26e09db6cb
The tests are registered with their command name by adding a structure to a list. The structure of each test was declared in each test file and passed to the register macro. This rework generate the structure inside the register macro. Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com> Reviewed-by: Jan Viktorin <viktorin@rehivetech.com>
630 lines
17 KiB
C
630 lines
17 KiB
C
/*-
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "test.h"
|
|
|
|
/*
|
|
* Timer
|
|
* =====
|
|
*
|
|
* #. Stress test 1.
|
|
*
|
|
* The objective of the timer stress tests is to check that there are no
|
|
* race conditions in list and status management. This test launches,
|
|
* resets and stops the timer very often on many cores at the same
|
|
* time.
|
|
*
|
|
* - Only one timer is used for this test.
|
|
* - On each core, the rte_timer_manage() function is called from the main
|
|
* loop every 3 microseconds.
|
|
* - In the main loop, the timer may be reset (randomly, with a
|
|
* probability of 0.5 %) 100 microseconds later on a random core, or
|
|
* stopped (with a probability of 0.5 % also).
|
|
* - In callback, the timer is can be reset (randomly, with a
|
|
* probability of 0.5 %) 100 microseconds later on the same core or
|
|
* on another core (same probability), or stopped (same
|
|
* probability).
|
|
*
|
|
* # Stress test 2.
|
|
*
|
|
* The objective of this test is similar to the first in that it attempts
|
|
* to find if there are any race conditions in the timer library. However,
|
|
* it is less complex in terms of operations performed and duration, as it
|
|
* is designed to have a predictable outcome that can be tested.
|
|
*
|
|
* - A set of timers is initialized for use by the test
|
|
* - All cores then simultaneously are set to schedule all the timers at
|
|
* the same time, so conflicts should occur.
|
|
* - Then there is a delay while we wait for the timers to expire
|
|
* - Then the master lcore calls timer_manage() and we check that all
|
|
* timers have had their callbacks called exactly once - no more no less.
|
|
* - Then we repeat the process, except after setting up the timers, we have
|
|
* all cores randomly reschedule them.
|
|
* - Again we check that the expected number of callbacks has occurred when
|
|
* we call timer-manage.
|
|
*
|
|
* #. Basic test.
|
|
*
|
|
* This test performs basic functional checks of the timers. The test
|
|
* uses four different timers that are loaded and stopped under
|
|
* specific conditions in specific contexts.
|
|
*
|
|
* - Four timers are used for this test.
|
|
* - On each core, the rte_timer_manage() function is called from main loop
|
|
* every 3 microseconds.
|
|
*
|
|
* The autotest python script checks that the behavior is correct:
|
|
*
|
|
* - timer0
|
|
*
|
|
* - At initialization, timer0 is loaded by the master core, on master core
|
|
* in "single" mode (time = 1 second).
|
|
* - In the first 19 callbacks, timer0 is reloaded on the same core,
|
|
* then, it is explicitly stopped at the 20th call.
|
|
* - At t=25s, timer0 is reloaded once by timer2.
|
|
*
|
|
* - timer1
|
|
*
|
|
* - At initialization, timer1 is loaded by the master core, on the
|
|
* master core in "single" mode (time = 2 seconds).
|
|
* - In the first 9 callbacks, timer1 is reloaded on another
|
|
* core. After the 10th callback, timer1 is not reloaded anymore.
|
|
*
|
|
* - timer2
|
|
*
|
|
* - At initialization, timer2 is loaded by the master core, on the
|
|
* master core in "periodical" mode (time = 1 second).
|
|
* - In the callback, when t=25s, it stops timer3 and reloads timer0
|
|
* on the current core.
|
|
*
|
|
* - timer3
|
|
*
|
|
* - At initialization, timer3 is loaded by the master core, on
|
|
* another core in "periodical" mode (time = 1 second).
