numam-dpdk/drivers/net/mlx5/mlx5_flow_dv.c
Dekel Peled 38f7efaaf5 net/mlx5: fix MPLS item validation
Update the mlx5_flow_validate_item_mpls() function to allow
MPLS over IP, UDP, and GRE.
Modify the flow_dv_validate() function with the new logic introduced
in previous patch of this series: set new variable last_item
after each validation, update item_flags after each item iteration.
The new variable last_item is sent to mlx5_flow_validate_item_mpls()
and used to validate the MPLS item.
Same change implemented in flow_verbs_validate().

Update the mlx5_flow_validate_item_mpls() function to verify that
device configuration has mpls_en set to 1.
This code was added earlier this year, but unintentionaly removed
in recent versions.

Fixes: 84c406e745 ("net/mlx5: add flow translate function")

Signed-off-by: Dekel Peled <dekelp@mellanox.com>
Acked-by: Shahaf Shuler <shahafs@mellanox.com>
2018-11-16 10:45:37 +01:00

2403 lines
70 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2018 Mellanox Technologies, Ltd
*/
#include <sys/queue.h>
#include <stdalign.h>
#include <stdint.h>
#include <string.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_common.h>
#include <rte_ether.h>
#include <rte_eth_ctrl.h>
#include <rte_ethdev_driver.h>
#include <rte_flow.h>
#include <rte_flow_driver.h>
#include <rte_malloc.h>
#include <rte_ip.h>
#include <rte_gre.h>
#include "mlx5.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"
#include "mlx5_glue.h"
#include "mlx5_flow.h"
#ifdef HAVE_IBV_FLOW_DV_SUPPORT
/**
* Validate META item.
*
* @param[in] dev
* Pointer to the rte_eth_dev structure.
* @param[in] item
* Item specification.
* @param[in] attr
* Attributes of flow that includes this item.
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_validate_item_meta(struct rte_eth_dev *dev,
const struct rte_flow_item *item,
const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
const struct rte_flow_item_meta *spec = item->spec;
const struct rte_flow_item_meta *mask = item->mask;
const struct rte_flow_item_meta nic_mask = {
.data = RTE_BE32(UINT32_MAX)
};
int ret;
uint64_t offloads = dev->data->dev_conf.txmode.offloads;
if (!(offloads & DEV_TX_OFFLOAD_MATCH_METADATA))
return rte_flow_error_set(error, EPERM,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL,
"match on metadata offload "
"configuration is off for this port");
if (!spec)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
item->spec,
"data cannot be empty");
if (!spec->data)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ITEM_SPEC,
NULL,
"data cannot be zero");
if (!mask)
mask = &rte_flow_item_meta_mask;
ret = mlx5_flow_item_acceptable(item, (const uint8_t *)mask,
(const uint8_t *)&nic_mask,
sizeof(struct rte_flow_item_meta),
error);
if (ret < 0)
return ret;
if (attr->ingress)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
NULL,
"pattern not supported for ingress");
return 0;
}
/**
* Validate the L2 encap action.
*
* @param[in] action_flags
* Holds the actions detected until now.
* @param[in] action
* Pointer to the encap action.
* @param[in] attr
* Pointer to flow attributes
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_validate_action_l2_encap(uint64_t action_flags,
const struct rte_flow_action *action,
const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
if (!(action->conf))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"configuration cannot be null");
if (action_flags & MLX5_FLOW_ACTION_DROP)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"can't drop and encap in same flow");
if (action_flags & (MLX5_FLOW_ENCAP_ACTIONS | MLX5_FLOW_DECAP_ACTIONS))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"can only have a single encap or"
" decap action in a flow");
if (attr->ingress)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
NULL,
"encap action not supported for "
"ingress");
return 0;
}
/**
* Validate the L2 decap action.
*
* @param[in] action_flags
* Holds the actions detected until now.
* @param[in] attr
* Pointer to flow attributes
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_validate_action_l2_decap(uint64_t action_flags,
const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
if (action_flags & MLX5_FLOW_ACTION_DROP)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"can't drop and decap in same flow");
if (action_flags & (MLX5_FLOW_ENCAP_ACTIONS | MLX5_FLOW_DECAP_ACTIONS))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"can only have a single encap or"
" decap action in a flow");
if (attr->egress)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
NULL,
"decap action not supported for "
"egress");
return 0;
}
/**
* Validate the raw encap action.
*
* @param[in] action_flags
* Holds the actions detected until now.
* @param[in] action
* Pointer to the encap action.
* @param[in] attr
* Pointer to flow attributes
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_validate_action_raw_encap(uint64_t action_flags,
const struct rte_flow_action *action,
const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
if (!(action->conf))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, action,
"configuration cannot be null");
if (action_flags & MLX5_FLOW_ACTION_DROP)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"can't drop and encap in same flow");
if (action_flags & MLX5_FLOW_ENCAP_ACTIONS)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"can only have a single encap"
" action in a flow");
/* encap without preceding decap is not supported for ingress */
if (attr->ingress && !(action_flags & MLX5_FLOW_ACTION_RAW_DECAP))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_INGRESS,
NULL,
"encap action not supported for "
"ingress");
return 0;
}
/**
* Validate the raw decap action.
*
* @param[in] action_flags
* Holds the actions detected until now.
* @param[in] action
* Pointer to the encap action.
* @param[in] attr
* Pointer to flow attributes
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_validate_action_raw_decap(uint64_t action_flags,
const struct rte_flow_action *action,
const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
if (action_flags & MLX5_FLOW_ACTION_DROP)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"can't drop and decap in same flow");
if (action_flags & MLX5_FLOW_ENCAP_ACTIONS)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"can't have encap action before"
" decap action");
if (action_flags & MLX5_FLOW_DECAP_ACTIONS)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, NULL,
"can only have a single decap"
" action in a flow");
/* decap action is valid on egress only if it is followed by encap */
if (attr->egress) {
for (; action->type != RTE_FLOW_ACTION_TYPE_END &&
action->type != RTE_FLOW_ACTION_TYPE_RAW_ENCAP;
action++) {
}
if (action->type != RTE_FLOW_ACTION_TYPE_RAW_ENCAP)
return rte_flow_error_set
(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_EGRESS,
NULL, "decap action not supported"
" for egress");
}
return 0;
}
/**
* Find existing encap/decap resource or create and register a new one.
*
* @param dev[in, out]
* Pointer to rte_eth_dev structure.
* @param[in, out] resource
* Pointer to encap/decap resource.
* @parm[in, out] dev_flow
* Pointer to the dev_flow.
