numam-dpdk/lib/librte_pmd_e1000/igb_pf.c
Sergio Gonzalez Monroy 9f0bf3f4a3 igb: handle VF LPE mailbox message
This patch adds the handle function for the LPE mailbox message (VF to
PF) to set maximum packet size, which can be used to enable jumbo
frame support.

Signed-off-by: Sergio Gonzalez Monroy <sergio.gonzalez.monroy@intel.com>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2015-04-28 18:17:11 +02:00

512 lines
14 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2010-2014 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdarg.h>
#include <inttypes.h>
#include <rte_interrupts.h>
#include <rte_log.h>
#include <rte_debug.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_memcpy.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include "e1000/e1000_defines.h"
#include "e1000/e1000_regs.h"
#include "e1000/e1000_hw.h"
#include "e1000_ethdev.h"
static inline uint16_t
dev_num_vf(struct rte_eth_dev *eth_dev)
{
return eth_dev->pci_dev->max_vfs;
}
static inline
int igb_vf_perm_addr_gen(struct rte_eth_dev *dev, uint16_t vf_num)
{
unsigned char vf_mac_addr[ETHER_ADDR_LEN];
struct e1000_vf_info *vfinfo =
*E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private);
uint16_t vfn;
for (vfn = 0; vfn < vf_num; vfn++) {
eth_random_addr(vf_mac_addr);
/* keep the random address as default */
memcpy(vfinfo[vfn].vf_mac_addresses, vf_mac_addr,
ETHER_ADDR_LEN);
}
return 0;
}
static inline int
igb_mb_intr_setup(struct rte_eth_dev *dev)
{
struct e1000_interrupt *intr =
E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
intr->mask |= E1000_ICR_VMMB;
return 0;
}
void igb_pf_host_init(struct rte_eth_dev *eth_dev)
{
struct e1000_vf_info **vfinfo =
E1000_DEV_PRIVATE_TO_P_VFDATA(eth_dev->data->dev_private);
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
uint16_t vf_num;
uint8_t nb_queue;
RTE_ETH_DEV_SRIOV(eth_dev).active = 0;
if (0 == (vf_num = dev_num_vf(eth_dev)))
return;
if (hw->mac.type == e1000_i350)
nb_queue = 1;
else if(hw->mac.type == e1000_82576)
/* per datasheet, it should be 2, but 1 seems correct */
nb_queue = 1;
else
return;
*vfinfo = rte_zmalloc("vf_info", sizeof(struct e1000_vf_info) * vf_num, 0);
if (*vfinfo == NULL)
rte_panic("Cannot allocate memory for private VF data\n");
RTE_ETH_DEV_SRIOV(eth_dev).active = ETH_8_POOLS;
RTE_ETH_DEV_SRIOV(eth_dev).nb_q_per_pool = nb_queue;
RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx = vf_num;
RTE_ETH_DEV_SRIOV(eth_dev).def_pool_q_idx = (uint16_t)(vf_num * nb_queue);
igb_vf_perm_addr_gen(eth_dev, vf_num);
/* set mb interrupt mask */
igb_mb_intr_setup(eth_dev);
return;
}
#define E1000_RAH_POOLSEL_SHIFT (18)
int igb_pf_host_configure(struct rte_eth_dev *eth_dev)
{
uint32_t vtctl;
uint16_t vf_num;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
uint32_t vlanctrl;
int i;
uint32_t rah;
if (0 == (vf_num = dev_num_vf(eth_dev)))
return -1;
/* enable VMDq and set the default pool for PF */
vtctl = E1000_READ_REG(hw, E1000_VT_CTL);
vtctl &= ~E1000_VT_CTL_DEFAULT_POOL_MASK;
vtctl |= RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx
<< E1000_VT_CTL_DEFAULT_POOL_SHIFT;
vtctl |= E1000_VT_CTL_VM_REPL_EN;
E1000_WRITE_REG(hw, E1000_VT_CTL, vtctl);
/* Enable pools reserved to PF only */
E1000_WRITE_REG(hw, E1000_VFRE, (~0) << vf_num);
E1000_WRITE_REG(hw, E1000_VFTE, (~0) << vf_num);
/* PFDMA Tx General Switch Control Enables VMDQ loopback */
if (hw->mac.type == e1000_i350)
E1000_WRITE_REG(hw, E1000_TXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
else
E1000_WRITE_REG(hw, E1000_DTXSWC, E1000_DTXSWC_VMDQ_LOOPBACK_EN);
/* clear VMDq map to perment rar 0 */
rah = E1000_READ_REG(hw, E1000_RAH(0));
rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
E1000_WRITE_REG(hw, E1000_RAH(0), rah);
/* clear VMDq map to scan rar 32 */
rah = E1000_READ_REG(hw, E1000_RAH(hw->mac.rar_entry_count));
rah &= ~ (0xFF << E1000_RAH_POOLSEL_SHIFT);
E1000_WRITE_REG(hw, E1000_RAH(hw->mac.rar_entry_count), rah);
/* set VMDq map to default PF pool */
rah = E1000_READ_REG(hw, E1000_RAH(0));
rah |= (0x1 << (RTE_ETH_DEV_SRIOV(eth_dev).def_vmdq_idx +
E1000_RAH_POOLSEL_SHIFT));
E1000_WRITE_REG(hw, E1000_RAH(0), rah);
/*
* enable vlan filtering and allow all vlan tags through
*/
vlanctrl = E1000_READ_REG(hw, E1000_RCTL);
vlanctrl |= E1000_RCTL_VFE ; /* enable vlan filters */
E1000_WRITE_REG(hw, E1000_RCTL, vlanctrl);
/* VFTA - enable all vlan filters */
for (i = 0; i < IGB_VFTA_SIZE; i++) {
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, 0xFFFFFFFF);
}
/* Enable/Disable MAC Anti-Spoofing */
e1000_vmdq_set_anti_spoofing_pf(hw, FALSE, vf_num);
return 0;
}
static void
set_rx_mode(struct rte_eth_dev *dev)
{
struct rte_eth_dev_data *dev_data =
(struct rte_eth_dev_data*)dev->data->dev_private;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t fctrl, vmolr = E1000_VMOLR_BAM | E1000_VMOLR_AUPE;
uint16_t vfn = dev_num_vf(dev);
/* Check for Promiscuous and All Multicast modes */
fctrl = E1000_READ_REG(hw, E1000_RCTL);
/* set all bits that we expect to always be set */
fctrl &= ~E1000_RCTL_SBP; /* disable store-bad-packets */
fctrl |= E1000_RCTL_BAM;;
/* clear the bits we are changing the status of */
fctrl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
if (dev_data->promiscuous) {
fctrl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
} else {
if (dev_data->all_multicast) {
fctrl |= E1000_RCTL_MPE;
vmolr |= E1000_VMOLR_MPME;
} else {
vmolr |= E1000_VMOLR_ROMPE;
}
}
if ((hw->mac.type == e1000_82576) ||
(hw->mac.type == e1000_i350)) {
vmolr |= E1000_READ_REG(hw, E1000_VMOLR(vfn)) &
~(E1000_VMOLR_MPME | E1000_VMOLR_ROMPE |
E1000_VMOLR_ROPE);
E1000_WRITE_REG(hw, E1000_VMOLR(vfn), vmolr);
}
E1000_WRITE_REG(hw, E1000_RCTL, fctrl);
}
static inline void
igb_vf_reset_event(struct rte_eth_dev *dev, uint16_t vf)
{
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
uint32_t vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE |
E1000_VMOLR_BAM | E1000_VMOLR_AUPE);
E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
E1000_WRITE_REG(hw, E1000_VMVIR(vf), 0);
/* reset multicast table array for vf */
vfinfo[vf].num_vf_mc_hashes = 0;
