numam-dpdk/drivers/net/i40e/i40e_rxtx_vec_altivec.c
Jeff Guo 9e27f00f3a net/i40e: fix vector Rx
The limitation of burst size in vector rx was removed, since it should
retrieve as much received packets as possible. And also the scattered
receive path should use a wrapper function to achieve the goal of
burst maximizing.

Bugzilla ID: 516
Fixes: 5b463eda8d ("net/i40e: make vector driver filenames consistent")
Fixes: ae0eb310f2 ("net/i40e: implement vector PMD for ARM")
Fixes: c3def6a872 ("net/i40e: implement vector PMD for altivec")
Cc: stable@dpdk.org

Signed-off-by: Jeff Guo <jia.guo@intel.com>
Acked-by: Morten Brørup <mb@smartsharesystems.com>
Acked-by: Qi Zhang <qi.z.zhang@intel.com>
2020-11-03 23:24:26 +01:00

642 lines
19 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010 - 2015 Intel Corporation
* Copyright(c) 2017 IBM Corporation.
*/
#include <stdint.h>
#include <rte_ethdev_driver.h>
#include <rte_malloc.h>
#include "base/i40e_prototype.h"
#include "base/i40e_type.h"
#include "i40e_ethdev.h"
#include "i40e_rxtx.h"
#include "i40e_rxtx_vec_common.h"
#include <rte_altivec.h>
#pragma GCC diagnostic ignored "-Wcast-qual"
static inline void
i40e_rxq_rearm(struct i40e_rx_queue *rxq)
{
int i;
uint16_t rx_id;
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
struct rte_mbuf *mb0, *mb1;
vector unsigned long hdr_room = (vector unsigned long){
RTE_PKTMBUF_HEADROOM,
RTE_PKTMBUF_HEADROOM};
vector unsigned long dma_addr0, dma_addr1;
rxdp = rxq->rx_ring + rxq->rxrearm_start;
/* Pull 'n' more MBUFs into the software ring */
if (rte_mempool_get_bulk(rxq->mp,
(void *)rxep,
RTE_I40E_RXQ_REARM_THRESH) < 0) {
if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
rxq->nb_rx_desc) {
dma_addr0 = (vector unsigned long){};
for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
rxep[i].mbuf = &rxq->fake_mbuf;
vec_st(dma_addr0, 0,
(vector unsigned long *)&rxdp[i].read);
}
}
rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
RTE_I40E_RXQ_REARM_THRESH;
return;
}
/* Initialize the mbufs in vector, process 2 mbufs in one loop */
for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
vector unsigned long vaddr0, vaddr1;
uintptr_t p0, p1;
mb0 = rxep[0].mbuf;
mb1 = rxep[1].mbuf;
/* Flush mbuf with pkt template.
* Data to be rearmed is 6 bytes long.
* Though, RX will overwrite ol_flags that are coming next
* anyway. So overwrite whole 8 bytes with one load:
* 6 bytes of rearm_data plus first 2 bytes of ol_flags.
*/
p0 = (uintptr_t)&mb0->rearm_data;
*(uint64_t *)p0 = rxq->mbuf_initializer;
p1 = (uintptr_t)&mb1->rearm_data;
*(uint64_t *)p1 = rxq->mbuf_initializer;
/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
vaddr0 = vec_ld(0, (vector unsigned long *)&mb0->buf_addr);
vaddr1 = vec_ld(0, (vector unsigned long *)&mb1->buf_addr);
/* convert pa to dma_addr hdr/data */
dma_addr0 = vec_mergel(vaddr0, vaddr0);
dma_addr1 = vec_mergel(vaddr1, vaddr1);
/* add headroom to pa values */
dma_addr0 = vec_add(dma_addr0, hdr_room);
dma_addr1 = vec_add(dma_addr1, hdr_room);
/* flush desc with pa dma_addr */
vec_st(dma_addr0, 0, (vector unsigned long *)&rxdp++->read);
vec_st(dma_addr1, 0, (vector unsigned long *)&rxdp++->read);
}
rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
if (rxq->rxrearm_start >= rxq->nb_rx_desc)
rxq->rxrearm_start = 0;
rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;
rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
(rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));
/* Update the tail pointer on the NIC */
I40E_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
}
static inline void
desc_to_olflags_v(vector unsigned long descs[4], struct rte_mbuf **rx_pkts)
{
vector unsigned int vlan0, vlan1, rss, l3_l4e;
/* mask everything except RSS, flow director and VLAN flags
* bit2 is for VLAN tag, bit11 for flow director indication
* bit13:12 for RSS indication.