* @param[out] error
* pointer to error structure.
*
* @return
* 0 on success otherwise -errno and errno is set.
*/
static int
flow_dv_encap_decap_resource_register
(struct rte_eth_dev *dev,
struct mlx5_flow_dv_encap_decap_resource *resource,
struct mlx5_flow *dev_flow,
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
struct mlx5_flow_dv_encap_decap_resource *cache_resource;
/* Lookup a matching resource from cache. */
LIST_FOREACH(cache_resource, &priv->encaps_decaps, next) {
if (resource->reformat_type == cache_resource->reformat_type &&
resource->ft_type == cache_resource->ft_type &&
resource->size == cache_resource->size &&
!memcmp((const void *)resource->buf,
(const void *)cache_resource->buf,
resource->size)) {
DRV_LOG(DEBUG, "encap/decap resource %p: refcnt %d++",
(void *)cache_resource,
rte_atomic32_read(&cache_resource->refcnt));
rte_atomic32_inc(&cache_resource->refcnt);
dev_flow->dv.encap_decap = cache_resource;
return 0;
}
}
/* Register new encap/decap resource. */
cache_resource = rte_calloc(__func__, 1, sizeof(*cache_resource), 0);
if (!cache_resource)
return rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"cannot allocate resource memory");
*cache_resource = *resource;
cache_resource->verbs_action =
mlx5_glue->dv_create_flow_action_packet_reformat
(priv->ctx, cache_resource->size,
(cache_resource->size ? cache_resource->buf : NULL),
cache_resource->reformat_type,
cache_resource->ft_type);
if (!cache_resource->verbs_action) {
rte_free(cache_resource);
return rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "cannot create action");
}
rte_atomic32_init(&cache_resource->refcnt);
rte_atomic32_inc(&cache_resource->refcnt);
LIST_INSERT_HEAD(&priv->encaps_decaps, cache_resource, next);
dev_flow->dv.encap_decap = cache_resource;
DRV_LOG(DEBUG, "new encap/decap resource %p: refcnt %d++",
(void *)cache_resource,
rte_atomic32_read(&cache_resource->refcnt));
return 0;
}
/**
* Get the size of specific rte_flow_item_type
*
* @param[in] item_type
* Tested rte_flow_item_type.
*
* @return
* sizeof struct item_type, 0 if void or irrelevant.
*/
static size_t
flow_dv_get_item_len(const enum rte_flow_item_type item_type)
{
size_t retval;
switch (item_type) {
case RTE_FLOW_ITEM_TYPE_ETH:
retval = sizeof(struct rte_flow_item_eth);
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
retval = sizeof(struct rte_flow_item_vlan);
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
retval = sizeof(struct rte_flow_item_ipv4);
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
retval = sizeof(struct rte_flow_item_ipv6);
break;
case RTE_FLOW_ITEM_TYPE_UDP:
retval = sizeof(struct rte_flow_item_udp);
break;
case RTE_FLOW_ITEM_TYPE_TCP:
retval = sizeof(struct rte_flow_item_tcp);
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
retval = sizeof(struct rte_flow_item_vxlan);
break;
case RTE_FLOW_ITEM_TYPE_GRE:
retval = sizeof(struct rte_flow_item_gre);
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
retval = sizeof(struct rte_flow_item_nvgre);
break;
case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
retval = sizeof(struct rte_flow_item_vxlan_gpe);
break;
case RTE_FLOW_ITEM_TYPE_MPLS:
retval = sizeof(struct rte_flow_item_mpls);
break;
case RTE_FLOW_ITEM_TYPE_VOID: /* Fall through. */
default:
retval = 0;
break;
}
return retval;
}
#define MLX5_ENCAP_IPV4_VERSION 0x40
#define MLX5_ENCAP_IPV4_IHL_MIN 0x05
#define MLX5_ENCAP_IPV4_TTL_DEF 0x40
#define MLX5_ENCAP_IPV6_VTC_FLOW 0x60000000
#define MLX5_ENCAP_IPV6_HOP_LIMIT 0xff
#define MLX5_ENCAP_VXLAN_FLAGS 0x08000000
#define MLX5_ENCAP_VXLAN_GPE_FLAGS 0x04
/**
* Convert the encap action data from list of rte_flow_item to raw buffer
*
* @param[in] items
* Pointer to rte_flow_item objects list.
* @param[out] buf
* Pointer to the output buffer.
* @param[out] size
* Pointer to the output buffer size.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_convert_encap_data(const struct rte_flow_item *items, uint8_t *buf,
size_t *size, struct rte_flow_error *error)
{
struct ether_hdr *eth = NULL;
struct vlan_hdr *vlan = NULL;
struct ipv4_hdr *ipv4 = NULL;
struct ipv6_hdr *ipv6 = NULL;
struct udp_hdr *udp = NULL;
struct vxlan_hdr *vxlan = NULL;
struct vxlan_gpe_hdr *vxlan_gpe = NULL;
struct gre_hdr *gre = NULL;
size_t len;
size_t temp_size = 0;
if (!items)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "invalid empty data");
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
len = flow_dv_get_item_len(items->type);
if (len + temp_size > MLX5_ENCAP_MAX_LEN)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"items total size is too big"
" for encap action");
rte_memcpy((void *)&buf[temp_size], items->spec, len);
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
eth = (struct ether_hdr *)&buf[temp_size];
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
vlan = (struct vlan_hdr *)&buf[temp_size];
if (!eth)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"eth header not found");
if (!eth->ether_type)
eth->ether_type = RTE_BE16(ETHER_TYPE_VLAN);
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ipv4 = (struct ipv4_hdr *)&buf[temp_size];
if (!vlan && !eth)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"neither eth nor vlan"
" header found");
if (vlan && !vlan->eth_proto)
vlan->eth_proto = RTE_BE16(ETHER_TYPE_IPv4);
else if (eth && !eth->ether_type)
eth->ether_type = RTE_BE16(ETHER_TYPE_IPv4);
if (!ipv4->version_ihl)
ipv4->version_ihl = MLX5_ENCAP_IPV4_VERSION |
MLX5_ENCAP_IPV4_IHL_MIN;
if (!ipv4->time_to_live)
ipv4->time_to_live = MLX5_ENCAP_IPV4_TTL_DEF;
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ipv6 = (struct ipv6_hdr *)&buf[temp_size];