|
|
* - It is stopped at t=25s by timer2.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
#include <sys/queue.h>
|
|
#include <math.h>
|
|
|
|
#include <rte_common.h>
|
|
#include <rte_log.h>
|
|
#include <rte_memory.h>
|
|
#include <rte_memzone.h>
|
|
#include <rte_launch.h>
|
|
#include <rte_cycles.h>
|
|
#include <rte_eal.h>
|
|
#include <rte_per_lcore.h>
|
|
#include <rte_lcore.h>
|
|
#include <rte_atomic.h>
|
|
#include <rte_timer.h>
|
|
#include <rte_random.h>
|
|
#include <rte_malloc.h>
|
|
|
|
#define TEST_DURATION_S 1 /* in seconds */
|
|
#define NB_TIMER 4
|
|
|
|
#define RTE_LOGTYPE_TESTTIMER RTE_LOGTYPE_USER3
|
|
|
|
static volatile uint64_t end_time;
|
|
static volatile int test_failed;
|
|
|
|
struct mytimerinfo {
|
|
struct rte_timer tim;
|
|
unsigned id;
|
|
unsigned count;
|
|
};
|
|
|
|
static struct mytimerinfo mytiminfo[NB_TIMER];
|
|
|
|
static void timer_basic_cb(struct rte_timer *tim, void *arg);
|
|
|
|
static void
|
|
mytimer_reset(struct mytimerinfo *timinfo, uint64_t ticks,
|
|
enum rte_timer_type type, unsigned tim_lcore,
|
|
rte_timer_cb_t fct)
|
|
{
|
|
rte_timer_reset_sync(&timinfo->tim, ticks, type, tim_lcore,
|
|
fct, timinfo);
|
|
}
|
|
|
|
/* timer callback for stress tests */
|
|
static void
|
|
timer_stress_cb(__attribute__((unused)) struct rte_timer *tim,
|
|
__attribute__((unused)) void *arg)
|
|
{
|
|
long r;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
uint64_t hz = rte_get_timer_hz();
|
|
|
|
if (rte_timer_pending(tim))
|
|
return;
|
|
|
|
r = rte_rand();
|
|
if ((r & 0xff) == 0) {
|
|
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
|
|
timer_stress_cb);
|
|
}
|
|
else if ((r & 0xff) == 1) {
|
|
mytimer_reset(&mytiminfo[0], hz, SINGLE,
|
|
rte_get_next_lcore(lcore_id, 0, 1),
|
|
timer_stress_cb);
|
|
}
|
|
else if ((r & 0xff) == 2) {
|
|
rte_timer_stop(&mytiminfo[0].tim);
|
|
}
|
|
}
|
|
|
|
static int
|
|
timer_stress_main_loop(__attribute__((unused)) void *arg)
|
|
{
|
|
uint64_t hz = rte_get_timer_hz();
|
|
unsigned lcore_id = rte_lcore_id();
|
|
uint64_t cur_time;
|
|
int64_t diff = 0;
|
|
long r;
|
|
|
|
while (diff >= 0) {
|
|
|
|
/* call the timer handler on each core */
|
|
rte_timer_manage();
|
|
|
|
/* simulate the processing of a packet
|
|
* (1 us = 2000 cycles at 2 Ghz) */
|
|
rte_delay_us(1);
|
|
|
|
/* randomly stop or reset timer */
|
|
r = rte_rand();
|
|
lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
|
|
if ((r & 0xff) == 0) {
|
|
/* 100 us */
|
|
mytimer_reset(&mytiminfo[0], hz/10000, SINGLE, lcore_id,
|
|
timer_stress_cb);
|
|
}
|
|
else if ((r & 0xff) == 1) {
|
|
rte_timer_stop_sync(&mytiminfo[0].tim);
|
|
}
|
|
cur_time = rte_get_timer_cycles();
|
|
diff = end_time - cur_time;
|
|
}
|
|
|
|
lcore_id = rte_lcore_id();
|
|
RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Need to synchronize slave lcores through multiple steps. */
|
|
enum { SLAVE_WAITING = 1, SLAVE_RUN_SIGNAL, SLAVE_RUNNING, SLAVE_FINISHED };
|
|
static rte_atomic16_t slave_state[RTE_MAX_LCORE];
|
|
|
|
static void
|
|
master_init_slaves(void)
|
|
{
|
|
unsigned i;
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
rte_atomic16_set(&slave_state[i], SLAVE_WAITING);
|
|
}
|
|
}
|
|
|
|
static void
|
|
master_start_slaves(void)
|
|
{
|
|
unsigned i;
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
rte_atomic16_set(&slave_state[i], SLAVE_RUN_SIGNAL);
|
|
}
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
while (rte_atomic16_read(&slave_state[i]) != SLAVE_RUNNING)
|
|
rte_pause();
|
|
}
|
|
}
|
|
|
|
static void
|
|
master_wait_for_slaves(void)
|
|
{
|
|
unsigned i;
|
|
|
|
RTE_LCORE_FOREACH_SLAVE(i) {
|
|
while (rte_atomic16_read(&slave_state[i]) != SLAVE_FINISHED)
|
|
rte_pause();
|
|
}
|
|
}
|
|
|
|
static void
|
|
slave_wait_to_start(void)
|
|
{
|
|
unsigned lcore_id = rte_lcore_id();
|
|
|
|
while (rte_atomic16_read(&slave_state[lcore_id]) != SLAVE_RUN_SIGNAL)
|
|
rte_pause();
|
|
rte_atomic16_set(&slave_state[lcore_id], SLAVE_RUNNING);
|
|
}
|
|
|
|
static void
|
|
slave_finish(void)
|
|
{
|
|
unsigned lcore_id = rte_lcore_id();
|
|
|
|
rte_atomic16_set(&slave_state[lcore_id], SLAVE_FINISHED);
|
|
}
|
|
|
|
|
|
static volatile int cb_count = 0;
|
|
|
|
/* callback for second stress test. will only be called
|
|
* on master lcore */
|
|
static void
|
|
timer_stress2_cb(struct rte_timer *tim __rte_unused, void *arg __rte_unused)
|
|
{
|
|
cb_count++;
|
|
}
|
|
|
|
#define NB_STRESS2_TIMERS 8192
|
|
|
|
static int
|
|
timer_stress2_main_loop(__attribute__((unused)) void *arg)
|
|
{
|
|
static struct rte_timer *timers;
|
|
int i, ret;
|
|
uint64_t delay = rte_get_timer_hz() / 20;
|
|
unsigned lcore_id = rte_lcore_id();
|
|
unsigned master = rte_get_master_lcore();
|
|
int32_t my_collisions = 0;
|
|
static rte_atomic32_t collisions;
|
|
|
|
if (lcore_id == master) {
|
|
cb_count = 0;
|
|
test_failed = 0;
|
|
rte_atomic32_set(&collisions, 0);
|
|
master_init_slaves();
|
|
timers = rte_malloc(NULL, sizeof(*timers) * NB_STRESS2_TIMERS, 0);
|
|
if (timers == NULL) {
|
|
printf("Test Failed\n");
|
|
printf("- Cannot allocate memory for timers\n" );
|
|
test_failed = 1;
|
|
master_start_slaves();
|
|
goto cleanup;
|
|
}
|
|
for (i = 0; i < NB_STRESS2_TIMERS; i++)
|
|
rte_timer_init(&timers[i]);
|
|
master_start_slaves();
|
|
} else {
|
|
slave_wait_to_start();
|
|
if (test_failed)
|
|
goto cleanup;
|
|
}
|
|
|
|
/* have all cores schedule all timers on master lcore */
|
|
for (i = 0; i < NB_STRESS2_TIMERS; i++) {
|
|
ret = rte_timer_reset(&timers[i], delay, SINGLE, master,
|
|
timer_stress2_cb, NULL);
|
|
