numam-dpdk/lib/librte_acl/acl_gen.c
Konstantin Ananyev 62945e029e acl: introduce config parameter for performance/space trade-off
If at build phase we don't make any trie splitting,
then temporary build structures and resulting RT structure might be
much bigger than current.
>From other side - having just one trie instead of multiple can speedup
search quite significantly.
>From my measurements on rule-sets with ~10K rules:
RT table up to 8 times bigger, classify() up to 80% faster
than current implementation.
To make it possible for the user to decide about performance/space trade-off -
new parameter for build config structure (max_size) is introduced.
Setting it to the value greater than zero, instructs  rte_acl_build() to:
- make sure that size of RT table wouldn't exceed given value.
- attempt to minimise number of tries in the table.
Setting it to zero maintains current behaviour.
That introduces a minor change in the public API, but I think the possible
performance gain is too big to ignore it.

Signed-off-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
2015-01-28 17:11:26 +01:00

562 lines
15 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <rte_acl.h>
#include "acl.h"
#define QRANGE_MIN ((uint8_t)INT8_MIN)
#define RTE_ACL_VERIFY(exp) do { \
if (!(exp)) \
rte_panic("line %d\tassert \"" #exp "\" failed\n", __LINE__); \
} while (0)
struct acl_node_counters {
int32_t match;
int32_t match_used;
int32_t single;
int32_t quad;
int32_t quad_vectors;
int32_t dfa;
int32_t dfa_gr64;
};
struct rte_acl_indices {
int32_t dfa_index;
int32_t quad_index;
int32_t single_index;
int32_t match_index;
int32_t match_start;
};
static void
acl_gen_log_stats(const struct rte_acl_ctx *ctx,
const struct acl_node_counters *counts,
const struct rte_acl_indices *indices,
size_t max_size)
{
RTE_LOG(DEBUG, ACL, "Gen phase for ACL \"%s\":\n"
"runtime memory footprint on socket %d:\n"
"single nodes/bytes used: %d/%zu\n"
"quad nodes/vectors/bytes used: %d/%d/%zu\n"
"DFA nodes/group64/bytes used: %d/%d/%zu\n"
"match nodes/bytes used: %d/%zu\n"
"total: %zu bytes\n"
"max limit: %zu bytes\n",
ctx->name, ctx->socket_id,
counts->single, counts->single * sizeof(uint64_t),
counts->quad, counts->quad_vectors,
(indices->quad_index - indices->dfa_index) * sizeof(uint64_t),
counts->dfa, counts->dfa_gr64,
indices->dfa_index * sizeof(uint64_t),
counts->match,
counts->match * sizeof(struct rte_acl_match_results),
ctx->mem_sz,
max_size);
}
static uint64_t
acl_dfa_gen_idx(const struct rte_acl_node *node, uint32_t index)
{
uint64_t idx;
uint32_t i;
idx = 0;
for (i = 0; i != RTE_DIM(node->dfa_gr64); i++) {
RTE_ACL_VERIFY(node->dfa_gr64[i] < RTE_ACL_DFA_GR64_NUM);
RTE_ACL_VERIFY(node->dfa_gr64[i] < node->fanout);
idx |= (i - node->dfa_gr64[i]) <<
(6 + RTE_ACL_DFA_GR64_BIT * i);
}
return idx << (CHAR_BIT * sizeof(index)) | index | node->node_type;
}
static void
acl_dfa_fill_gr64(const struct rte_acl_node *node,
const uint64_t src[RTE_ACL_DFA_SIZE], uint64_t dst[RTE_ACL_DFA_SIZE])
{
uint32_t i;
for (i = 0; i != RTE_DIM(node->dfa_gr64); i++) {
memcpy(dst + node->dfa_gr64[i] * RTE_ACL_DFA_GR64_SIZE,
src + i * RTE_ACL_DFA_GR64_SIZE,
RTE_ACL_DFA_GR64_SIZE * sizeof(dst[0]));
}
}
static uint32_t
acl_dfa_count_gr64(const uint64_t array_ptr[RTE_ACL_DFA_SIZE],
uint8_t gr64[RTE_ACL_DFA_GR64_NUM])
{
uint32_t i, j, k;
k = 0;
for (i = 0; i != RTE_ACL_DFA_GR64_NUM; i++) {
gr64[i] = i;
for (j = 0; j != i; j++) {
if (memcmp(array_ptr + i * RTE_ACL_DFA_GR64_SIZE,
array_ptr + j * RTE_ACL_DFA_GR64_SIZE,
RTE_ACL_DFA_GR64_SIZE *
sizeof(array_ptr[0])) == 0)
break;
}
gr64[i] = (j != i) ? gr64[j] : k++;
}
return k;
}
static uint32_t
acl_node_fill_dfa(const struct rte_acl_node *node,