if (!vlan && !eth)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"neither eth nor vlan"
" header found");
if (vlan && !vlan->eth_proto)
vlan->eth_proto = RTE_BE16(ETHER_TYPE_IPv6);
else if (eth && !eth->ether_type)
eth->ether_type = RTE_BE16(ETHER_TYPE_IPv6);
if (!ipv6->vtc_flow)
ipv6->vtc_flow =
RTE_BE32(MLX5_ENCAP_IPV6_VTC_FLOW);
if (!ipv6->hop_limits)
ipv6->hop_limits = MLX5_ENCAP_IPV6_HOP_LIMIT;
break;
case RTE_FLOW_ITEM_TYPE_UDP:
udp = (struct udp_hdr *)&buf[temp_size];
if (!ipv4 && !ipv6)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"ip header not found");
if (ipv4 && !ipv4->next_proto_id)
ipv4->next_proto_id = IPPROTO_UDP;
else if (ipv6 && !ipv6->proto)
ipv6->proto = IPPROTO_UDP;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
vxlan = (struct vxlan_hdr *)&buf[temp_size];
if (!udp)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"udp header not found");
if (!udp->dst_port)
udp->dst_port = RTE_BE16(MLX5_UDP_PORT_VXLAN);
if (!vxlan->vx_flags)
vxlan->vx_flags =
RTE_BE32(MLX5_ENCAP_VXLAN_FLAGS);
break;
case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
vxlan_gpe = (struct vxlan_gpe_hdr *)&buf[temp_size];
if (!udp)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"udp header not found");
if (!vxlan_gpe->proto)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"next protocol not found");
if (!udp->dst_port)
udp->dst_port =
RTE_BE16(MLX5_UDP_PORT_VXLAN_GPE);
if (!vxlan_gpe->vx_flags)
vxlan_gpe->vx_flags =
MLX5_ENCAP_VXLAN_GPE_FLAGS;
break;
case RTE_FLOW_ITEM_TYPE_GRE:
case RTE_FLOW_ITEM_TYPE_NVGRE:
gre = (struct gre_hdr *)&buf[temp_size];
if (!gre->proto)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"next protocol not found");
if (!ipv4 && !ipv6)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"ip header not found");
if (ipv4 && !ipv4->next_proto_id)
ipv4->next_proto_id = IPPROTO_GRE;
else if (ipv6 && !ipv6->proto)
ipv6->proto = IPPROTO_GRE;
break;
case RTE_FLOW_ITEM_TYPE_VOID:
break;
default:
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
(void *)items->type,
"unsupported item type");
break;
}
temp_size += len;
}
*size = temp_size;
return 0;
}
/**
* Convert L2 encap action to DV specification.
*
* @param[in] dev
* Pointer to rte_eth_dev structure.
* @param[in] action
* Pointer to action structure.
* @param[in, out] dev_flow
* Pointer to the mlx5_flow.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_create_action_l2_encap(struct rte_eth_dev *dev,
const struct rte_flow_action *action,
struct mlx5_flow *dev_flow,
struct rte_flow_error *error)
{
const struct rte_flow_item *encap_data;
const struct rte_flow_action_raw_encap *raw_encap_data;
struct mlx5_flow_dv_encap_decap_resource res = {
.reformat_type =
MLX5DV_FLOW_ACTION_PACKET_REFORMAT_TYPE_L2_TO_L2_TUNNEL,
.ft_type = MLX5DV_FLOW_TABLE_TYPE_NIC_TX,
};
if (action->type == RTE_FLOW_ACTION_TYPE_RAW_ENCAP) {
raw_encap_data =
(const struct rte_flow_action_raw_encap *)action->conf;
res.size = raw_encap_data->size;
memcpy(res.buf, raw_encap_data->data, res.size);
} else {
if (action->type == RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP)
encap_data =
((const struct rte_flow_action_vxlan_encap *)
action->conf)->definition;
else
encap_data =
((const struct rte_flow_action_nvgre_encap *)
action->conf)->definition;
if (flow_dv_convert_encap_data(encap_data, res.buf,
&res.size, error))
return -rte_errno;
}
if (flow_dv_encap_decap_resource_register(dev, &res, dev_flow, error))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "can't create L2 encap action");
return 0;
}
/**
* Convert L2 decap action to DV specification.
*
* @param[in] dev
* Pointer to rte_eth_dev structure.
* @param[in, out] dev_flow
* Pointer to the mlx5_flow.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_create_action_l2_decap(struct rte_eth_dev *dev,
struct mlx5_flow *dev_flow,
struct rte_flow_error *error)
{
struct mlx5_flow_dv_encap_decap_resource res = {
.size = 0,
.reformat_type =
MLX5DV_FLOW_ACTION_PACKET_REFORMAT_TYPE_L2_TUNNEL_TO_L2,
.ft_type = MLX5DV_FLOW_TABLE_TYPE_NIC_RX,
};
if (flow_dv_encap_decap_resource_register(dev, &res, dev_flow, error))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "can't create L2 decap action");
return 0;
}
/**
* Convert raw decap/encap (L3 tunnel) action to DV specification.
*
* @param[in] dev
* Pointer to rte_eth_dev structure.
* @param[in] action
* Pointer to action structure.
* @param[in, out] dev_flow
* Pointer to the mlx5_flow.
* @param[in] attr
* Pointer to the flow attributes.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_create_action_raw_encap(struct rte_eth_dev *dev,
const struct rte_flow_action *action,
struct mlx5_flow *dev_flow,
const struct rte_flow_attr *attr,
struct rte_flow_error *error)
{
const struct rte_flow_action_raw_encap *encap_data;
struct mlx5_flow_dv_encap_decap_resource res;
encap_data = (const struct rte_flow_action_raw_encap *)action->conf;
res.size = encap_data->size;
memcpy(res.buf, encap_data->data, res.size);
res.reformat_type = attr->egress ?
MLX5DV_FLOW_ACTION_PACKET_REFORMAT_TYPE_L2_TO_L3_TUNNEL :
MLX5DV_FLOW_ACTION_PACKET_REFORMAT_TYPE_L3_TUNNEL_TO_L2;
res.ft_type = attr->egress ? MLX5DV_FLOW_TABLE_TYPE_NIC_TX :
MLX5DV_FLOW_TABLE_TYPE_NIC_RX;
if (flow_dv_encap_decap_resource_register(dev, &res, dev_flow, error))
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION,
NULL, "can't create encap action");
return 0;
}
/**
* Verify the @p attributes will be correctly understood by the NIC and store
* them in the @p flow if everything is correct.
*
* @param[in] dev
* Pointer to dev struct.