/* there will be collisions when multiple cores simultaneously
|
|
* configure the same timers */
|
|
if (ret != 0)
|
|
my_collisions++;
|
|
}
|
|
if (my_collisions != 0)
|
|
rte_atomic32_add(&collisions, my_collisions);
|
|
|
|
/* wait long enough for timers to expire */
|
|
rte_delay_ms(100);
|
|
|
|
/* all cores rendezvous */
|
|
if (lcore_id == master) {
|
|
master_wait_for_slaves();
|
|
} else {
|
|
slave_finish();
|
|
}
|
|
|
|
/* now check that we get the right number of callbacks */
|
|
if (lcore_id == master) {
|
|
my_collisions = rte_atomic32_read(&collisions);
|
|
if (my_collisions != 0)
|
|
printf("- %d timer reset collisions (OK)\n", my_collisions);
|
|
rte_timer_manage();
|
|
if (cb_count != NB_STRESS2_TIMERS) {
|
|
printf("Test Failed\n");
|
|
printf("- Stress test 2, part 1 failed\n");
|
|
printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
|
|
cb_count);
|
|
test_failed = 1;
|
|
master_start_slaves();
|
|
goto cleanup;
|
|
}
|
|
cb_count = 0;
|
|
|
|
/* proceed */
|
|
master_start_slaves();
|
|
} else {
|
|
/* proceed */
|
|
slave_wait_to_start();
|
|
if (test_failed)
|
|
goto cleanup;
|
|
}
|
|
|
|
/* now test again, just stop and restart timers at random after init*/
|
|
for (i = 0; i < NB_STRESS2_TIMERS; i++)
|
|
rte_timer_reset(&timers[i], delay, SINGLE, master,
|
|
timer_stress2_cb, NULL);
|
|
|
|
/* pick random timer to reset, stopping them first half the time */
|
|
for (i = 0; i < 100000; i++) {
|
|
int r = rand() % NB_STRESS2_TIMERS;
|
|
if (i % 2)
|
|
rte_timer_stop(&timers[r]);
|
|
rte_timer_reset(&timers[r], delay, SINGLE, master,
|
|
timer_stress2_cb, NULL);
|
|
}
|
|
|
|
/* wait long enough for timers to expire */
|
|
rte_delay_ms(100);
|
|
|
|
/* now check that we get the right number of callbacks */
|
|
if (lcore_id == master) {
|
|
master_wait_for_slaves();
|
|
|
|
rte_timer_manage();
|
|
if (cb_count != NB_STRESS2_TIMERS) {
|
|
printf("Test Failed\n");
|
|
printf("- Stress test 2, part 2 failed\n");
|
|
printf("- Expected %d callbacks, got %d\n", NB_STRESS2_TIMERS,
|
|
cb_count);
|
|
test_failed = 1;
|
|
} else {
|
|
printf("Test OK\n");
|
|
}
|
|
}
|
|
|
|
cleanup:
|
|
if (lcore_id == master) {
|
|
master_wait_for_slaves();
|
|
if (timers != NULL) {
|
|
rte_free(timers);
|
|
timers = NULL;
|
|
}
|
|
} else {
|
|
slave_finish();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* timer callback for basic tests */
|
|
static void
|
|
timer_basic_cb(struct rte_timer *tim, void *arg)
|
|
{
|
|
struct mytimerinfo *timinfo = arg;
|
|
uint64_t hz = rte_get_timer_hz();
|
|
unsigned lcore_id = rte_lcore_id();
|
|
uint64_t cur_time = rte_get_timer_cycles();
|
|
|
|
if (rte_timer_pending(tim))
|
|
return;
|
|
|
|
timinfo->count ++;
|
|
|
|
RTE_LOG(INFO, TESTTIMER,
|
|
"%"PRIu64": callback id=%u count=%u on core %u\n",