uint64_t dfa[RTE_ACL_DFA_SIZE], uint64_t no_match, int32_t resolved)
{
uint32_t n, x;
uint32_t ranges, last_bit;
struct rte_acl_node *child;
struct rte_acl_bitset *bits;
ranges = 0;
last_bit = 0;
for (n = 0; n < RTE_ACL_DFA_SIZE; n++)
dfa[n] = no_match;
for (x = 0; x < node->num_ptrs; x++) {
child = node->ptrs[x].ptr;
if (child == NULL)
continue;
bits = &node->ptrs[x].values;
for (n = 0; n < RTE_ACL_DFA_SIZE; n++) {
if (bits->bits[n / (sizeof(bits_t) * CHAR_BIT)] &
(1 << (n % (sizeof(bits_t) * CHAR_BIT)))) {
dfa[n] = resolved ? child->node_index : x;
ranges += (last_bit == 0);
last_bit = 1;
} else {
last_bit = 0;
}
}
}
return ranges;
}
/*
* Counts the number of groups of sequential bits that are
* either 0 or 1, as specified by the zero_one parameter. This is used to
* calculate the number of ranges in a node to see if it fits in a quad range
* node.
*/
static int
acl_count_sequential_groups(struct rte_acl_bitset *bits, int zero_one)
{
int n, ranges, last_bit;
ranges = 0;
last_bit = zero_one ^ 1;
for (n = QRANGE_MIN; n < UINT8_MAX + 1; n++) {
if (bits->bits[n / (sizeof(bits_t) * 8)] &
(1 << (n % (sizeof(bits_t) * 8)))) {
if (zero_one == 1 && last_bit != 1)
ranges++;
last_bit = 1;
} else {
if (zero_one == 0 && last_bit != 0)
ranges++;
last_bit = 0;
}
}
for (n = 0; n < QRANGE_MIN; n++) {
if (bits->bits[n / (sizeof(bits_t) * 8)] &
(1 << (n % (sizeof(bits_t) * 8)))) {
if (zero_one == 1 && last_bit != 1)
ranges++;
last_bit = 1;
} else {
if (zero_one == 0 && last_bit != 0)
ranges++;
last_bit = 0;
}
}
return ranges;
}
/*
* Count number of ranges spanned by the node's pointers
*/
static int
acl_count_fanout(struct rte_acl_node *node)
{
uint32_t n;
int ranges;
if (node->fanout != 0)
return node->fanout;
ranges = acl_count_sequential_groups(&node->values, 0);
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL)
ranges += acl_count_sequential_groups(
&node->ptrs[n].values, 1);
}
node->fanout = ranges;
return node->fanout;
}
/*
* Determine the type of nodes and count each type
*/
static void
acl_count_trie_types(struct acl_node_counters *counts,
struct rte_acl_node *node, uint64_t no_match, int force_dfa)
{
uint32_t n;
int num_ptrs;
uint64_t dfa[RTE_ACL_DFA_SIZE];
/* skip if this node has been counted */
if (node->node_type != (uint32_t)RTE_ACL_NODE_UNDEFINED)
return;
if (node->match_flag != 0 || node->num_ptrs == 0) {
counts->match++;
node->node_type = RTE_ACL_NODE_MATCH;
return;
}
num_ptrs = acl_count_fanout(node);
/* Force type to dfa */
if (force_dfa)
num_ptrs = RTE_ACL_DFA_SIZE;
/* determine node type based on number of ranges */
if (num_ptrs == 1) {
counts->single++;
node->node_type = RTE_ACL_NODE_SINGLE;
} else if (num_ptrs <= RTE_ACL_QUAD_MAX) {
counts->quad++;
counts->quad_vectors += node->fanout;
node->node_type = RTE_ACL_NODE_QRANGE;
} else {
counts->dfa++;
node->node_type = RTE_ACL_NODE_DFA;
if (force_dfa != 0) {
/* always expand to a max number of nodes. */
for (n = 0; n != RTE_DIM(node->dfa_gr64); n++)
node->dfa_gr64[n] = n;
node->fanout = n;
} else {
acl_node_fill_dfa(node, dfa, no_match, 0);
node->fanout = acl_dfa_count_gr64(dfa, node->dfa_gr64);
}
counts->dfa_gr64 += node->fanout;
}
/*
* recursively count the types of all children
*/
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL)
acl_count_trie_types(counts, node->ptrs[n].ptr,
no_match, 0);
}
}
static void
acl_add_ptrs(struct rte_acl_node *node, uint64_t *node_array, uint64_t no_match,
int resolved)
{
uint32_t x;
int32_t m;
uint64_t *node_a, index, dfa[RTE_ACL_DFA_SIZE];
acl_node_fill_dfa(node, dfa, no_match, resolved);
/*
* Rather than going from 0 to 256, the range count and
* the layout are from 80-ff then 0-7f due to signed compare
* for SSE (cmpgt).