* @param[in] attributes
* Pointer to flow attributes
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_validate_attributes(struct rte_eth_dev *dev,
const struct rte_flow_attr *attributes,
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
uint32_t priority_max = priv->config.flow_prio - 1;
if (attributes->group)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_GROUP,
NULL,
"groups is not supported");
if (attributes->priority != MLX5_FLOW_PRIO_RSVD &&
attributes->priority >= priority_max)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_PRIORITY,
NULL,
"priority out of range");
if (attributes->transfer)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR_TRANSFER,
NULL,
"transfer is not supported");
if (!(attributes->egress ^ attributes->ingress))
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ATTR, NULL,
"must specify exactly one of "
"ingress or egress");
return 0;
}
/**
* Internal validation function. For validating both actions and items.
*
* @param[in] dev
* Pointer to the rte_eth_dev structure.
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
* @param[in] actions
* Pointer to the list of actions.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
*/
static int
flow_dv_validate(struct rte_eth_dev *dev, const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
int ret;
uint64_t action_flags = 0;
uint64_t item_flags = 0;
uint64_t last_item = 0;
int tunnel = 0;
uint8_t next_protocol = 0xff;
int actions_n = 0;
if (items == NULL)
return -1;
ret = flow_dv_validate_attributes(dev, attr, error);
if (ret < 0)
return ret;
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_VOID:
break;
case RTE_FLOW_ITEM_TYPE_ETH:
ret = mlx5_flow_validate_item_eth(items, item_flags,
error);
if (ret < 0)
return ret;
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
MLX5_FLOW_LAYER_OUTER_L2;
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
ret = mlx5_flow_validate_item_vlan(items, item_flags,
error);
if (ret < 0)
return ret;
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_VLAN :
MLX5_FLOW_LAYER_OUTER_VLAN;
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
ret = mlx5_flow_validate_item_ipv4(items, item_flags,
error);
if (ret < 0)
return ret;
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
MLX5_FLOW_LAYER_OUTER_L3_IPV4;
if (items->mask != NULL &&
((const struct rte_flow_item_ipv4 *)
items->mask)->hdr.next_proto_id) {
next_protocol =
((const struct rte_flow_item_ipv4 *)
(items->spec))->hdr.next_proto_id;
next_protocol &=
((const struct rte_flow_item_ipv4 *)
(items->mask))->hdr.next_proto_id;
} else {
/* Reset for inner layer. */
next_protocol = 0xff;
}
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
ret = mlx5_flow_validate_item_ipv6(items, item_flags,
error);
if (ret < 0)
return ret;
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
MLX5_FLOW_LAYER_OUTER_L3_IPV6;
if (items->mask != NULL &&
((const struct rte_flow_item_ipv6 *)
items->mask)->hdr.proto) {
next_protocol =
((const struct rte_flow_item_ipv6 *)
items->spec)->hdr.proto;
next_protocol &=
((const struct rte_flow_item_ipv6 *)
items->mask)->hdr.proto;
} else {
/* Reset for inner layer. */
next_protocol = 0xff;
}
break;
case RTE_FLOW_ITEM_TYPE_TCP:
ret = mlx5_flow_validate_item_tcp
(items, item_flags,
next_protocol,
&rte_flow_item_tcp_mask,
error);
if (ret < 0)
return ret;
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L4_TCP :
MLX5_FLOW_LAYER_OUTER_L4_TCP;
break;
case RTE_FLOW_ITEM_TYPE_UDP:
ret = mlx5_flow_validate_item_udp(items, item_flags,
next_protocol,
error);
if (ret < 0)
return ret;
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L4_UDP :
MLX5_FLOW_LAYER_OUTER_L4_UDP;
break;
case RTE_FLOW_ITEM_TYPE_GRE:
case RTE_FLOW_ITEM_TYPE_NVGRE:
ret = mlx5_flow_validate_item_gre(items, item_flags,
next_protocol, error);
if (ret < 0)
return ret;
last_item = MLX5_FLOW_LAYER_GRE;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
ret = mlx5_flow_validate_item_vxlan(items, item_flags,
error);
if (ret < 0)
return ret;
last_item = MLX5_FLOW_LAYER_VXLAN;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
ret = mlx5_flow_validate_item_vxlan_gpe(items,
item_flags, dev,
error);
if (ret < 0)
return ret;
last_item = MLX5_FLOW_LAYER_VXLAN_GPE;
break;
case RTE_FLOW_ITEM_TYPE_MPLS:
ret = mlx5_flow_validate_item_mpls(dev, items,
item_flags,
last_item, error);
if (ret < 0)
return ret;
last_item = MLX5_FLOW_LAYER_MPLS;
break;
case RTE_FLOW_ITEM_TYPE_META:
ret = flow_dv_validate_item_meta(dev, items, attr,
error);
if (ret < 0)
return ret;
last_item = MLX5_FLOW_ITEM_METADATA;
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ITEM,
NULL, "item not supported");
}
item_flags |= last_item;
}
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
if (actions_n == MLX5_DV_MAX_NUMBER_OF_ACTIONS)
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions, "too many actions");
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_FLAG:
ret = mlx5_flow_validate_action_flag(action_flags,
attr, error);
if (ret < 0)
return ret;
action_flags |= MLX5_FLOW_ACTION_FLAG;
++actions_n;
break;
case RTE_FLOW_ACTION_TYPE_MARK:
ret = mlx5_flow_validate_action_mark(actions,
action_flags,
attr, error);
if (ret < 0)
return ret;
action_flags |= MLX5_FLOW_ACTION_MARK;
++actions_n;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
ret = mlx5_flow_validate_action_drop(action_flags,
attr, error);
if (ret < 0)
return ret;
action_flags |= MLX5_FLOW_ACTION_DROP;
++actions_n;
break;
case RTE_FLOW_ACTION_TYPE_QUEUE:
ret = mlx5_flow_validate_action_queue(actions,
action_flags, dev,
attr, error);
if (ret < 0)
return ret;
action_flags |= MLX5_FLOW_ACTION_QUEUE;
++actions_n;
break;
case RTE_FLOW_ACTION_TYPE_RSS:
ret = mlx5_flow_validate_action_rss(actions,
action_flags, dev,
attr, error);
if (ret < 0)
return ret;
action_flags |= MLX5_FLOW_ACTION_RSS;
++actions_n;
break;
case RTE_FLOW_ACTION_TYPE_COUNT:
ret = mlx5_flow_validate_action_count(dev, attr, error);
if (ret < 0)
return ret;
action_flags |= MLX5_FLOW_ACTION_COUNT;
++actions_n;
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
ret = flow_dv_validate_action_l2_encap(action_flags,
actions, attr,
error);
if (ret < 0)
return ret;
action_flags |= actions->type ==
RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP ?
