numam-dpdk/drivers/net/cxgbe/smt.c
Karra Satwik 993541b2fa net/cxgbe: support flow API for source MAC rewrite
Add support to rewrite Source MAC addresses. The new Source
MAC address is written into a free entry in the SMT table
and the corresponding SMT index is used by hardware to
rewrite the Source MAC address of the packets hitting the
flow.

Signed-off-by: Karra Satwik <kaara.satwik@chelsio.com>
Signed-off-by: Rahul Lakkireddy <rahul.lakkireddy@chelsio.com>
2020-03-18 15:29:39 +01:00

231 lines
5.4 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2020 Chelsio Communications.
* All rights reserved.
*/
#include "base/common.h"
#include "smt.h"
void cxgbe_do_smt_write_rpl(struct adapter *adap,
const struct cpl_smt_write_rpl *rpl)
{
unsigned int smtidx = G_TID_TID(GET_TID(rpl));
struct smt_data *s = adap->smt;
if (unlikely(rpl->status != CPL_ERR_NONE)) {
struct smt_entry *e = &s->smtab[smtidx];
dev_err(adap,
"Unexpected SMT_WRITE_RPL status %u for entry %u\n",
rpl->status, smtidx);
t4_os_lock(&e->lock);
e->state = SMT_STATE_ERROR;
t4_os_unlock(&e->lock);
}
}
static int write_smt_entry(struct rte_eth_dev *dev, struct smt_entry *e)
{
unsigned int port_id = ethdev2pinfo(dev)->port_id;
struct adapter *adap = ethdev2adap(dev);
struct cpl_t6_smt_write_req *t6req;
struct smt_data *s = adap->smt;
struct cpl_smt_write_req *req;
struct sge_ctrl_txq *ctrlq;
struct rte_mbuf *mbuf;
u8 row;
ctrlq = &adap->sge.ctrlq[port_id];
mbuf = rte_pktmbuf_alloc(ctrlq->mb_pool);
if (!mbuf)
return -ENOMEM;
if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) {
mbuf->data_len = sizeof(*req);
mbuf->pkt_len = mbuf->data_len;
/* Source MAC Table (SMT) contains 256 SMAC entries
* organized in 128 rows of 2 entries each.
*/
req = rte_pktmbuf_mtod(mbuf, struct cpl_smt_write_req *);
INIT_TP_WR(req, 0);
/* Each row contains an SMAC pair.
* LSB selects the SMAC entry within a row
*/
if (e->idx & 1) {
req->pfvf1 = 0x0;
rte_memcpy(req->src_mac1, e->src_mac,
RTE_ETHER_ADDR_LEN);
/* fill pfvf0/src_mac0 with entry
* at prev index from smt-tab.
*/
req->pfvf0 = 0x0;
rte_memcpy(req->src_mac0, s->smtab[e->idx - 1].src_mac,
RTE_ETHER_ADDR_LEN);
} else {
req->pfvf0 = 0x0;
rte_memcpy(req->src_mac0, e->src_mac,
RTE_ETHER_ADDR_LEN);
/* fill pfvf1/src_mac1 with entry
* at next index from smt-tab
*/
req->pfvf1 = 0x0;
rte_memcpy(req->src_mac1, s->smtab[e->idx + 1].src_mac,
RTE_ETHER_ADDR_LEN);
}
row = (e->hw_idx >> 1);
} else {
mbuf->data_len = sizeof(*t6req);
mbuf->pkt_len = mbuf->data_len;
/* Source MAC Table (SMT) contains 256 SMAC entries */
t6req = rte_pktmbuf_mtod(mbuf, struct cpl_t6_smt_write_req *);
INIT_TP_WR(t6req, 0);
/* fill pfvf0/src_mac0 from smt-tab */
t6req->pfvf0 = 0x0;
rte_memcpy(t6req->src_mac0, s->smtab[e->idx].src_mac,
RTE_ETHER_ADDR_LEN);
row = e->hw_idx;
req = (struct cpl_smt_write_req *)t6req;
}
OPCODE_TID(req) =
cpu_to_be32(MK_OPCODE_TID(CPL_SMT_WRITE_REQ,
e->hw_idx |
V_TID_QID(adap->sge.fw_evtq.abs_id)));
req->params = cpu_to_be32(V_SMTW_NORPL(0) |
V_SMTW_IDX(row) |
V_SMTW_OVLAN_IDX(0));
t4_mgmt_tx(ctrlq, mbuf);
return 0;
}
/**
* find_or_alloc_smte - Find/Allocate a free SMT entry
* @s: SMT table
* @smac: Source MAC address to compare/add
* Returns pointer to the SMT entry found/created
*
* Finds/Allocates an SMT entry to be used by switching rule of a filter.