*/
if (node->node_type == RTE_ACL_NODE_QRANGE) {
m = 0;
node_a = node_array;
index = dfa[QRANGE_MIN];
*node_a++ = index;
for (x = QRANGE_MIN + 1; x < UINT8_MAX + 1; x++) {
if (dfa[x] != index) {
index = dfa[x];
*node_a++ = index;
node->transitions[m++] = (uint8_t)(x - 1);
}
}
for (x = 0; x < INT8_MAX + 1; x++) {
if (dfa[x] != index) {
index = dfa[x];
*node_a++ = index;
node->transitions[m++] = (uint8_t)(x - 1);
}
}
/* fill unused locations with max value - nothing is greater */
for (; m < RTE_ACL_QUAD_SIZE; m++)
node->transitions[m] = INT8_MAX;
RTE_ACL_VERIFY(m <= RTE_ACL_QUAD_SIZE);
} else if (node->node_type == RTE_ACL_NODE_DFA && resolved) {
acl_dfa_fill_gr64(node, dfa, node_array);
}
}
/*
* Routine that allocates space for this node and recursively calls
* to allocate space for each child. Once all the children are allocated,
* then resolve all transitions for this node.
*/
static void
acl_gen_node(struct rte_acl_node *node, uint64_t *node_array,
uint64_t no_match, struct rte_acl_indices *index, int num_categories)
{
uint32_t n, sz, *qtrp;
uint64_t *array_ptr;
struct rte_acl_match_results *match;
if (node->node_index != RTE_ACL_NODE_UNDEFINED)
return;
array_ptr = NULL;
switch (node->node_type) {
case RTE_ACL_NODE_DFA:
array_ptr = &node_array[index->dfa_index];
node->node_index = acl_dfa_gen_idx(node, index->dfa_index);
sz = node->fanout * RTE_ACL_DFA_GR64_SIZE;
index->dfa_index += sz;
for (n = 0; n < sz; n++)
array_ptr[n] = no_match;
break;
case RTE_ACL_NODE_SINGLE:
node->node_index = RTE_ACL_QUAD_SINGLE | index->single_index |
node->node_type;
array_ptr = &node_array[index->single_index];
index->single_index += 1;
array_ptr[0] = no_match;
break;
case RTE_ACL_NODE_QRANGE:
array_ptr = &node_array[index->quad_index];
acl_add_ptrs(node, array_ptr, no_match, 0);
qtrp = (uint32_t *)node->transitions;
node->node_index = qtrp[0];
node->node_index <<= sizeof(index->quad_index) * CHAR_BIT;
node->node_index |= index->quad_index | node->node_type;
index->quad_index += node->fanout;
break;
case RTE_ACL_NODE_MATCH:
match = ((struct rte_acl_match_results *)
(node_array + index->match_start));
for (n = 0; n != RTE_DIM(match->results); n++)
RTE_ACL_VERIFY(match->results[0] == 0);
memcpy(match + index->match_index, node->mrt,
sizeof(*node->mrt));
node->node_index = index->match_index | node->node_type;
index->match_index += 1;
break;
case RTE_ACL_NODE_UNDEFINED:
RTE_ACL_VERIFY(node->node_type !=
(uint32_t)RTE_ACL_NODE_UNDEFINED);
break;
}
/* recursively allocate space for all children */
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL)
acl_gen_node(node->ptrs[n].ptr,
node_array,
no_match,
index,
num_categories);
}
/* All children are resolved, resolve this node's pointers */
switch (node->node_type) {
case RTE_ACL_NODE_DFA:
acl_add_ptrs(node, array_ptr, no_match, 1);
break;
case RTE_ACL_NODE_SINGLE:
for (n = 0; n < node->num_ptrs; n++) {
if (node->ptrs[n].ptr != NULL)
array_ptr[0] = node->ptrs[n].ptr->node_index;
}
break;
case RTE_ACL_NODE_QRANGE:
acl_add_ptrs(node, array_ptr, no_match, 1);
break;
case RTE_ACL_NODE_MATCH:
break;
case RTE_ACL_NODE_UNDEFINED:
RTE_ACL_VERIFY(node->node_type !=
(uint32_t)RTE_ACL_NODE_UNDEFINED);
break;
}
}