MLX5_FLOW_ACTION_VXLAN_ENCAP :
MLX5_FLOW_ACTION_NVGRE_ENCAP;
++actions_n;
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
ret = flow_dv_validate_action_l2_decap(action_flags,
attr, error);
if (ret < 0)
return ret;
action_flags |= actions->type ==
RTE_FLOW_ACTION_TYPE_VXLAN_DECAP ?
MLX5_FLOW_ACTION_VXLAN_DECAP :
MLX5_FLOW_ACTION_NVGRE_DECAP;
++actions_n;
break;
case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
ret = flow_dv_validate_action_raw_encap(action_flags,
actions, attr,
error);
if (ret < 0)
return ret;
action_flags |= MLX5_FLOW_ACTION_RAW_ENCAP;
++actions_n;
break;
case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
ret = flow_dv_validate_action_raw_decap(action_flags,
actions, attr,
error);
if (ret < 0)
return ret;
action_flags |= MLX5_FLOW_ACTION_RAW_DECAP;
++actions_n;
break;
default:
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_ACTION,
actions,
"action not supported");
}
}
if (!(action_flags & MLX5_FLOW_FATE_ACTIONS) && attr->ingress)
return rte_flow_error_set(error, EINVAL,
RTE_FLOW_ERROR_TYPE_ACTION, actions,
"no fate action is found");
return 0;
}
/**
* Internal preparation function. Allocates the DV flow size,
* this size is constant.
*
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
* @param[in] actions
* Pointer to the list of actions.
* @param[out] error
* Pointer to the error structure.
*
* @return
* Pointer to mlx5_flow object on success,
* otherwise NULL and rte_ernno is set.
*/
static struct mlx5_flow *
flow_dv_prepare(const struct rte_flow_attr *attr __rte_unused,
const struct rte_flow_item items[] __rte_unused,
const struct rte_flow_action actions[] __rte_unused,
struct rte_flow_error *error)
{
uint32_t size = sizeof(struct mlx5_flow);
struct mlx5_flow *flow;
flow = rte_calloc(__func__, 1, size, 0);
if (!flow) {
rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"not enough memory to create flow");
return NULL;
}
flow->dv.value.size = MLX5_ST_SZ_DB(fte_match_param);
return flow;
}
#ifndef NDEBUG
/**
* Sanity check for match mask and value. Similar to check_valid_spec() in
* kernel driver. If unmasked bit is present in value, it returns failure.
*
* @param match_mask
* pointer to match mask buffer.
* @param match_value
* pointer to match value buffer.
*
* @return
* 0 if valid, -EINVAL otherwise.
*/
static int
flow_dv_check_valid_spec(void *match_mask, void *match_value)
{
uint8_t *m = match_mask;
uint8_t *v = match_value;
unsigned int i;
for (i = 0; i < MLX5_ST_SZ_DB(fte_match_param); ++i) {
if (v[i] & ~m[i]) {
DRV_LOG(ERR,
"match_value differs from match_criteria"
" %p[%u] != %p[%u]",
match_value, i, match_mask, i);
return -EINVAL;
}
}
return 0;
}
#endif
/**
* Add Ethernet item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_eth(void *matcher, void *key,
const struct rte_flow_item *item, int inner)
{
const struct rte_flow_item_eth *eth_m = item->mask;
const struct rte_flow_item_eth *eth_v = item->spec;
const struct rte_flow_item_eth nic_mask = {
.dst.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.src.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.type = RTE_BE16(0xffff),
};
void *headers_m;
void *headers_v;
char *l24_v;
unsigned int i;
if (!eth_v)
return;
if (!eth_m)
eth_m = &nic_mask;
if (inner) {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
inner_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, inner_headers);
} else {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
outer_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, outer_headers);
}
memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_m, dmac_47_16),
&eth_m->dst, sizeof(eth_m->dst));
/* The value must be in the range of the mask. */
l24_v = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_v, dmac_47_16);
for (i = 0; i < sizeof(eth_m->dst); ++i)
l24_v[i] = eth_m->dst.addr_bytes[i] & eth_v->dst.addr_bytes[i];
memcpy(MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_m, smac_47_16),
&eth_m->src, sizeof(eth_m->src));
l24_v = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_v, smac_47_16);
/* The value must be in the range of the mask. */
for (i = 0; i < sizeof(eth_m->dst); ++i)
l24_v[i] = eth_m->src.addr_bytes[i] & eth_v->src.addr_bytes[i];
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ethertype,
rte_be_to_cpu_16(eth_m->type));
l24_v = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_v, ethertype);
*(uint16_t *)(l24_v) = eth_m->type & eth_v->type;
}
/**
* Add VLAN item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_vlan(void *matcher, void *key,
const struct rte_flow_item *item,
int inner)
{
const struct rte_flow_item_vlan *vlan_m = item->mask;
const struct rte_flow_item_vlan *vlan_v = item->spec;
const struct rte_flow_item_vlan nic_mask = {
.tci = RTE_BE16(0x0fff),
.inner_type = RTE_BE16(0xffff),
};
void *headers_m;
void *headers_v;
uint16_t tci_m;
uint16_t tci_v;
if (!vlan_v)
return;
if (!vlan_m)
vlan_m = &nic_mask;
if (inner) {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
inner_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, inner_headers);
} else {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
outer_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, outer_headers);
}
tci_m = rte_be_to_cpu_16(vlan_m->tci);
tci_v = rte_be_to_cpu_16(vlan_m->tci & vlan_v->tci);
MLX5_SET(fte_match_set_lyr_2_4, headers_m, cvlan_tag, 1);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, cvlan_tag, 1);
MLX5_SET(fte_match_set_lyr_2_4, headers_m, first_vid, tci_m);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, first_vid, tci_v);
MLX5_SET(fte_match_set_lyr_2_4, headers_m, first_cfi, tci_m >> 12);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, first_cfi, tci_v >> 12);