|
|
cur_time, timinfo->id, timinfo->count, lcore_id);
|
|
|
|
/* reload timer 0 on same core */
|
|
if (timinfo->id == 0 && timinfo->count < 20) {
|
|
mytimer_reset(timinfo, hz, SINGLE, lcore_id, timer_basic_cb);
|
|
return;
|
|
}
|
|
|
|
/* reload timer 1 on next core */
|
|
if (timinfo->id == 1 && timinfo->count < 10) {
|
|
mytimer_reset(timinfo, hz*2, SINGLE,
|
|
rte_get_next_lcore(lcore_id, 0, 1),
|
|
timer_basic_cb);
|
|
return;
|
|
}
|
|
|
|
/* Explicitelly stop timer 0. Once stop() called, we can even
|
|
* erase the content of the structure: it is not referenced
|
|
* anymore by any code (in case of dynamic structure, it can
|
|
* be freed) */
|
|
if (timinfo->id == 0 && timinfo->count == 20) {
|
|
|
|
/* stop_sync() is not needed, because we know that the
|
|
* status of timer is only modified by this core */
|
|
rte_timer_stop(tim);
|
|
memset(tim, 0xAA, sizeof(struct rte_timer));
|
|
return;
|
|
}
|
|
|
|
/* stop timer3, and restart a new timer0 (it was removed 5
|
|
* seconds ago) for a single shot */
|
|
if (timinfo->id == 2 && timinfo->count == 25) {
|
|
rte_timer_stop_sync(&mytiminfo[3].tim);
|
|
|
|
/* need to reinit because structure was erased with 0xAA */
|
|
rte_timer_init(&mytiminfo[0].tim);
|
|
mytimer_reset(&mytiminfo[0], hz, SINGLE, lcore_id,
|
|
timer_basic_cb);
|
|
}
|
|
}
|
|
|
|
static int
|
|
timer_basic_main_loop(__attribute__((unused)) void *arg)
|
|
{
|
|
uint64_t hz = rte_get_timer_hz();
|
|
unsigned lcore_id = rte_lcore_id();
|
|
uint64_t cur_time;
|
|
int64_t diff = 0;
|
|
|
|
/* launch all timers on core 0 */
|
|
if (lcore_id == rte_get_master_lcore()) {
|
|
mytimer_reset(&mytiminfo[0], hz/4, SINGLE, lcore_id,
|
|
timer_basic_cb);
|
|
mytimer_reset(&mytiminfo[1], hz/2, SINGLE, lcore_id,
|
|
timer_basic_cb);
|
|
mytimer_reset(&mytiminfo[2], hz/4, PERIODICAL, lcore_id,
|
|
timer_basic_cb);
|
|
mytimer_reset(&mytiminfo[3], hz/4, PERIODICAL,
|
|
rte_get_next_lcore(lcore_id, 0, 1),
|
|
timer_basic_cb);
|
|
}
|
|
|
|
while (diff >= 0) {
|
|
|
|
/* call the timer handler on each core */
|
|
rte_timer_manage();
|
|
|
|
/* simulate the processing of a packet
|
|
* (3 us = 6000 cycles at 2 Ghz) */
|
|
rte_delay_us(3);
|
|
|
|
cur_time = rte_get_timer_cycles();
|
|
diff = end_time - cur_time;
|
|
}
|
|
RTE_LOG(INFO, TESTTIMER, "core %u finished\n", lcore_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
timer_sanity_check(void)
|
|
{
|
|
#ifdef RTE_LIBEAL_USE_HPET
|
|
if (eal_timer_source != EAL_TIMER_HPET) {
|
|
printf("Not using HPET, can't sanity check timer sources\n");
|
|
return 0;
|
|
}
|
|
|
|
const uint64_t t_hz = rte_get_tsc_hz();
|
|
const uint64_t h_hz = rte_get_hpet_hz();
|
|
printf("Hertz values: TSC = %"PRIu64", HPET = %"PRIu64"\n", t_hz, h_hz);
|
|
|
|
const uint64_t tsc_start = rte_get_tsc_cycles();