static void
acl_calc_counts_indices(struct acl_node_counters *counts,
struct rte_acl_indices *indices,
struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries,
uint64_t no_match)
{
uint32_t n;
memset(indices, 0, sizeof(*indices));
memset(counts, 0, sizeof(*counts));
/* Get stats on nodes */
for (n = 0; n < num_tries; n++) {
acl_count_trie_types(counts, node_bld_trie[n].trie,
no_match, 1);
}
indices->dfa_index = RTE_ACL_DFA_SIZE + 1;
indices->quad_index = indices->dfa_index +
counts->dfa_gr64 * RTE_ACL_DFA_GR64_SIZE;
indices->single_index = indices->quad_index + counts->quad_vectors;
indices->match_start = indices->single_index + counts->single + 1;
indices->match_start = RTE_ALIGN(indices->match_start,
(XMM_SIZE / sizeof(uint64_t)));
indices->match_index = 1;
}
/*
* Generate the runtime structure using build structure
*/
int
rte_acl_gen(struct rte_acl_ctx *ctx, struct rte_acl_trie *trie,
struct rte_acl_bld_trie *node_bld_trie, uint32_t num_tries,
uint32_t num_categories, uint32_t data_index_sz, size_t max_size)
{
void *mem;
size_t total_size;
uint64_t *node_array, no_match;
uint32_t n, match_index;
struct rte_acl_match_results *match;
struct acl_node_counters counts;
struct rte_acl_indices indices;
no_match = RTE_ACL_NODE_MATCH;
/* Fill counts and indices arrays from the nodes. */
acl_calc_counts_indices(&counts, &indices,
node_bld_trie, num_tries, no_match);
/* Allocate runtime memory (align to cache boundary) */
total_size = RTE_ALIGN(data_index_sz, RTE_CACHE_LINE_SIZE) +
indices.match_start * sizeof(uint64_t) +
(counts.match + 1) * sizeof(struct rte_acl_match_results) +
XMM_SIZE;
if (total_size > max_size) {
RTE_LOG(DEBUG, ACL,
"Gen phase for ACL ctx \"%s\" exceeds max_size limit, "
"bytes required: %zu, allowed: %zu\n",
ctx->name, total_size, max_size);
return -ERANGE;
}
mem = rte_zmalloc_socket(ctx->name, total_size, RTE_CACHE_LINE_SIZE,
ctx->socket_id);
if (mem == NULL) {
RTE_LOG(ERR, ACL,
"allocation of %zu bytes on socket %d for %s failed\n",
total_size, ctx->socket_id, ctx->name);
return -ENOMEM;
}
/* Fill the runtime structure */
match_index = indices.match_start;
node_array = (uint64_t *)((uintptr_t)mem +
RTE_ALIGN(data_index_sz, RTE_CACHE_LINE_SIZE));
/*
* Setup the NOMATCH node (a SINGLE at the
* highest index, that points to itself)
*/
node_array[RTE_ACL_DFA_SIZE] = RTE_ACL_DFA_SIZE | RTE_ACL_NODE_SINGLE;
for (n = 0; n < RTE_ACL_DFA_SIZE; n++)
node_array[n] = no_match;
/* NOMATCH result at index 0 */
match = ((struct rte_acl_match_results *)(node_array + match_index));
memset(match, 0, sizeof(*match));
for (n = 0; n < num_tries; n++) {
acl_gen_node(node_bld_trie[n].trie, node_array, no_match,
&indices, num_categories);
if (node_bld_trie[n].trie->node_index == no_match)
trie[n].root_index = 0;
else
trie[n].root_index = node_bld_trie[n].trie->node_index;
}
ctx->mem = mem;
ctx->mem_sz = total_size;
ctx->data_indexes = mem;
ctx->num_tries = num_tries;
ctx->num_categories = num_categories;
ctx->match_index = match_index;
ctx->no_match = no_match;
ctx->idle = node_array[RTE_ACL_DFA_SIZE];
ctx->trans_table = node_array;
memcpy(ctx->trie, trie, sizeof(ctx->trie));
acl_gen_log_stats(ctx, &counts, &indices, max_size);
return 0;
}