MLX5_SET(fte_match_set_lyr_2_4, headers_m, first_prio, tci_m >> 13);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, first_prio, tci_v >> 13);
}
/**
* Add IPV4 item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_ipv4(void *matcher, void *key,
const struct rte_flow_item *item,
int inner)
{
const struct rte_flow_item_ipv4 *ipv4_m = item->mask;
const struct rte_flow_item_ipv4 *ipv4_v = item->spec;
const struct rte_flow_item_ipv4 nic_mask = {
.hdr = {
.src_addr = RTE_BE32(0xffffffff),
.dst_addr = RTE_BE32(0xffffffff),
.type_of_service = 0xff,
.next_proto_id = 0xff,
},
};
void *headers_m;
void *headers_v;
char *l24_m;
char *l24_v;
uint8_t tos;
if (inner) {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
inner_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, inner_headers);
} else {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
outer_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, outer_headers);
}
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_version, 0xf);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_version, 4);
if (!ipv4_v)
return;
if (!ipv4_m)
ipv4_m = &nic_mask;
l24_m = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_m,
dst_ipv4_dst_ipv6.ipv4_layout.ipv4);
l24_v = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_v,
dst_ipv4_dst_ipv6.ipv4_layout.ipv4);
*(uint32_t *)l24_m = ipv4_m->hdr.dst_addr;
*(uint32_t *)l24_v = ipv4_m->hdr.dst_addr & ipv4_v->hdr.dst_addr;
l24_m = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_m,
src_ipv4_src_ipv6.ipv4_layout.ipv4);
l24_v = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_v,
src_ipv4_src_ipv6.ipv4_layout.ipv4);
*(uint32_t *)l24_m = ipv4_m->hdr.src_addr;
*(uint32_t *)l24_v = ipv4_m->hdr.src_addr & ipv4_v->hdr.src_addr;
tos = ipv4_m->hdr.type_of_service & ipv4_v->hdr.type_of_service;
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_ecn,
ipv4_m->hdr.type_of_service);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_ecn, tos);
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_dscp,
ipv4_m->hdr.type_of_service >> 2);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_dscp, tos >> 2);
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_protocol,
ipv4_m->hdr.next_proto_id);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_protocol,
ipv4_v->hdr.next_proto_id & ipv4_m->hdr.next_proto_id);
}
/**
* Add IPV6 item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_ipv6(void *matcher, void *key,
const struct rte_flow_item *item,
int inner)
{
const struct rte_flow_item_ipv6 *ipv6_m = item->mask;
const struct rte_flow_item_ipv6 *ipv6_v = item->spec;
const struct rte_flow_item_ipv6 nic_mask = {
.hdr = {
.src_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.dst_addr =
"\xff\xff\xff\xff\xff\xff\xff\xff"
"\xff\xff\xff\xff\xff\xff\xff\xff",
.vtc_flow = RTE_BE32(0xffffffff),
.proto = 0xff,
.hop_limits = 0xff,
},
};
void *headers_m;
void *headers_v;
void *misc_m = MLX5_ADDR_OF(fte_match_param, matcher, misc_parameters);
void *misc_v = MLX5_ADDR_OF(fte_match_param, key, misc_parameters);
char *l24_m;
char *l24_v;
uint32_t vtc_m;
uint32_t vtc_v;
int i;
int size;
if (inner) {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
inner_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, inner_headers);
} else {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
outer_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, outer_headers);
}
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_version, 0xf);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_version, 6);
if (!ipv6_v)
return;
if (!ipv6_m)
ipv6_m = &nic_mask;
size = sizeof(ipv6_m->hdr.dst_addr);
l24_m = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_m,
dst_ipv4_dst_ipv6.ipv6_layout.ipv6);
l24_v = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_v,
dst_ipv4_dst_ipv6.ipv6_layout.ipv6);
memcpy(l24_m, ipv6_m->hdr.dst_addr, size);
for (i = 0; i < size; ++i)
l24_v[i] = l24_m[i] & ipv6_v->hdr.dst_addr[i];
l24_m = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_m,
src_ipv4_src_ipv6.ipv6_layout.ipv6);
l24_v = MLX5_ADDR_OF(fte_match_set_lyr_2_4, headers_v,
src_ipv4_src_ipv6.ipv6_layout.ipv6);
memcpy(l24_m, ipv6_m->hdr.src_addr, size);
for (i = 0; i < size; ++i)
l24_v[i] = l24_m[i] & ipv6_v->hdr.src_addr[i];
/* TOS. */
vtc_m = rte_be_to_cpu_32(ipv6_m->hdr.vtc_flow);
vtc_v = rte_be_to_cpu_32(ipv6_m->hdr.vtc_flow & ipv6_v->hdr.vtc_flow);
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_ecn, vtc_m >> 20);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_ecn, vtc_v >> 20);
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_dscp, vtc_m >> 22);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_dscp, vtc_v >> 22);
/* Label. */
if (inner) {
MLX5_SET(fte_match_set_misc, misc_m, inner_ipv6_flow_label,
vtc_m);
MLX5_SET(fte_match_set_misc, misc_v, inner_ipv6_flow_label,
vtc_v);
} else {
MLX5_SET(fte_match_set_misc, misc_m, outer_ipv6_flow_label,
vtc_m);
MLX5_SET(fte_match_set_misc, misc_v, outer_ipv6_flow_label,
vtc_v);
}
/* Protocol. */
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_protocol,
ipv6_m->hdr.proto);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_protocol,
ipv6_v->hdr.proto & ipv6_m->hdr.proto);
}
/**
* Add TCP item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_tcp(void *matcher, void *key,
const struct rte_flow_item *item,
int inner)
{
const struct rte_flow_item_tcp *tcp_m = item->mask;
const struct rte_flow_item_tcp *tcp_v = item->spec;
void *headers_m;
void *headers_v;
if (inner) {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