/* reset rx mode */
set_rx_mode(dev);
}
static inline void
igb_vf_reset_msg(struct rte_eth_dev *dev, uint16_t vf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint32_t reg;
/* enable transmit and receive for vf */
reg = E1000_READ_REG(hw, E1000_VFTE);
reg |= (reg | (1 << vf));
E1000_WRITE_REG(hw, E1000_VFTE, reg);
reg = E1000_READ_REG(hw, E1000_VFRE);
reg |= (reg | (1 << vf));
E1000_WRITE_REG(hw, E1000_VFRE, reg);
igb_vf_reset_event(dev, vf);
}
static int
igb_vf_reset(struct rte_eth_dev *dev, uint16_t vf, uint32_t *msgbuf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
unsigned char *vf_mac = vfinfo[vf].vf_mac_addresses;
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
uint32_t rah;
igb_vf_reset_msg(dev, vf);
hw->mac.ops.rar_set(hw, vf_mac, rar_entry);
rah = E1000_READ_REG(hw, E1000_RAH(rar_entry));
rah |= (0x1 << (vf + E1000_RAH_POOLSEL_SHIFT));
E1000_WRITE_REG(hw, E1000_RAH(rar_entry), rah);
/* reply to reset with ack and vf mac address */
msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
rte_memcpy(new_mac, vf_mac, ETHER_ADDR_LEN);
e1000_write_mbx(hw, msgbuf, 3, vf);
return 0;
}
static int
igb_vf_set_mac_addr(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
int rar_entry = hw->mac.rar_entry_count - (vf + 1);
uint8_t *new_mac = (uint8_t *)(&msgbuf[1]);
if (is_valid_assigned_ether_addr((struct ether_addr*)new_mac)) {
rte_memcpy(vfinfo[vf].vf_mac_addresses, new_mac, 6);
hw->mac.ops.rar_set(hw, new_mac, rar_entry);
return 0;
}
return -1;
}
static int
igb_vf_set_multicast(struct rte_eth_dev *dev, __rte_unused uint32_t vf, uint32_t *msgbuf)
{
int i;
uint32_t vector_bit;
uint32_t vector_reg;
uint32_t mta_reg;
int entries = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >>
E1000_VT_MSGINFO_SHIFT;
uint16_t *hash_list = (uint16_t *)&msgbuf[1];
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
/* only so many hash values supported */
entries = RTE_MIN(entries, E1000_MAX_VF_MC_ENTRIES);
/*
* salt away the number of multi cast addresses assigned
* to this VF for later use to restore when the PF multi cast
* list changes
*/
vfinfo->num_vf_mc_hashes = (uint16_t)entries;
/*
* VFs are limited to using the MTA hash table for their multicast
* addresses
*/
for (i = 0; i < entries; i++) {
vfinfo->vf_mc_hashes[i] = hash_list[i];
}
for (i = 0; i < vfinfo->num_vf_mc_hashes; i++) {
vector_reg = (vfinfo->vf_mc_hashes[i] >> 5) & 0x7F;
vector_bit = vfinfo->vf_mc_hashes[i] & 0x1F;
mta_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, vector_reg);
mta_reg |= (1 << vector_bit);
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, vector_reg, mta_reg);
}
return 0;
}
static int
igb_vf_set_vlan(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
{
int add, vid;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
struct e1000_vf_info *vfinfo =
*(E1000_DEV_PRIVATE_TO_P_VFDATA(dev->data->dev_private));
uint32_t vid_idx, vid_bit, vfta;
add = (msgbuf[0] & E1000_VT_MSGINFO_MASK)
>> E1000_VT_MSGINFO_SHIFT;
vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
if (add)