*/
const vector unsigned int rss_vlan_msk = (vector unsigned int){
(int32_t)0x1c03804, (int32_t)0x1c03804,
(int32_t)0x1c03804, (int32_t)0x1c03804};
/* map rss and vlan type to rss hash and vlan flag */
const vector unsigned char vlan_flags = (vector unsigned char){
0, 0, 0, 0,
PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};
const vector unsigned char rss_flags = (vector unsigned char){
0, PKT_RX_FDIR, 0, 0,
0, 0, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH | PKT_RX_FDIR,
0, 0, 0, 0,
0, 0, 0, 0};
const vector unsigned char l3_l4e_flags = (vector unsigned char){
0,
PKT_RX_IP_CKSUM_BAD,
PKT_RX_L4_CKSUM_BAD,
PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD,
PKT_RX_EIP_CKSUM_BAD,
PKT_RX_EIP_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD,
PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD,
PKT_RX_EIP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
| PKT_RX_IP_CKSUM_BAD,
0, 0, 0, 0, 0, 0, 0, 0};
vlan0 = (vector unsigned int)vec_mergel(descs[0], descs[1]);
vlan1 = (vector unsigned int)vec_mergel(descs[2], descs[3]);
vlan0 = (vector unsigned int)vec_mergeh(vlan0, vlan1);
vlan1 = vec_and(vlan0, rss_vlan_msk);
vlan0 = (vector unsigned int)vec_perm(vlan_flags,
(vector unsigned char){},
*(vector unsigned char *)&vlan1);
rss = vec_sr(vlan1, (vector unsigned int){11, 11, 11, 11});
rss = (vector unsigned int)vec_perm(rss_flags, (vector unsigned char){},
*(vector unsigned char *)&rss);
l3_l4e = vec_sr(vlan1, (vector unsigned int){22, 22, 22, 22});
l3_l4e = (vector unsigned int)vec_perm(l3_l4e_flags,
(vector unsigned char){},
*(vector unsigned char *)&l3_l4e);
vlan0 = vec_or(vlan0, rss);
vlan0 = vec_or(vlan0, l3_l4e);
rx_pkts[0]->ol_flags = (uint64_t)vlan0[2];
rx_pkts[1]->ol_flags = (uint64_t)vlan0[3];
rx_pkts[2]->ol_flags = (uint64_t)vlan0[0];
rx_pkts[3]->ol_flags = (uint64_t)vlan0[1];
}
#define PKTLEN_SHIFT 10
static inline void
desc_to_ptype_v(vector unsigned long descs[4], struct rte_mbuf **rx_pkts,
uint32_t *ptype_tbl)
{
vector unsigned long ptype0 = vec_mergel(descs[0], descs[1]);
vector unsigned long ptype1 = vec_mergel(descs[2], descs[3]);
ptype0 = vec_sr(ptype0, (vector unsigned long){30, 30});
ptype1 = vec_sr(ptype1, (vector unsigned long){30, 30});
rx_pkts[0]->packet_type =
ptype_tbl[(*(vector unsigned char *)&ptype0)[0]];
rx_pkts[1]->packet_type =
ptype_tbl[(*(vector unsigned char *)&ptype0)[8]];
rx_pkts[2]->packet_type =
ptype_tbl[(*(vector unsigned char *)&ptype1)[0]];
rx_pkts[3]->packet_type =
ptype_tbl[(*(vector unsigned char *)&ptype1)[8]];
}
/**
* vPMD raw receive routine, only accept(nb_pkts >= RTE_I40E_DESCS_PER_LOOP)
*
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
* - floor align nb_pkts to a RTE_I40E_DESCS_PER_LOOP power-of-two
*/
static inline uint16_t
_recv_raw_pkts_vec(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts, uint8_t *split_packet)
{
volatile union i40e_rx_desc *rxdp;
struct i40e_rx_entry *sw_ring;
uint16_t nb_pkts_recd;
int pos;
uint64_t var;
vector unsigned char shuf_msk;
uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
vector unsigned short crc_adjust = (vector unsigned short){
0, 0, /* ignore pkt_type field */
rxq->crc_len, /* sub crc on pkt_len */
0, /* ignore high-16bits of pkt_len */
rxq->crc_len, /* sub crc on data_len */
0, 0, 0 /* ignore non-length fields */
};
vector unsigned long dd_check, eop_check;
/* nb_pkts has to be floor-aligned to RTE_I40E_DESCS_PER_LOOP */
nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_I40E_DESCS_PER_LOOP);
/* Just the act of getting into the function from the application is
* going to cost about 7 cycles
*/
rxdp = rxq->rx_ring + rxq->rx_tail;
rte_prefetch0(rxdp);
/* See if we need to rearm the RX queue - gives the prefetch a bit
* of time to act
*/
if (rxq->rxrearm_nb > RTE_I40E_RXQ_REARM_THRESH)
i40e_rxq_rearm(rxq);
/* Before we start moving massive data around, check to see if
* there is actually a packet available
*/
