numam-dpdk/drivers/net/atlantic/hw_atl/hw_atl_utils_fw2x.c
Pavel Belous e9924638f5 net/atlantic: add FW mailbox guard mutex
Driver uses the Firmware mailbox to read statistics and configure
some features.
This patch introduces a mutex to provide consistent access to the
FW mailbox to prevent potential data corruption.

Fixes: 86d36773bd ("net/atlantic: implement firmware operations")
Cc: stable@dpdk.org

Signed-off-by: Pavel Belous <pavel.belous@aquantia.com>
Signed-off-by: Igor Russkikh <igor.russkikh@aquantia.com>
2019-10-08 12:14:31 +02:00

771 lines
18 KiB
C

// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0)
/* Copyright (C) 2014-2017 aQuantia Corporation. */
/* File hw_atl_utils_fw2x.c: Definition of firmware 2.x functions for
* Atlantic hardware abstraction layer.
*/
#include <rte_ether.h>
#include <pthread.h>
#include "../atl_hw_regs.h"
#include "../atl_types.h"
#include "hw_atl_utils.h"
#include "hw_atl_llh.h"
#define HW_ATL_FW2X_MPI_EFUSE_ADDR 0x364
#define HW_ATL_FW2X_MPI_MBOX_ADDR 0x360
#define HW_ATL_FW2X_MPI_RPC_ADDR 0x334
#define HW_ATL_FW2X_MPI_CONTROL_ADDR 0x368
#define HW_ATL_FW2X_MPI_CONTROL2_ADDR 0x36C
#define HW_ATL_FW2X_MPI_LED_ADDR 0x31c
#define HW_ATL_FW2X_MPI_STATE_ADDR 0x370
#define HW_ATL_FW2X_MPI_STATE2_ADDR 0x374
#define HW_ATL_FW2X_CAP_SLEEP_PROXY BIT(CAPS_HI_SLEEP_PROXY)
#define HW_ATL_FW2X_CAP_WOL BIT(CAPS_HI_WOL)
#define HW_ATL_FW2X_CAP_EEE_1G_MASK BIT(CAPS_HI_1000BASET_FD_EEE)
#define HW_ATL_FW2X_CAP_EEE_2G5_MASK BIT(CAPS_HI_2P5GBASET_FD_EEE)
#define HW_ATL_FW2X_CAP_EEE_5G_MASK BIT(CAPS_HI_5GBASET_FD_EEE)
#define HW_ATL_FW2X_CAP_EEE_10G_MASK BIT(CAPS_HI_10GBASET_FD_EEE)
#define HAL_ATLANTIC_WOL_FILTERS_COUNT 8
#define HAL_ATLANTIC_UTILS_FW2X_MSG_WOL 0x0E
#define HW_ATL_FW_FEATURE_LED 0x03010026
struct fw2x_msg_wol_pattern {
u8 mask[16];
u32 crc;
} __attribute__((__packed__));
struct fw2x_msg_wol {
u32 msg_id;
u8 hw_addr[6];
u8 magic_packet_enabled;
u8 filter_count;
struct fw2x_msg_wol_pattern filter[HAL_ATLANTIC_WOL_FILTERS_COUNT];
u8 link_up_enabled;
u8 link_down_enabled;
u16 reserved;
u32 link_up_timeout;
u32 link_down_timeout;
} __attribute__((__packed__));
static int aq_fw2x_set_link_speed(struct aq_hw_s *self, u32 speed);
static int aq_fw2x_set_state(struct aq_hw_s *self,
enum hal_atl_utils_fw_state_e state);
static int aq_fw2x_init(struct aq_hw_s *self)
{
int err = 0;
struct hw_aq_atl_utils_mbox mbox;
/* check 10 times by 1ms */
AQ_HW_WAIT_FOR(0U != (self->mbox_addr =
aq_hw_read_reg(self, HW_ATL_FW2X_MPI_MBOX_ADDR)),
1000U, 10U);
AQ_HW_WAIT_FOR(0U != (self->rpc_addr =
aq_hw_read_reg(self, HW_ATL_FW2X_MPI_RPC_ADDR)),
1000U, 100U);
/* Read caps */
hw_atl_utils_mpi_read_stats(self, &mbox);
self->caps_lo = mbox.info.caps_lo;
return err;
}
static int aq_fw2x_deinit(struct aq_hw_s *self)
{
int err = aq_fw2x_set_link_speed(self, 0);
if (!err)
err = aq_fw2x_set_state(self, MPI_DEINIT);
return err;
}
static enum hw_atl_fw2x_rate link_speed_mask_2fw2x_ratemask(u32 speed)
{
enum hw_atl_fw2x_rate rate = 0;