inner_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, inner_headers);
} else {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
outer_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, outer_headers);
}
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_protocol, 0xff);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_protocol, IPPROTO_TCP);
if (!tcp_v)
return;
if (!tcp_m)
tcp_m = &rte_flow_item_tcp_mask;
MLX5_SET(fte_match_set_lyr_2_4, headers_m, tcp_sport,
rte_be_to_cpu_16(tcp_m->hdr.src_port));
MLX5_SET(fte_match_set_lyr_2_4, headers_v, tcp_sport,
rte_be_to_cpu_16(tcp_v->hdr.src_port & tcp_m->hdr.src_port));
MLX5_SET(fte_match_set_lyr_2_4, headers_m, tcp_dport,
rte_be_to_cpu_16(tcp_m->hdr.dst_port));
MLX5_SET(fte_match_set_lyr_2_4, headers_v, tcp_dport,
rte_be_to_cpu_16(tcp_v->hdr.dst_port & tcp_m->hdr.dst_port));
}
/**
* Add UDP item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_udp(void *matcher, void *key,
const struct rte_flow_item *item,
int inner)
{
const struct rte_flow_item_udp *udp_m = item->mask;
const struct rte_flow_item_udp *udp_v = item->spec;
void *headers_m;
void *headers_v;
if (inner) {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
inner_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, inner_headers);
} else {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
outer_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, outer_headers);
}
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_protocol, 0xff);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_protocol, IPPROTO_UDP);
if (!udp_v)
return;
if (!udp_m)
udp_m = &rte_flow_item_udp_mask;
MLX5_SET(fte_match_set_lyr_2_4, headers_m, udp_sport,
rte_be_to_cpu_16(udp_m->hdr.src_port));
MLX5_SET(fte_match_set_lyr_2_4, headers_v, udp_sport,
rte_be_to_cpu_16(udp_v->hdr.src_port & udp_m->hdr.src_port));
MLX5_SET(fte_match_set_lyr_2_4, headers_m, udp_dport,
rte_be_to_cpu_16(udp_m->hdr.dst_port));
MLX5_SET(fte_match_set_lyr_2_4, headers_v, udp_dport,
rte_be_to_cpu_16(udp_v->hdr.dst_port & udp_m->hdr.dst_port));
}
/**
* Add GRE item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_gre(void *matcher, void *key,
const struct rte_flow_item *item,
int inner)
{
const struct rte_flow_item_gre *gre_m = item->mask;
const struct rte_flow_item_gre *gre_v = item->spec;
void *headers_m;
void *headers_v;
void *misc_m = MLX5_ADDR_OF(fte_match_param, matcher, misc_parameters);
void *misc_v = MLX5_ADDR_OF(fte_match_param, key, misc_parameters);
if (inner) {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
inner_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, inner_headers);
} else {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
outer_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, outer_headers);
}
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_protocol, 0xff);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_protocol, IPPROTO_GRE);
if (!gre_v)
return;
if (!gre_m)
gre_m = &rte_flow_item_gre_mask;
MLX5_SET(fte_match_set_misc, misc_m, gre_protocol,
rte_be_to_cpu_16(gre_m->protocol));
MLX5_SET(fte_match_set_misc, misc_v, gre_protocol,
rte_be_to_cpu_16(gre_v->protocol & gre_m->protocol));
}
/**
* Add NVGRE item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_nvgre(void *matcher, void *key,
const struct rte_flow_item *item,
int inner)
{
const struct rte_flow_item_nvgre *nvgre_m = item->mask;
const struct rte_flow_item_nvgre *nvgre_v = item->spec;
void *misc_m = MLX5_ADDR_OF(fte_match_param, matcher, misc_parameters);
void *misc_v = MLX5_ADDR_OF(fte_match_param, key, misc_parameters);
const char *tni_flow_id_m = (const char *)nvgre_m->tni;
const char *tni_flow_id_v = (const char *)nvgre_v->tni;
char *gre_key_m;
char *gre_key_v;
int size;
int i;
flow_dv_translate_item_gre(matcher, key, item, inner);
if (!nvgre_v)
return;
if (!nvgre_m)
nvgre_m = &rte_flow_item_nvgre_mask;
size = sizeof(nvgre_m->tni) + sizeof(nvgre_m->flow_id);
gre_key_m = MLX5_ADDR_OF(fte_match_set_misc, misc_m, gre_key_h);
gre_key_v = MLX5_ADDR_OF(fte_match_set_misc, misc_v, gre_key_h);
memcpy(gre_key_m, tni_flow_id_m, size);
for (i = 0; i < size; ++i)
gre_key_v[i] = gre_key_m[i] & tni_flow_id_v[i];
}
/**
* Add VXLAN item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_vxlan(void *matcher, void *key,
const struct rte_flow_item *item,
int inner)
{
const struct rte_flow_item_vxlan *vxlan_m = item->mask;
const struct rte_flow_item_vxlan *vxlan_v = item->spec;
void *headers_m;
void *headers_v;
void *misc_m = MLX5_ADDR_OF(fte_match_param, matcher, misc_parameters);
void *misc_v = MLX5_ADDR_OF(fte_match_param, key, misc_parameters);
char *vni_m;
char *vni_v;
uint16_t dport;
int size;
int i;
if (inner) {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
inner_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, inner_headers);
} else {
headers_m = MLX5_ADDR_OF(fte_match_param, matcher,
outer_headers);
headers_v = MLX5_ADDR_OF(fte_match_param, key, outer_headers);
}
dport = item->type == RTE_FLOW_ITEM_TYPE_VXLAN ?
MLX5_UDP_PORT_VXLAN : MLX5_UDP_PORT_VXLAN_GPE;
if (!MLX5_GET16(fte_match_set_lyr_2_4, headers_v, udp_dport)) {
MLX5_SET(fte_match_set_lyr_2_4, headers_m, udp_dport, 0xFFFF);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, udp_dport, dport);
}
if (!vxlan_v)
return;
if (!vxlan_m)
vxlan_m = &rte_flow_item_vxlan_mask;
size = sizeof(vxlan_m->vni);
vni_m = MLX5_ADDR_OF(fte_match_set_misc, misc_m, vxlan_vni);
vni_v = MLX5_ADDR_OF(fte_match_set_misc, misc_v, vxlan_vni);
memcpy(vni_m, vxlan_m->vni, size);
for (i = 0; i < size; ++i)
vni_v[i] = vni_m[i] & vxlan_v->vni[i];
}
/**
* Add MPLS item to matcher and to the value.