if (!(rxdp->wb.qword1.status_error_len &
rte_cpu_to_le_32(1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
return 0;
/* 4 packets DD mask */
dd_check = (vector unsigned long){0x0000000100000001ULL,
0x0000000100000001ULL};
/* 4 packets EOP mask */
eop_check = (vector unsigned long){0x0000000200000002ULL,
0x0000000200000002ULL};
/* mask to shuffle from desc. to mbuf */
shuf_msk = (vector unsigned char){
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /* pkt_type set as unknown */
14, 15, /* octet 15~14, low 16 bits pkt_len */
0xFF, 0xFF, /* skip high 16 bits pkt_len, zero out */
14, 15, /* octet 15~14, 16 bits data_len */
2, 3, /* octet 2~3, low 16 bits vlan_macip */
4, 5, 6, 7 /* octet 4~7, 32bits rss */
};
/* Cache is empty -> need to scan the buffer rings, but first move
* the next 'n' mbufs into the cache
*/
sw_ring = &rxq->sw_ring[rxq->rx_tail];
/* A. load 4 packet in one loop
* [A*. mask out 4 unused dirty field in desc]
* B. copy 4 mbuf point from swring to rx_pkts
* C. calc the number of DD bits among the 4 packets
* [C*. extract the end-of-packet bit, if requested]
* D. fill info. from desc to mbuf
*/
for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
pos += RTE_I40E_DESCS_PER_LOOP,
rxdp += RTE_I40E_DESCS_PER_LOOP) {
vector unsigned long descs[RTE_I40E_DESCS_PER_LOOP];
vector unsigned char pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
vector unsigned short staterr, sterr_tmp1, sterr_tmp2;
vector unsigned long mbp1, mbp2; /* two mbuf pointer
* in one XMM reg.
*/
/* B.1 load 1 mbuf point */
mbp1 = *(vector unsigned long *)&sw_ring[pos];
/* Read desc statuses backwards to avoid race condition */
/* A.1 load 4 pkts desc */
descs[3] = *(vector unsigned long *)(rxdp + 3);
rte_compiler_barrier();
/* B.2 copy 2 mbuf point into rx_pkts */
*(vector unsigned long *)&rx_pkts[pos] = mbp1;
/* B.1 load 1 mbuf point */
mbp2 = *(vector unsigned long *)&sw_ring[pos + 2];
descs[2] = *(vector unsigned long *)(rxdp + 2);
rte_compiler_barrier();
/* B.1 load 2 mbuf point */
descs[1] = *(vector unsigned long *)(rxdp + 1);
rte_compiler_barrier();
descs[0] = *(vector unsigned long *)(rxdp);
/* B.2 copy 2 mbuf point into rx_pkts */
*(vector unsigned long *)&rx_pkts[pos + 2] = mbp2;
if (split_packet) {
rte_mbuf_prefetch_part2(rx_pkts[pos]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
}
/* avoid compiler reorder optimization */
rte_compiler_barrier();
/* pkt 3,4 shift the pktlen field to be 16-bit aligned*/
const vector unsigned int len3 = vec_sl(
vec_ld(0, (vector unsigned int *)&descs[3]),
(vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
const vector unsigned int len2 = vec_sl(
vec_ld(0, (vector unsigned int *)&descs[2]),
(vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
/* merge the now-aligned packet length fields back in */
descs[3] = (vector unsigned long)len3;
descs[2] = (vector unsigned long)len2;
/* D.1 pkt 3,4 convert format from desc to pktmbuf */
pkt_mb4 = vec_perm((vector unsigned char)descs[3],
(vector unsigned char){}, shuf_msk);
pkt_mb3 = vec_perm((vector unsigned char)descs[2],
(vector unsigned char){}, shuf_msk);
/* C.1 4=>2 filter staterr info only */
sterr_tmp2 = vec_mergel((vector unsigned short)descs[3],
(vector unsigned short)descs[2]);
/* C.1 4=>2 filter staterr info only */
sterr_tmp1 = vec_mergel((vector unsigned short)descs[1],
(vector unsigned short)descs[0]);
/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
pkt_mb4 = (vector unsigned char)vec_sub(
(vector unsigned short)pkt_mb4, crc_adjust);
pkt_mb3 = (vector unsigned char)vec_sub(
(vector unsigned short)pkt_mb3, crc_adjust);
/* pkt 1,2 shift the pktlen field to be 16-bit aligned*/
const vector unsigned int len1 = vec_sl(
vec_ld(0, (vector unsigned int *)&descs[1]),
(vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
const vector unsigned int len0 = vec_sl(
vec_ld(0, (vector unsigned int *)&descs[0]),
(vector unsigned int){0, 0, 0, PKTLEN_SHIFT});
