numam-dpdk/examples/tep_termination/vxlan.c
Flavia Musatescu 512d873ff1 net: add new header file for VXLAN
The VXLAN related definitions and structures are moved from
rte_ether.h to a new header file: rte_xvlan.h.

Also introducing a new define macro for VXLAN default port id:
RTE_VXLAN_DEFAULT_PORT

Signed-off-by: Flavia Musatescu <flavia.musatescu@intel.com>
Reviewed-by: Ferruh Yigit <ferruh.yigit@intel.com>
Tested-by: Raslan Darawsheh <rasland@mellanox.com>
2019-10-25 19:00:22 +02:00

244 lines
6.8 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2015 Intel Corporation
*/
#include <stdint.h>
#include <rte_mbuf.h>
#include <rte_hash_crc.h>
#include <rte_byteorder.h>
#include <rte_udp.h>
#include <rte_tcp.h>
#include <rte_sctp.h>
#include "main.h"
#include "vxlan.h"
static uint16_t
get_psd_sum(void *l3_hdr, uint16_t ethertype, uint64_t ol_flags)
{
if (ethertype == RTE_ETHER_TYPE_IPV4)
return rte_ipv4_phdr_cksum(l3_hdr, ol_flags);
else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
return rte_ipv6_phdr_cksum(l3_hdr, ol_flags);
}
/**
* Parse an ethernet header to fill the ethertype, outer_l2_len, outer_l3_len and
* ipproto. This function is able to recognize IPv4/IPv6 with one optional vlan
* header.
*/
static void
parse_ethernet(struct rte_ether_hdr *eth_hdr, union tunnel_offload_info *info,
uint8_t *l4_proto)
{
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
uint16_t ethertype;
info->outer_l2_len = sizeof(struct rte_ether_hdr);
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
if (ethertype == RTE_ETHER_TYPE_VLAN) {
struct rte_vlan_hdr *vlan_hdr =
(struct rte_vlan_hdr *)(eth_hdr + 1);
info->outer_l2_len += sizeof(struct rte_vlan_hdr);
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
}
switch (ethertype) {
case RTE_ETHER_TYPE_IPV4:
ipv4_hdr = (struct rte_ipv4_hdr *)
((char *)eth_hdr + info->outer_l2_len);
info->outer_l3_len = sizeof(struct rte_ipv4_hdr);
*l4_proto = ipv4_hdr->next_proto_id;
break;
case RTE_ETHER_TYPE_IPV6:
ipv6_hdr = (struct rte_ipv6_hdr *)
((char *)eth_hdr + info->outer_l2_len);
info->outer_l3_len = sizeof(struct rte_ipv6_hdr);
*l4_proto = ipv6_hdr->proto;
break;
default:
info->outer_l3_len = 0;
*l4_proto = 0;
break;
}
}
/**
* Calculate the checksum of a packet in hardware
*/
static uint64_t
process_inner_cksums(struct rte_ether_hdr *eth_hdr,
union tunnel_offload_info *info)
{
void *l3_hdr = NULL;
uint8_t l4_proto;
uint16_t ethertype;
struct rte_ipv4_hdr *ipv4_hdr;
struct rte_ipv6_hdr *ipv6_hdr;
struct rte_udp_hdr *udp_hdr;
struct rte_tcp_hdr *tcp_hdr;
struct rte_sctp_hdr *sctp_hdr;
uint64_t ol_flags = 0;
info->l2_len = sizeof(struct rte_ether_hdr);
ethertype = rte_be_to_cpu_16(eth_hdr->ether_type);
if (ethertype == RTE_ETHER_TYPE_VLAN) {
struct rte_vlan_hdr *vlan_hdr =
(struct rte_vlan_hdr *)(eth_hdr + 1);
info->l2_len += sizeof(struct rte_vlan_hdr);
ethertype = rte_be_to_cpu_16(vlan_hdr->eth_proto);
}
l3_hdr = (char *)eth_hdr + info->l2_len;
if (ethertype == RTE_ETHER_TYPE_IPV4) {
ipv4_hdr = (struct rte_ipv4_hdr *)l3_hdr;
ipv4_hdr->hdr_checksum = 0;
ol_flags |= PKT_TX_IPV4;
ol_flags |= PKT_TX_IP_CKSUM;
info->l3_len = sizeof(struct rte_ipv4_hdr);
l4_proto = ipv4_hdr->next_proto_id;
} else if (ethertype == RTE_ETHER_TYPE_IPV6) {
ipv6_hdr = (struct rte_ipv6_hdr *)l3_hdr;
info->l3_len = sizeof(struct rte_ipv6_hdr);
l4_proto = ipv6_hdr->proto;
ol_flags |= PKT_TX_IPV6;
} else
return 0; /* packet type not supported, nothing to do */
if (l4_proto == IPPROTO_UDP) {
udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
ol_flags |= PKT_TX_UDP_CKSUM;
udp_hdr->dgram_cksum = get_psd_sum(l3_hdr,
