numam-dpdk/lib/librte_node/ethdev_rx.c
Nithin Dabilpuram 5b2655a693 node: add packet classifier
This node classifies pkts based on packet type and
sends them to appropriate next node. This is node
helps in distribution of packets from ethdev_rx node
to different next node with a constant overhead for
all packet types.

Currently all except non fragmented IPV4 packets are marked
to be sent to "pkt_drop" node.
Performance difference on ARM64 Octeontx2 is -4.9% due to
addition of new node in the path.

Signed-off-by: Nithin Dabilpuram <ndabilpuram@marvell.com>
2020-07-22 01:18:59 +02:00

232 lines
5.3 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2020 Marvell International Ltd.
*/
#include <rte_debug.h>
#include <rte_ethdev.h>
#include <rte_ether.h>
#include <rte_graph.h>
#include <rte_graph_worker.h>
#include <rte_mbuf.h>
#include "ethdev_rx_priv.h"
#include "node_private.h"
static struct ethdev_rx_node_main ethdev_rx_main;
static __rte_always_inline uint16_t
ethdev_rx_node_process_inline(struct rte_graph *graph, struct rte_node *node,
ethdev_rx_node_ctx_t *ctx)
{
uint16_t count, next_index;
uint16_t port, queue;
port = ctx->port_id;
queue = ctx->queue_id;
next_index = ctx->cls_next;
/* Get pkts from port */
count = rte_eth_rx_burst(port, queue, (struct rte_mbuf **)node->objs,
RTE_GRAPH_BURST_SIZE);
if (!count)
return 0;
node->idx = count;
/* Enqueue to next node */
rte_node_next_stream_move(graph, node, next_index);
return count;
}
static __rte_always_inline uint16_t
ethdev_rx_node_process(struct rte_graph *graph, struct rte_node *node,
void **objs, uint16_t cnt)
{
ethdev_rx_node_ctx_t *ctx = (ethdev_rx_node_ctx_t *)node->ctx;
uint16_t n_pkts = 0;
RTE_SET_USED(objs);
RTE_SET_USED(cnt);
n_pkts = ethdev_rx_node_process_inline(graph, node, ctx);
return n_pkts;
}
static inline uint32_t
l3_ptype(uint16_t etype, uint32_t ptype)
{
ptype = ptype & ~RTE_PTYPE_L3_MASK;
if (etype == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
else if (etype == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
return ptype;
}
/* Callback for soft ptype parsing */
static uint16_t
eth_pkt_parse_cb(uint16_t port, uint16_t queue, struct rte_mbuf **mbufs,
uint16_t nb_pkts, uint16_t max_pkts, void *user_param)
{
struct rte_mbuf *mbuf0, *mbuf1, *mbuf2, *mbuf3;
struct rte_ether_hdr *eth_hdr;
uint16_t etype, n_left;
struct rte_mbuf **pkts;
RTE_SET_USED(port);
RTE_SET_USED(queue);
RTE_SET_USED(max_pkts);
RTE_SET_USED(user_param);
pkts = mbufs;
n_left = nb_pkts;
while (n_left >= 12) {
/* Prefetch next-next mbufs */
rte_prefetch0(pkts[8]);
rte_prefetch0(pkts[9]);
rte_prefetch0(pkts[10]);
rte_prefetch0(pkts[11]);
/* Prefetch next mbuf data */
rte_prefetch0(
rte_pktmbuf_mtod(pkts[4], struct rte_ether_hdr *));
rte_prefetch0(
rte_pktmbuf_mtod(pkts[5], struct rte_ether_hdr *));
rte_prefetch0(
rte_pktmbuf_mtod(pkts[6], struct rte_ether_hdr *));