|
|
const uint64_t hpet_start = rte_get_hpet_cycles();
|
|
rte_delay_ms(100); /* delay 1/10 second */
|
|
const uint64_t tsc_end = rte_get_tsc_cycles();
|
|
const uint64_t hpet_end = rte_get_hpet_cycles();
|
|
printf("Measured cycles: TSC = %"PRIu64", HPET = %"PRIu64"\n",
|
|
tsc_end-tsc_start, hpet_end-hpet_start);
|
|
|
|
const double tsc_time = (double)(tsc_end - tsc_start)/t_hz;
|
|
const double hpet_time = (double)(hpet_end - hpet_start)/h_hz;
|
|
/* get the percentage that the times differ by */
|
|
const double time_diff = fabs(tsc_time - hpet_time)*100/tsc_time;
|
|
printf("Measured time: TSC = %.4f, HPET = %.4f\n", tsc_time, hpet_time);
|
|
|
|
printf("Elapsed time measured by TSC and HPET differ by %f%%\n",
|
|
time_diff);
|
|
if (time_diff > 0.1) {
|
|
printf("Error times differ by >0.1%%");
|
|
return -1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
test_timer(void)
|
|
{
|
|
unsigned i;
|
|
uint64_t cur_time;
|
|
uint64_t hz;
|
|
|
|
/* sanity check our timer sources and timer config values */
|
|
if (timer_sanity_check() < 0) {
|
|
printf("Timer sanity checks failed\n");
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
if (rte_lcore_count() < 2) {
|
|
printf("not enough lcores for this test\n");
|
|
return TEST_FAILED;
|
|
}
|
|
|
|
/* init timer */
|
|
for (i=0; i<NB_TIMER; i++) {
|
|
memset(&mytiminfo[i], 0, sizeof(struct mytimerinfo));
|
|
mytiminfo[i].id = i;
|
|
rte_timer_init(&mytiminfo[i].tim);
|
|
}
|
|
|
|
/* calculate the "end of test" time */
|
|
cur_time = rte_get_timer_cycles();
|
|
hz = rte_get_timer_hz();
|
|
end_time = cur_time + (hz * TEST_DURATION_S);
|
|
|
|
/* start other cores */
|
|
printf("Start timer stress tests\n");
|
|
rte_eal_mp_remote_launch(timer_stress_main_loop, NULL, CALL_MASTER);
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
/* stop timer 0 used for stress test */
|
|
rte_timer_stop_sync(&mytiminfo[0].tim);
|
|
|
|
/* run a second, slightly different set of stress tests */
|
|
printf("\nStart timer stress tests 2\n");
|
|
test_failed = 0;
|
|
rte_eal_mp_remote_launch(timer_stress2_main_loop, NULL, CALL_MASTER);
|
|
rte_eal_mp_wait_lcore();
|
|
if (test_failed)
|
|
return TEST_FAILED;
|
|
|
|
/* calculate the "end of test" time */
|
|
cur_time = rte_get_timer_cycles();
|
|
hz = rte_get_timer_hz();
|
|
end_time = cur_time + (hz * TEST_DURATION_S);
|
|
|
|
/* start other cores */
|
|
printf("\nStart timer basic tests\n");
|
|
rte_eal_mp_remote_launch(timer_basic_main_loop, NULL, CALL_MASTER);
|
|
rte_eal_mp_wait_lcore();
|
|
|
|
/* stop all timers */
|
|
for (i=0; i<NB_TIMER; i++) {
|
|
rte_timer_stop_sync(&mytiminfo[i].tim);
|
|
}
|
|
|
|
rte_timer_dump_stats(stdout);
|
|
|
|
return TEST_SUCCESS;
|
|
}
|
|
|
|
REGISTER_TEST_COMMAND(timer_autotest, test_timer);
|