if (speed & AQ_NIC_RATE_10G)
rate |= FW2X_RATE_10G;
if (speed & AQ_NIC_RATE_5G)
rate |= FW2X_RATE_5G;
if (speed & AQ_NIC_RATE_5G5R)
rate |= FW2X_RATE_5G;
if (speed & AQ_NIC_RATE_2G5)
rate |= FW2X_RATE_2G5;
if (speed & AQ_NIC_RATE_1G)
rate |= FW2X_RATE_1G;
if (speed & AQ_NIC_RATE_100M)
rate |= FW2X_RATE_100M;
return rate;
}
static u32 fw2x_to_eee_mask(u32 speed)
{
u32 rate = 0;
if (speed & HW_ATL_FW2X_CAP_EEE_10G_MASK)
rate |= AQ_NIC_RATE_EEE_10G;
if (speed & HW_ATL_FW2X_CAP_EEE_5G_MASK)
rate |= AQ_NIC_RATE_EEE_5G;
if (speed & HW_ATL_FW2X_CAP_EEE_2G5_MASK)
rate |= AQ_NIC_RATE_EEE_2G5;
if (speed & HW_ATL_FW2X_CAP_EEE_1G_MASK)
rate |= AQ_NIC_RATE_EEE_1G;
return rate;
}
static int aq_fw2x_set_link_speed(struct aq_hw_s *self, u32 speed)
{
u32 rate_mask = link_speed_mask_2fw2x_ratemask(speed);
u32 reg_val = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR);
u32 val = rate_mask | ((BIT(CAPS_LO_SMBUS_READ) |
BIT(CAPS_LO_SMBUS_WRITE) |
BIT(CAPS_LO_MACSEC)) & reg_val);
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR, val);
return 0;
}
static void aq_fw2x_set_mpi_flow_control(struct aq_hw_s *self, u32 *mpi_state)
{
if (self->aq_nic_cfg->flow_control & AQ_NIC_FC_RX)
*mpi_state |= BIT(CAPS_HI_PAUSE);
else
*mpi_state &= ~BIT(CAPS_HI_PAUSE);
if (self->aq_nic_cfg->flow_control & AQ_NIC_FC_TX)
*mpi_state |= BIT(CAPS_HI_ASYMMETRIC_PAUSE);
else
*mpi_state &= ~BIT(CAPS_HI_ASYMMETRIC_PAUSE);
}
static int aq_fw2x_set_state(struct aq_hw_s *self,
enum hal_atl_utils_fw_state_e state)
{
u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR);
switch (state) {
case MPI_INIT:
mpi_state &= ~BIT(CAPS_HI_LINK_DROP);
aq_fw2x_set_mpi_flow_control(self, &mpi_state);
break;
case MPI_DEINIT:
mpi_state |= BIT(CAPS_HI_LINK_DROP);
break;
case MPI_RESET:
case MPI_POWER:
/* No actions */
break;
}
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_state);
return 0;
}
static int aq_fw2x_update_link_status(struct aq_hw_s *self)
{
u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE_ADDR);
u32 speed = mpi_state & (FW2X_RATE_100M | FW2X_RATE_1G |
FW2X_RATE_2G5 | FW2X_RATE_5G | FW2X_RATE_10G);
struct aq_hw_link_status_s *link_status = &self->aq_link_status;
if (speed) {
if (speed & FW2X_RATE_10G)
link_status->mbps = 10000;
else if (speed & FW2X_RATE_5G)
link_status->mbps = 5000;
else if (speed & FW2X_RATE_2G5)
link_status->mbps = 2500;
else if (speed & FW2X_RATE_1G)
link_status->mbps = 1000;
else if (speed & FW2X_RATE_100M)
link_status->mbps = 100;
else
link_status->mbps = 10000;
} else {
link_status->mbps = 0;
}
return 0;
}
static
int aq_fw2x_get_mac_permanent(struct aq_hw_s *self, u8 *mac)
{
int err = 0;
u32 h = 0U;
u32 l = 0U;
u32 mac_addr[2] = { 0 };
u32 efuse_addr = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_EFUSE_ADDR);
pthread_mutex_lock(&self->mbox_mutex);
if (efuse_addr != 0) {
err = hw_atl_utils_fw_downld_dwords(self,
efuse_addr + (40U * 4U),
mac_addr,
ARRAY_SIZE(mac_addr));
if (err)
goto exit;
mac_addr[0] = rte_constant_bswap32(mac_addr[0]);