ethertype, ol_flags);
} else if (l4_proto == IPPROTO_TCP) {
tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
/* Put PKT_TX_TCP_SEG bit setting before get_psd_sum(), because
* it depends on PKT_TX_TCP_SEG to calculate pseudo-header
* checksum.
*/
if (tso_segsz != 0) {
ol_flags |= PKT_TX_TCP_SEG;
info->tso_segsz = tso_segsz;
info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
}
ol_flags |= PKT_TX_TCP_CKSUM;
tcp_hdr->cksum = get_psd_sum(l3_hdr, ethertype, ol_flags);
} else if (l4_proto == IPPROTO_SCTP) {
sctp_hdr = (struct rte_sctp_hdr *)
((char *)l3_hdr + info->l3_len);
sctp_hdr->cksum = 0;
ol_flags |= PKT_TX_SCTP_CKSUM;
}
return ol_flags;
}
int
decapsulation(struct rte_mbuf *pkt)
{
uint8_t l4_proto = 0;
uint16_t outer_header_len;
struct rte_udp_hdr *udp_hdr;
union tunnel_offload_info info = { .data = 0 };
struct rte_ether_hdr *phdr =
rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
parse_ethernet(phdr, &info, &l4_proto);
if (l4_proto != IPPROTO_UDP)
return -1;
udp_hdr = (struct rte_udp_hdr *)((char *)phdr +
info.outer_l2_len + info.outer_l3_len);
/** check udp destination port, 4789 is the default vxlan port
* (rfc7348) or that the rx offload flag is set (i40e only
* currently)*/
if (udp_hdr->dst_port != rte_cpu_to_be_16(RTE_VXLAN_DEFAULT_PORT) &&
(pkt->packet_type & RTE_PTYPE_TUNNEL_MASK) == 0)
return -1;
outer_header_len = info.outer_l2_len + info.outer_l3_len
+ sizeof(struct rte_udp_hdr) + sizeof(struct rte_vxlan_hdr);
rte_pktmbuf_adj(pkt, outer_header_len);
return 0;
}
void
encapsulation(struct rte_mbuf *m, uint8_t queue_id)
{
uint vport_id;
uint64_t ol_flags = 0;
uint32_t old_len = m->pkt_len, hash;
union tunnel_offload_info tx_offload = { .data = 0 };
struct rte_ether_hdr *phdr =
rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
/*Allocate space for new ethernet, IPv4, UDP and VXLAN headers*/
struct rte_ether_hdr *pneth =
(struct rte_ether_hdr *) rte_pktmbuf_prepend(m,
sizeof(struct rte_ether_hdr) + sizeof(struct rte_ipv4_hdr)
+ sizeof(struct rte_udp_hdr) + sizeof(struct rte_vxlan_hdr));
struct rte_ipv4_hdr *ip = (struct rte_ipv4_hdr *) &pneth[1];
struct rte_udp_hdr *udp = (struct rte_udp_hdr *) &ip[1];
struct rte_vxlan_hdr *vxlan = (struct rte_vxlan_hdr *) &udp[1];
/* convert TX queue ID to vport ID */
vport_id = queue_id - 1;
/* replace original Ethernet header with ours */
pneth = rte_memcpy(pneth, &app_l2_hdr[vport_id],
sizeof(struct rte_ether_hdr));
/* copy in IP header */
ip = rte_memcpy(ip, &app_ip_hdr[vport_id],
sizeof(struct rte_ipv4_hdr));
ip->total_length = rte_cpu_to_be_16(m->pkt_len
- sizeof(struct rte_ether_hdr));
/* outer IP checksum */
ol_flags |= PKT_TX_OUTER_IP_CKSUM;
ip->hdr_checksum = 0;
/* inner IP checksum offload */
if (tx_checksum) {
ol_flags |= process_inner_cksums(phdr, &tx_offload);
m->l2_len = tx_offload.l2_len;
m->l3_len = tx_offload.l3_len;
m->l4_len = tx_offload.l4_len;
m->l2_len += RTE_ETHER_VXLAN_HLEN;
}
m->outer_l2_len = sizeof(struct rte_ether_hdr);
m->outer_l3_len = sizeof(struct rte_ipv4_hdr);
ol_flags |= PKT_TX_TUNNEL_VXLAN;
m->ol_flags |= ol_flags;
m->tso_segsz = tx_offload.tso_segsz;
/*VXLAN HEADER*/
vxlan->vx_flags = rte_cpu_to_be_32(VXLAN_HF_VNI);
vxlan->vx_vni = rte_cpu_to_be_32(vxdev.out_key << 8);
/*UDP HEADER*/
udp->dgram_cksum = 0;
udp->dgram_len = rte_cpu_to_be_16(old_len
+ sizeof(struct rte_udp_hdr)
+ sizeof(struct rte_vxlan_hdr));
udp->dst_port = rte_cpu_to_be_16(vxdev.dst_port);
hash = rte_hash_crc(phdr, 2 * RTE_ETHER_ADDR_LEN, phdr->ether_type);
udp->src_port = rte_cpu_to_be_16((((uint64_t) hash * PORT_RANGE) >> 32)
+ PORT_MIN);
return;
}