*/
static struct smt_entry *find_or_alloc_smte(struct smt_data *s, u8 *smac)
{
struct smt_entry *e, *end, *first_free = NULL;
for (e = &s->smtab[0], end = &s->smtab[s->smt_size]; e != end; ++e) {
if (!rte_atomic32_read(&e->refcnt)) {
if (!first_free)
first_free = e;
} else {
if (e->state == SMT_STATE_SWITCHING) {
/* This entry is actually in use. See if we can
* re-use it ?
*/
if (!memcmp(e->src_mac, smac,
RTE_ETHER_ADDR_LEN))
goto found;
}
}
}
if (!first_free)
return NULL;
e = first_free;
e->state = SMT_STATE_UNUSED;
found:
return e;
}
static struct smt_entry *t4_smt_alloc_switching(struct rte_eth_dev *dev,
u16 pfvf, u8 *smac)
{
struct adapter *adap = ethdev2adap(dev);
struct smt_data *s = adap->smt;
struct smt_entry *e;
int ret;
t4_os_write_lock(&s->lock);
e = find_or_alloc_smte(s, smac);
if (e) {
t4_os_lock(&e->lock);
if (!rte_atomic32_read(&e->refcnt)) {
e->pfvf = pfvf;
rte_memcpy(e->src_mac, smac, RTE_ETHER_ADDR_LEN);
ret = write_smt_entry(dev, e);
if (ret) {
e->pfvf = 0;
memset(e->src_mac, 0, RTE_ETHER_ADDR_LEN);
t4_os_unlock(&e->lock);
e = NULL;
goto out_write_unlock;
}
e->state = SMT_STATE_SWITCHING;
rte_atomic32_set(&e->refcnt, 1);
} else {
rte_atomic32_inc(&e->refcnt);
}
t4_os_unlock(&e->lock);
}
out_write_unlock:
t4_os_write_unlock(&s->lock);
return e;
}
/**
* cxgbe_smt_alloc_switching - Allocate an SMT entry for switching rule
* @dev: rte_eth_dev pointer
* @smac: MAC address to add to SMT
* Returns pointer to the SMT entry created
*
* Allocates an SMT entry to be used by switching rule of a filter.
*/
struct smt_entry *cxgbe_smt_alloc_switching(struct rte_eth_dev *dev, u8 *smac)
{
return t4_smt_alloc_switching(dev, 0x0, smac);
}
/**
* Initialize Source MAC Table
*/
struct smt_data *t4_init_smt(u32 smt_start_idx, u32 smt_size)
{
struct smt_data *s;
u32 i;
s = t4_alloc_mem(sizeof(*s) + smt_size * sizeof(struct smt_entry));
if (!s)
return NULL;
s->smt_start = smt_start_idx;
s->smt_size = smt_size;
t4_os_rwlock_init(&s->lock);
for (i = 0; i < s->smt_size; ++i) {
s->smtab[i].idx = i;
s->smtab[i].hw_idx = smt_start_idx + i;
s->smtab[i].state = SMT_STATE_UNUSED;
memset(&s->smtab[i].src_mac, 0, RTE_ETHER_ADDR_LEN);
t4_os_lock_init(&s->smtab[i].lock);
rte_atomic32_set(&s->smtab[i].refcnt, 0);
}
return s;
}
/**
* Cleanup Source MAC Table
*/
void t4_cleanup_smt(struct adapter *adap)
{
if (adap->smt)
t4_os_free(adap->smt);
}