vfinfo[vf].vlan_count++;
else if (vfinfo[vf].vlan_count)
vfinfo[vf].vlan_count--;
vid_idx = (uint32_t)((vid >> E1000_VFTA_ENTRY_SHIFT) &
E1000_VFTA_ENTRY_MASK);
vid_bit = (uint32_t)(1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
if (add)
vfta |= vid_bit;
else
vfta &= ~vid_bit;
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
igb_vf_set_rlpml(struct rte_eth_dev *dev, uint32_t vf, uint32_t *msgbuf)
{
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
uint16_t rlpml = msgbuf[1] & E1000_VMOLR_RLPML_MASK;
uint32_t max_frame = rlpml + ETHER_HDR_LEN + ETHER_CRC_LEN;
uint32_t vmolr;
if ((max_frame < ETHER_MIN_LEN) || (max_frame > ETHER_MAX_JUMBO_FRAME_LEN))
return -1;
vmolr = E1000_READ_REG(hw, E1000_VMOLR(vf));
vmolr &= ~E1000_VMOLR_RLPML_MASK;
vmolr |= rlpml;
/* Enable Long Packet support */
vmolr |= E1000_VMOLR_LPE;
E1000_WRITE_REG(hw, E1000_VMOLR(vf), vmolr);
E1000_WRITE_FLUSH(hw);
return 0;
}
static int
igb_rcv_msg_from_vf(struct rte_eth_dev *dev, uint16_t vf)
{
uint16_t mbx_size = E1000_VFMAILBOX_SIZE;
uint32_t msgbuf[E1000_VFMAILBOX_SIZE];
int32_t retval;
struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
retval = e1000_read_mbx(hw, msgbuf, mbx_size, vf);
if (retval) {
PMD_INIT_LOG(ERR, "Error mbx recv msg from VF %d", vf);
return retval;
}
/* do nothing with the message already processed */
if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
return retval;
/* flush the ack before we write any messages back */
E1000_WRITE_FLUSH(hw);
/* perform VF reset */
if (msgbuf[0] == E1000_VF_RESET) {
return igb_vf_reset(dev, vf, msgbuf);
}
/* check & process VF to PF mailbox message */
switch ((msgbuf[0] & 0xFFFF)) {
case E1000_VF_SET_MAC_ADDR:
retval = igb_vf_set_mac_addr(dev, vf, msgbuf);
break;
case E1000_VF_SET_MULTICAST:
retval = igb_vf_set_multicast(dev, vf, msgbuf);
break;
case E1000_VF_SET_LPE:
retval = igb_vf_set_rlpml(dev, vf, msgbuf);
break;
case E1000_VF_SET_VLAN:
retval = igb_vf_set_vlan(dev, vf, msgbuf);
break;
default:
PMD_INIT_LOG(DEBUG, "Unhandled Msg %8.8x",
(unsigned) msgbuf[0]);
retval = E1000_ERR_MBX;
break;
}
/* response the VF according to the message process result */
if (retval)
msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
else
msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
e1000_write_mbx(hw, msgbuf, 1, vf);
return retval;
}
static inline void
igb_rcv_ack_from_vf(struct rte_eth_dev *dev, uint16_t vf)
{
uint32_t msg = E1000_VT_MSGTYPE_NACK;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
e1000_write_mbx(hw, &msg, 1, vf);
}
void igb_pf_mbx_process(struct rte_eth_dev *eth_dev)
{
uint16_t vf;
struct e1000_hw *hw =
E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
for (vf = 0; vf < dev_num_vf(eth_dev); vf++) {
/* check & process vf function level reset */
if (!e1000_check_for_rst(hw, vf))
igb_vf_reset_event(eth_dev, vf);
/* check & process vf mailbox messages */
if (!e1000_check_for_msg(hw, vf))
igb_rcv_msg_from_vf(eth_dev, vf);
/* check & process acks from vf */
if (!e1000_check_for_ack(hw, vf))
igb_rcv_ack_from_vf(eth_dev, vf);
}
}