/* merge the now-aligned packet length fields back in */
descs[1] = (vector unsigned long)len1;
descs[0] = (vector unsigned long)len0;
/* D.1 pkt 1,2 convert format from desc to pktmbuf */
pkt_mb2 = vec_perm((vector unsigned char)descs[1],
(vector unsigned char){}, shuf_msk);
pkt_mb1 = vec_perm((vector unsigned char)descs[0],
(vector unsigned char){}, shuf_msk);
/* C.2 get 4 pkts staterr value */
staterr = (vector unsigned short)vec_mergeh(
sterr_tmp1, sterr_tmp2);
/* D.3 copy final 3,4 data to rx_pkts */
vec_st(pkt_mb4, 0,
(vector unsigned char *)&rx_pkts[pos + 3]
->rx_descriptor_fields1
);
vec_st(pkt_mb3, 0,
(vector unsigned char *)&rx_pkts[pos + 2]
->rx_descriptor_fields1
);
/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
pkt_mb2 = (vector unsigned char)vec_sub(
(vector unsigned short)pkt_mb2, crc_adjust);
pkt_mb1 = (vector unsigned char)vec_sub(
(vector unsigned short)pkt_mb1, crc_adjust);
/* C* extract and record EOP bit */
if (split_packet) {
vector unsigned char eop_shuf_mask =
(vector unsigned char){
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF,
0x04, 0x0C, 0x00, 0x08
};
/* and with mask to extract bits, flipping 1-0 */
vector unsigned char eop_bits = vec_and(
(vector unsigned char)vec_nor(staterr, staterr),
(vector unsigned char)eop_check);
/* the staterr values are not in order, as the count
* count of dd bits doesn't care. However, for end of
* packet tracking, we do care, so shuffle. This also
* compresses the 32-bit values to 8-bit
*/
eop_bits = vec_perm(eop_bits, (vector unsigned char){},
eop_shuf_mask);
/* store the resulting 32-bit value */
*split_packet = (vec_ld(0,
(vector unsigned int *)&eop_bits))[0];
split_packet += RTE_I40E_DESCS_PER_LOOP;
/* zero-out next pointers */
rx_pkts[pos]->next = NULL;
rx_pkts[pos + 1]->next = NULL;
rx_pkts[pos + 2]->next = NULL;
rx_pkts[pos + 3]->next = NULL;
}
/* C.3 calc available number of desc */
staterr = vec_and(staterr, (vector unsigned short)dd_check);
/* D.3 copy final 1,2 data to rx_pkts */
vec_st(pkt_mb2, 0,
(vector unsigned char *)&rx_pkts[pos + 1]
->rx_descriptor_fields1
);
vec_st(pkt_mb1, 0,
(vector unsigned char *)&rx_pkts[pos]->rx_descriptor_fields1
);
desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
desc_to_olflags_v(descs, &rx_pkts[pos]);
/* C.4 calc avaialbe number of desc */
var = __builtin_popcountll((vec_ld(0,
(vector unsigned long *)&staterr)[0]));
nb_pkts_recd += var;
if (likely(var != RTE_I40E_DESCS_PER_LOOP))
break;
}
/* Update our internal tail pointer */
rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
return nb_pkts_recd;
}
/* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
* - nb_pkts > RTE_I40E_VPMD_RX_BURST, only scan RTE_I40E_VPMD_RX_BURST
* numbers of DD bits
*/
uint16_t
i40e_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
return _recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}
/**
* vPMD receive routine that reassembles single burst of 32 scattered packets
*
* Notice:
* - nb_pkts < RTE_I40E_DESCS_PER_LOOP, just return no packet
*/
static uint16_t
i40e_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
struct i40e_rx_queue *rxq = rx_queue;
uint8_t split_flags[RTE_I40E_VPMD_RX_BURST] = {0};
/* get some new buffers */
uint16_t nb_bufs = _recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
split_flags);
if (nb_bufs == 0)
return 0;
/* happy day case, full burst + no packets to be joined */
const uint64_t *split_fl64 = (uint64_t *)split_flags;
if (rxq->pkt_first_seg == NULL &&
split_fl64[0] == 0 && split_fl64[1] == 0 &&
split_fl64[2] == 0 && split_fl64[3] == 0)
return nb_bufs;
/* reassemble any packets that need reassembly*/
unsigned int i = 0;
if (!rxq->pkt_first_seg) {
/* find the first split flag, and only reassemble then*/
while (i < nb_bufs && !split_flags[i])
i++;
if (i == nb_bufs)
return nb_bufs;
}
return i + reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
&split_flags[i]);
}
/**
* vPMD receive routine that reassembles scattered packets.