mac_addr[1] = rte_constant_bswap32(mac_addr[1]);
}
rte_ether_addr_copy((struct rte_ether_addr *)mac_addr,
(struct rte_ether_addr *)mac);
if ((mac[0] & 0x01U) || ((mac[0] | mac[1] | mac[2]) == 0x00U)) {
unsigned int rnd = (uint32_t)rte_rand();
//get_random_bytes(&rnd, sizeof(unsigned int));
l = 0xE3000000U
| (0xFFFFU & rnd)
| (0x00 << 16);
h = 0x8001300EU;
mac[5] = (u8)(0xFFU & l);
l >>= 8;
mac[4] = (u8)(0xFFU & l);
l >>= 8;
mac[3] = (u8)(0xFFU & l);
l >>= 8;
mac[2] = (u8)(0xFFU & l);
mac[1] = (u8)(0xFFU & h);
h >>= 8;
mac[0] = (u8)(0xFFU & h);
}
exit:
pthread_mutex_unlock(&self->mbox_mutex);
return err;
}
static int aq_fw2x_update_stats(struct aq_hw_s *self)
{
int err = 0;
u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR);
u32 orig_stats_val = mpi_opts & BIT(CAPS_HI_STATISTICS);
pthread_mutex_lock(&self->mbox_mutex);
/* Toggle statistics bit for FW to update */
mpi_opts = mpi_opts ^ BIT(CAPS_HI_STATISTICS);
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts);
/* Wait FW to report back */
AQ_HW_WAIT_FOR(orig_stats_val !=
(aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR) &
BIT(CAPS_HI_STATISTICS)),
1U, 10000U);
if (err)
goto exit;
err = hw_atl_utils_update_stats(self);
exit:
pthread_mutex_unlock(&self->mbox_mutex);
return err;
}
static int aq_fw2x_get_temp(struct aq_hw_s *self, int *temp)
{
int err = 0;
u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR);
u32 temp_val = mpi_opts & BIT(CAPS_HI_TEMPERATURE);
u32 temp_res;
pthread_mutex_lock(&self->mbox_mutex);
/* Toggle statistics bit for FW to 0x36C.18 (CAPS_HI_TEMPERATURE) */
mpi_opts = mpi_opts ^ BIT(CAPS_HI_TEMPERATURE);
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts);
/* Wait FW to report back */
AQ_HW_WAIT_FOR(temp_val !=
(aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR) &
BIT(CAPS_HI_TEMPERATURE)), 1U, 10000U);
err = hw_atl_utils_fw_downld_dwords(self,
self->mbox_addr +
offsetof(struct hw_aq_atl_utils_mbox, info) +
offsetof(struct hw_aq_info, phy_temperature),
&temp_res,
sizeof(temp_res) / sizeof(u32));
pthread_mutex_unlock(&self->mbox_mutex);
if (err)
return err;
*temp = temp_res * 100 / 256;
return 0;
}
static int aq_fw2x_get_cable_len(struct aq_hw_s *self, int *cable_len)
{
int err = 0;
u32 cable_len_res;
err = hw_atl_utils_fw_downld_dwords(self,
self->mbox_addr +
offsetof(struct hw_aq_atl_utils_mbox, info) +
offsetof(struct hw_aq_info, phy_temperature),
&cable_len_res,
sizeof(cable_len_res) / sizeof(u32));
if (err)
return err;
*cable_len = (cable_len_res >> 16) & 0xFF;
return 0;
}
#ifndef ETH_ALEN
#define ETH_ALEN 6
#endif
static int aq_fw2x_set_sleep_proxy(struct aq_hw_s *self, u8 *mac)
{
int err = 0;
struct hw_aq_atl_utils_fw_rpc *rpc = NULL;
struct offload_info *cfg = NULL;
unsigned int rpc_size = 0U;
u32 mpi_opts;
rpc_size = sizeof(rpc->msg_id) + sizeof(*cfg);
err = hw_atl_utils_fw_rpc_wait(self, &rpc);
if (err < 0)
goto err_exit;
memset(rpc, 0, rpc_size);
cfg = (struct offload_info *)(&rpc->msg_id + 1);
memcpy(cfg->mac_addr, mac, ETH_ALEN);
cfg->len = sizeof(*cfg);
