleep(5 * US_PER_S);
|
|
rte_service_dump(stdout, UINT32_MAX);
|
|
|
|
i++;
|
|
if (i >= NUM_PROFILES)
|
|
i = 0;
|
|
}
|
|
|
|
/* clean up the EAL */
|
|
rte_eal_cleanup();
|
|
|
|
return 0;
|
|
}
|