*/
uint16_t
i40e_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
uint16_t nb_pkts)
{
uint16_t retval = 0;
while (nb_pkts > RTE_I40E_VPMD_RX_BURST) {
uint16_t burst;
burst = i40e_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
RTE_I40E_VPMD_RX_BURST);
retval += burst;
nb_pkts -= burst;
if (burst < RTE_I40E_VPMD_RX_BURST)
return retval;
}
return retval + i40e_recv_scattered_burst_vec(rx_queue,
rx_pkts + retval,
nb_pkts);
}
static inline void
vtx1(volatile struct i40e_tx_desc *txdp,
struct rte_mbuf *pkt, uint64_t flags)
{
uint64_t high_qw = (I40E_TX_DESC_DTYPE_DATA |
((uint64_t)flags << I40E_TXD_QW1_CMD_SHIFT) |
((uint64_t)pkt->data_len << I40E_TXD_QW1_TX_BUF_SZ_SHIFT));
vector unsigned long descriptor = (vector unsigned long){
pkt->buf_iova + pkt->data_off, high_qw};
*(vector unsigned long *)txdp = descriptor;
}
static inline void
vtx(volatile struct i40e_tx_desc *txdp,
struct rte_mbuf **pkt, uint16_t nb_pkts, uint64_t flags)
{
int i;
for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
vtx1(txdp, *pkt, flags);
}
uint16_t
i40e_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
uint16_t nb_pkts)
{
struct i40e_tx_queue *txq = (struct i40e_tx_queue *)tx_queue;
volatile struct i40e_tx_desc *txdp;
struct i40e_tx_entry *txep;
uint16_t n, nb_commit, tx_id;
uint64_t flags = I40E_TD_CMD;
uint64_t rs = I40E_TX_DESC_CMD_RS | I40E_TD_CMD;
int i;
/* cross rx_thresh boundary is not allowed */
nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);
if (txq->nb_tx_free < txq->tx_free_thresh)
i40e_tx_free_bufs(txq);
nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
nb_commit = nb_pkts;
if (unlikely(nb_pkts == 0))
return 0;
tx_id = txq->tx_tail;
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
n = (uint16_t)(txq->nb_tx_desc - tx_id);
if (nb_commit >= n) {
tx_backlog_entry(txep, tx_pkts, n);
for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
vtx1(txdp, *tx_pkts, flags);
vtx1(txdp, *tx_pkts++, rs);
nb_commit = (uint16_t)(nb_commit - n);
tx_id = 0;
txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
/* avoid reach the end of ring */
txdp = &txq->tx_ring[tx_id];
txep = &txq->sw_ring[tx_id];
}
tx_backlog_entry(txep, tx_pkts, nb_commit);
vtx(txdp, tx_pkts, nb_commit, flags);
tx_id = (uint16_t)(tx_id + nb_commit);
if (tx_id > txq->tx_next_rs) {
txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
rte_cpu_to_le_64(((uint64_t)I40E_TX_DESC_CMD_RS) <<
I40E_TXD_QW1_CMD_SHIFT);
txq->tx_next_rs =
(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
}
txq->tx_tail = tx_id;
I40E_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
return nb_pkts;
}
void __rte_cold
i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
{
_i40e_rx_queue_release_mbufs_vec(rxq);
}
int __rte_cold
i40e_rxq_vec_setup(struct i40e_rx_queue *rxq)
{
return i40e_rxq_vec_setup_default(rxq);
}
int __rte_cold
i40e_txq_vec_setup(struct i40e_tx_queue __rte_unused * txq)
{
return 0;
}
int __rte_cold
i40e_rx_vec_dev_conf_condition_check(struct rte_eth_dev *dev)
{
return i40e_rx_vec_dev_conf_condition_check_default(dev);
}