/* Clear bit 0x36C.23 */
mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR);
mpi_opts &= ~HW_ATL_FW2X_CAP_SLEEP_PROXY;
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts);
err = hw_atl_utils_fw_rpc_call(self, rpc_size);
if (err < 0)
goto err_exit;
/* Set bit 0x36C.23 */
mpi_opts |= HW_ATL_FW2X_CAP_SLEEP_PROXY;
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts);
AQ_HW_WAIT_FOR((aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR) &
HW_ATL_FW2X_CAP_SLEEP_PROXY), 1U, 10000U);
err_exit:
return err;
}
static int aq_fw2x_set_wol_params(struct aq_hw_s *self, u8 *mac)
{
int err = 0;
struct fw2x_msg_wol *msg = NULL;
u32 mpi_opts;
struct hw_aq_atl_utils_fw_rpc *rpc = NULL;
err = hw_atl_utils_fw_rpc_wait(self, &rpc);
if (err < 0)
goto err_exit;
msg = (struct fw2x_msg_wol *)rpc;
msg->msg_id = HAL_ATLANTIC_UTILS_FW2X_MSG_WOL;
msg->magic_packet_enabled = true;
memcpy(msg->hw_addr, mac, ETH_ALEN);
mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR);
mpi_opts &= ~(HW_ATL_FW2X_CAP_SLEEP_PROXY | HW_ATL_FW2X_CAP_WOL);
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts);
err = hw_atl_utils_fw_rpc_call(self, sizeof(*msg));
if (err < 0)
goto err_exit;
/* Set bit 0x36C.24 */
mpi_opts |= HW_ATL_FW2X_CAP_WOL;
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts);
AQ_HW_WAIT_FOR((aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR) &
HW_ATL_FW2X_CAP_WOL), 1U, 10000U);
err_exit:
return err;
}
static int aq_fw2x_set_power(struct aq_hw_s *self,
unsigned int power_state __rte_unused,
u8 *mac)
{
int err = 0;
if (self->aq_nic_cfg->wol & AQ_NIC_WOL_ENABLED) {
err = aq_fw2x_set_sleep_proxy(self, mac);
if (err < 0)
goto err_exit;
err = aq_fw2x_set_wol_params(self, mac);
if (err < 0)
goto err_exit;
}
err_exit:
return err;
}
static int aq_fw2x_set_eee_rate(struct aq_hw_s *self, u32 speed)
{
u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR);
mpi_opts &= ~(HW_ATL_FW2X_CAP_EEE_1G_MASK |
HW_ATL_FW2X_CAP_EEE_2G5_MASK | HW_ATL_FW2X_CAP_EEE_5G_MASK |
HW_ATL_FW2X_CAP_EEE_10G_MASK);
if (speed & AQ_NIC_RATE_EEE_10G)
mpi_opts |= HW_ATL_FW2X_CAP_EEE_10G_MASK;
if (speed & AQ_NIC_RATE_EEE_5G)
mpi_opts |= HW_ATL_FW2X_CAP_EEE_5G_MASK;
if (speed & AQ_NIC_RATE_EEE_2G5)
mpi_opts |= HW_ATL_FW2X_CAP_EEE_2G5_MASK;
if (speed & AQ_NIC_RATE_EEE_1G)
mpi_opts |= HW_ATL_FW2X_CAP_EEE_1G_MASK;
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts);
return 0;
}
static int aq_fw2x_get_eee_rate(struct aq_hw_s *self, u32 *rate,
u32 *supported_rates)
{
int err = 0;
u32 caps_hi;
u32 mpi_state;
err = hw_atl_utils_fw_downld_dwords(self,
self->mbox_addr +
offsetof(struct hw_aq_atl_utils_mbox, info) +
offsetof(struct hw_aq_info, caps_hi),
&caps_hi,
sizeof(caps_hi) / sizeof(u32));
if (err)
return err;
*supported_rates = fw2x_to_eee_mask(caps_hi);
mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR);
*rate = fw2x_to_eee_mask(mpi_state);
return err;
}
static int aq_fw2x_get_flow_control(struct aq_hw_s *self, u32 *fc)
{
u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR);