rte_prefetch0(
rte_pktmbuf_mtod(pkts[7], struct rte_ether_hdr *));
mbuf0 = pkts[0];
mbuf1 = pkts[1];
mbuf2 = pkts[2];
mbuf3 = pkts[3];
pkts += 4;
n_left -= 4;
/* Extract ptype of mbuf0 */
eth_hdr = rte_pktmbuf_mtod(mbuf0, struct rte_ether_hdr *);
etype = eth_hdr->ether_type;
mbuf0->packet_type = l3_ptype(etype, 0);
/* Extract ptype of mbuf1 */
eth_hdr = rte_pktmbuf_mtod(mbuf1, struct rte_ether_hdr *);
etype = eth_hdr->ether_type;
mbuf1->packet_type = l3_ptype(etype, 0);
/* Extract ptype of mbuf2 */
eth_hdr = rte_pktmbuf_mtod(mbuf2, struct rte_ether_hdr *);
etype = eth_hdr->ether_type;
mbuf2->packet_type = l3_ptype(etype, 0);
/* Extract ptype of mbuf3 */
eth_hdr = rte_pktmbuf_mtod(mbuf3, struct rte_ether_hdr *);
etype = eth_hdr->ether_type;
mbuf3->packet_type = l3_ptype(etype, 0);
}
while (n_left > 0) {
mbuf0 = pkts[0];
pkts += 1;
n_left -= 1;
/* Extract ptype of mbuf0 */
eth_hdr = rte_pktmbuf_mtod(mbuf0, struct rte_ether_hdr *);
etype = eth_hdr->ether_type;
mbuf0->packet_type = l3_ptype(etype, 0);
}
return nb_pkts;
}
#define MAX_PTYPES 16
static int
ethdev_ptype_setup(uint16_t port, uint16_t queue)
{
uint8_t l3_ipv4 = 0, l3_ipv6 = 0;
uint32_t ptypes[MAX_PTYPES];
int i, rc;
/* Check IPv4 & IPv6 ptype support */
rc = rte_eth_dev_get_supported_ptypes(port, RTE_PTYPE_L3_MASK, ptypes,
MAX_PTYPES);
for (i = 0; i < rc; i++) {
if (ptypes[i] & RTE_PTYPE_L3_IPV4)
l3_ipv4 = 1;
if (ptypes[i] & RTE_PTYPE_L3_IPV6)
l3_ipv6 = 1;
}
if (!l3_ipv4 || !l3_ipv6) {
node_info("ethdev_rx",
"Enabling ptype callback for required ptypes on port %u\n",
port);
if (!rte_eth_add_rx_callback(port, queue, eth_pkt_parse_cb,
NULL)) {
node_err("ethdev_rx",
"Failed to add rx ptype cb: port=%d, queue=%d\n",
port, queue);
return -EINVAL;
}
}
return 0;
}
static int
ethdev_rx_node_init(const struct rte_graph *graph, struct rte_node *node)
{
ethdev_rx_node_ctx_t *ctx = (ethdev_rx_node_ctx_t *)node->ctx;
ethdev_rx_node_elem_t *elem = ethdev_rx_main.head;
RTE_SET_USED(graph);
while (elem) {
if (elem->nid == node->id) {
/* Update node specific context */
memcpy(ctx, &elem->ctx, sizeof(ethdev_rx_node_ctx_t));
break;
}
elem = elem->next;
}
RTE_VERIFY(elem != NULL);
ctx->cls_next = ETHDEV_RX_NEXT_PKT_CLS;
/* Check and setup ptype */
return ethdev_ptype_setup(ctx->port_id, ctx->queue_id);
}
struct ethdev_rx_node_main *
ethdev_rx_get_node_data_get(void)
{
return &ethdev_rx_main;
}
static struct rte_node_register ethdev_rx_node_base = {
.process = ethdev_rx_node_process,
.flags = RTE_NODE_SOURCE_F,
.name = "ethdev_rx",
.init = ethdev_rx_node_init,
.nb_edges = ETHDEV_RX_NEXT_MAX,
.next_nodes = {
/* Default pkt classification node */
[ETHDEV_RX_NEXT_PKT_CLS] = "pkt_cls",
[ETHDEV_RX_NEXT_IP4_LOOKUP] = "ip4_lookup",
},
};
struct rte_node_register *
ethdev_rx_node_get(void)
{
return &ethdev_rx_node_base;
}
RTE_NODE_REGISTER(ethdev_rx_node_base);