*fc = ((mpi_state & BIT(CAPS_HI_PAUSE)) ? AQ_NIC_FC_RX : 0) |
((mpi_state & BIT(CAPS_HI_ASYMMETRIC_PAUSE)) ? AQ_NIC_FC_TX : 0);
return 0;
}
static int aq_fw2x_set_flow_control(struct aq_hw_s *self)
{
u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR);
aq_fw2x_set_mpi_flow_control(self, &mpi_state);
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_state);
return 0;
}
static int aq_fw2x_led_control(struct aq_hw_s *self, u32 mode)
{
if (self->fw_ver_actual < HW_ATL_FW_FEATURE_LED)
return -EOPNOTSUPP;
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_LED_ADDR, mode);
return 0;
}
static int aq_fw2x_get_eeprom(struct aq_hw_s *self, int dev_addr,
u32 *data, u32 len, u32 offset)
{
u32 bytes_remains = len % sizeof(u32);
u32 num_dwords = len / sizeof(u32);
struct smbus_request request;
u32 result = 0;
u32 mpi_opts;
int err = 0;
if ((self->caps_lo & BIT(CAPS_LO_SMBUS_READ)) == 0)
return -EOPNOTSUPP;
pthread_mutex_lock(&self->mbox_mutex);
request.msg_id = 0;
request.device_id = dev_addr;
request.address = offset;
request.length = len;
/* Write SMBUS request to cfg memory */
err = hw_atl_utils_fw_upload_dwords(self, self->rpc_addr,
(u32 *)(void *)&request,
sizeof(request) / sizeof(u32));
if (err < 0)
goto exit;
/* Toggle 0x368.CAPS_LO_SMBUS_READ bit */
mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR);
mpi_opts ^= BIT(CAPS_LO_SMBUS_READ);
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR, mpi_opts);
/* Wait until REQUEST_BIT matched in 0x370 */
AQ_HW_WAIT_FOR((aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE_ADDR) &
BIT(CAPS_LO_SMBUS_READ)) == (mpi_opts & BIT(CAPS_LO_SMBUS_READ)),
10U, 10000U);
if (err < 0)
goto exit;
err = hw_atl_utils_fw_downld_dwords(self, self->rpc_addr + sizeof(u32),
&result,
sizeof(result) / sizeof(u32));
if (err < 0)
goto exit;
if (result) {
err = -EIO;
goto exit;
}
if (num_dwords) {
err = hw_atl_utils_fw_downld_dwords(self,
self->rpc_addr + sizeof(u32) * 2,
data,
num_dwords);
if (err < 0)
goto exit;
}
if (bytes_remains) {
u32 val = 0;
err = hw_atl_utils_fw_downld_dwords(self,
self->rpc_addr + (sizeof(u32) * 2) +
(num_dwords * sizeof(u32)),
&val,
1);
if (err < 0)
goto exit;
rte_memcpy((u8 *)data + len - bytes_remains,
&val, bytes_remains);
}
exit:
pthread_mutex_unlock(&self->mbox_mutex);
return err;
}
static int aq_fw2x_set_eeprom(struct aq_hw_s *self, int dev_addr,
u32 *data, u32 len, u32 offset)
{
struct smbus_request request;
u32 mpi_opts, result = 0;
int err = 0;
if ((self->caps_lo & BIT(CAPS_LO_SMBUS_WRITE)) == 0)
return -EOPNOTSUPP;
request.msg_id = 0;
request.device_id = dev_addr;
request.address = offset;
request.length = len;
pthread_mutex_lock(&self->mbox_mutex);
/* Write SMBUS request to cfg memory */
err = hw_atl_utils_fw_upload_dwords(self, self->rpc_addr,
(u32 *)(void *)&request,
sizeof(request) / sizeof(u32));
if (err < 0)
goto exit;
/* Write SMBUS data to cfg memory */
u32 num_dwords = len / sizeof(u32);
u32 bytes_remains = len % sizeof(u32);
if (num_dwords) {
err = hw_atl_utils_fw_upload_dwords(self,
self->rpc_addr + sizeof(request),
(u32 *)(void *)data,
num_dwords);
if (err < 0)
goto exit;
}
if (bytes_remains) {
u32 val = 0;
rte_memcpy(&val, (u8 *)data + (sizeof(u32) * num_dwords),
bytes_remains);
err = hw_atl_utils_fw_upload_dwords(self,
self->rpc_addr + sizeof(request) +
(num_dwords * sizeof(u32)),
&val,
1);
if (err < 0)
goto exit;
}
/* Toggle 0x368.CAPS_LO_SMBUS_WRITE bit */
mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR);
mpi_opts ^= BIT(CAPS_LO_SMBUS_WRITE);
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR, mpi_opts);
/* Wait until REQUEST_BIT matched in 0x370 */
AQ_HW_WAIT_FOR((aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE_ADDR) &
BIT(CAPS_LO_SMBUS_WRITE)) == (mpi_opts & BIT(CAPS_LO_SMBUS_WRITE)),
10U, 10000U);
if (err < 0)
goto exit;
/* Read status of write operation */
err = hw_atl_utils_fw_downld_dwords(self, self->rpc_addr + sizeof(u32),
&result,
sizeof(result) / sizeof(u32));
if (err < 0)
goto exit;
if (result) {
err = -EIO;
goto exit;
}
exit:
pthread_mutex_unlock(&self->mbox_mutex);
return err;
}
static int aq_fw2x_send_macsec_request(struct aq_hw_s *self,
struct macsec_msg_fw_request *req,
struct macsec_msg_fw_response *response)
{
int err = 0;
u32 mpi_opts = 0;
if (!req || !response)
return 0;
if ((self->caps_lo & BIT(CAPS_LO_MACSEC)) == 0)
return -EOPNOTSUPP;
pthread_mutex_lock(&self->mbox_mutex);
/* Write macsec request to cfg memory */
err = hw_atl_utils_fw_upload_dwords(self, self->rpc_addr,
(u32 *)(void *)req,
RTE_ALIGN(sizeof(*req) / sizeof(u32), sizeof(u32)));
if (err < 0)
goto exit;
/* Toggle 0x368.CAPS_LO_MACSEC bit */
mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR);
mpi_opts ^= BIT(CAPS_LO_MACSEC);
aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR, mpi_opts);
/* Wait until REQUEST_BIT matched in 0x370 */
AQ_HW_WAIT_FOR((aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE_ADDR) &
BIT(CAPS_LO_MACSEC)) == (mpi_opts & BIT(CAPS_LO_MACSEC)),
1000U, 10000U);
if (err < 0)
goto exit;
/* Read status of write operation */
err = hw_atl_utils_fw_downld_dwords(self, self->rpc_addr + sizeof(u32),
(u32 *)(void *)response,
RTE_ALIGN(sizeof(*response) / sizeof(u32), sizeof(u32)));
exit:
pthread_mutex_unlock(&self->mbox_mutex);
return err;
}
const struct aq_fw_ops aq_fw_2x_ops = {
.init = aq_fw2x_init,
.deinit = aq_fw2x_deinit,
.reset = NULL,
.get_mac_permanent = aq_fw2x_get_mac_permanent,
.set_link_speed = aq_fw2x_set_link_speed,
.set_state = aq_fw2x_set_state,
.update_link_status = aq_fw2x_update_link_status,
.update_stats = aq_fw2x_update_stats,
.set_power = aq_fw2x_set_power,
.get_temp = aq_fw2x_get_temp,
.get_cable_len = aq_fw2x_get_cable_len,
.set_eee_rate = aq_fw2x_set_eee_rate,
.get_eee_rate = aq_fw2x_get_eee_rate,
.get_flow_control = aq_fw2x_get_flow_control,
.set_flow_control = aq_fw2x_set_flow_control,
.led_control = aq_fw2x_led_control,
.get_eeprom = aq_fw2x_get_eeprom,
.set_eeprom = aq_fw2x_set_eeprom,
.send_macsec_req = aq_fw2x_send_macsec_request,
};