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] prev_layer
* The protocol layer indicated in previous item.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_mpls(void *matcher, void *key,
const struct rte_flow_item *item,
uint64_t prev_layer,
int inner)
{
const uint32_t *in_mpls_m = item->mask;
const uint32_t *in_mpls_v = item->spec;
uint32_t *out_mpls_m = 0;
uint32_t *out_mpls_v = 0;
void *misc_m = MLX5_ADDR_OF(fte_match_param, matcher, misc_parameters);
void *misc_v = MLX5_ADDR_OF(fte_match_param, key, misc_parameters);
void *misc2_m = MLX5_ADDR_OF(fte_match_param, matcher,
misc_parameters_2);
void *misc2_v = MLX5_ADDR_OF(fte_match_param, key, misc_parameters_2);
void *headers_m = MLX5_ADDR_OF(fte_match_param, matcher, outer_headers);
void *headers_v = MLX5_ADDR_OF(fte_match_param, key, outer_headers);
switch (prev_layer) {
case MLX5_FLOW_LAYER_OUTER_L4_UDP:
MLX5_SET(fte_match_set_lyr_2_4, headers_m, udp_dport, 0xffff);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, udp_dport,
MLX5_UDP_PORT_MPLS);
break;
case MLX5_FLOW_LAYER_GRE:
MLX5_SET(fte_match_set_misc, misc_m, gre_protocol, 0xffff);
MLX5_SET(fte_match_set_misc, misc_v, gre_protocol,
ETHER_TYPE_MPLS);
break;
default:
MLX5_SET(fte_match_set_lyr_2_4, headers_m, ip_protocol, 0xff);
MLX5_SET(fte_match_set_lyr_2_4, headers_v, ip_protocol,
IPPROTO_MPLS);
break;
}
if (!in_mpls_v)
return;
if (!in_mpls_m)
in_mpls_m = (const uint32_t *)&rte_flow_item_mpls_mask;
switch (prev_layer) {
case MLX5_FLOW_LAYER_OUTER_L4_UDP:
out_mpls_m =
(uint32_t *)MLX5_ADDR_OF(fte_match_set_misc2, misc2_m,
outer_first_mpls_over_udp);
out_mpls_v =
(uint32_t *)MLX5_ADDR_OF(fte_match_set_misc2, misc2_v,
outer_first_mpls_over_udp);
break;
case MLX5_FLOW_LAYER_GRE:
out_mpls_m =
(uint32_t *)MLX5_ADDR_OF(fte_match_set_misc2, misc2_m,
outer_first_mpls_over_gre);
out_mpls_v =
(uint32_t *)MLX5_ADDR_OF(fte_match_set_misc2, misc2_v,
outer_first_mpls_over_gre);
break;
default:
/* Inner MPLS not over GRE is not supported. */
if (!inner) {
out_mpls_m =
(uint32_t *)MLX5_ADDR_OF(fte_match_set_misc2,
misc2_m,
outer_first_mpls);
out_mpls_v =
(uint32_t *)MLX5_ADDR_OF(fte_match_set_misc2,
misc2_v,
outer_first_mpls);
}
break;
}
if (out_mpls_m && out_mpls_v) {
*out_mpls_m = *in_mpls_m;
*out_mpls_v = *in_mpls_v & *in_mpls_m;
}
}
/**
* Add META item to matcher
*
* @param[in, out] matcher
* Flow matcher.
* @param[in, out] key
* Flow matcher value.
* @param[in] item
* Flow pattern to translate.
* @param[in] inner
* Item is inner pattern.
*/
static void
flow_dv_translate_item_meta(void *matcher, void *key,
const struct rte_flow_item *item)
{
const struct rte_flow_item_meta *meta_m;
const struct rte_flow_item_meta *meta_v;
void *misc2_m =
MLX5_ADDR_OF(fte_match_param, matcher, misc_parameters_2);
void *misc2_v =
MLX5_ADDR_OF(fte_match_param, key, misc_parameters_2);
meta_m = (const void *)item->mask;
if (!meta_m)
meta_m = &rte_flow_item_meta_mask;
meta_v = (const void *)item->spec;
if (meta_v) {
MLX5_SET(fte_match_set_misc2, misc2_m, metadata_reg_a,
rte_be_to_cpu_32(meta_m->data));
MLX5_SET(fte_match_set_misc2, misc2_v, metadata_reg_a,
rte_be_to_cpu_32(meta_v->data & meta_m->data));
}
}
static uint32_t matcher_zero[MLX5_ST_SZ_DW(fte_match_param)] = { 0 };
#define HEADER_IS_ZERO(match_criteria, headers) \
!(memcmp(MLX5_ADDR_OF(fte_match_param, match_criteria, headers), \
matcher_zero, MLX5_FLD_SZ_BYTES(fte_match_param, headers))) \
/**
* Calculate flow matcher enable bitmap.
*
* @param match_criteria
* Pointer to flow matcher criteria.
*
* @return
* Bitmap of enabled fields.
*/
static uint8_t
flow_dv_matcher_enable(uint32_t *match_criteria)
{
uint8_t match_criteria_enable;
match_criteria_enable =
(!HEADER_IS_ZERO(match_criteria, outer_headers)) <<
MLX5_MATCH_CRITERIA_ENABLE_OUTER_BIT;
match_criteria_enable |=
(!HEADER_IS_ZERO(match_criteria, misc_parameters)) <<
MLX5_MATCH_CRITERIA_ENABLE_MISC_BIT;
match_criteria_enable |=
(!HEADER_IS_ZERO(match_criteria, inner_headers)) <<
MLX5_MATCH_CRITERIA_ENABLE_INNER_BIT;
match_criteria_enable |=
(!HEADER_IS_ZERO(match_criteria, misc_parameters_2)) <<
MLX5_MATCH_CRITERIA_ENABLE_MISC2_BIT;
return match_criteria_enable;
}
/**
* Register the flow matcher.
*
* @param dev[in, out]
* Pointer to rte_eth_dev structure.
* @param[in, out] matcher
* Pointer to flow matcher.
* @parm[in, out] dev_flow
* Pointer to the dev_flow.
* @param[out] error
* pointer to error structure.
*
* @return
* 0 on success otherwise -errno and errno is set.
*/
static int
flow_dv_matcher_register(struct rte_eth_dev *dev,
struct mlx5_flow_dv_matcher *matcher,
struct mlx5_flow *dev_flow,
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
struct mlx5_flow_dv_matcher *cache_matcher;
struct mlx5dv_flow_matcher_attr dv_attr = {
.type = IBV_FLOW_ATTR_NORMAL,
.match_mask = (void *)&matcher->mask,
};
/* Lookup from cache. */
LIST_FOREACH(cache_matcher, &priv->matchers, next) {
if (matcher->crc == cache_matcher->crc &&
matcher->priority == cache_matcher->priority &&
matcher->egress == cache_matcher->egress &&
!memcmp((const void *)matcher->mask.buf,
(const void *)cache_matcher->mask.buf,
cache_matcher->mask.size)) {
DRV_LOG(DEBUG,
"priority %hd use %s matcher %p: refcnt %d++",
cache_matcher->priority,
cache_matcher->egress ? "tx" : "rx",
(void *)cache_matcher,
rte_atomic32_read(&cache_matcher->refcnt));
rte_atomic32_inc(&cache_matcher->refcnt);
dev_flow->dv.matcher = cache_matcher;
return 0;
}
}
/* Register new matcher. */
cache_matcher = rte_calloc(__func__, 1, sizeof(*cache_matcher), 0);
if (!cache_matcher)
return rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"cannot allocate matcher memory");
*cache_matcher = *matcher;
dv_attr.match_criteria_enable =
flow_dv_matcher_enable(cache_matcher->mask.buf);
dv_attr.priority = matcher->priority;
if (matcher->egress)
dv_attr.flags |= IBV_FLOW_ATTR_FLAGS_EGRESS;
cache_matcher->matcher_object =
mlx5_glue->dv_create_flow_matcher(priv->ctx, &dv_attr);
if (!cache_matcher->matcher_object) {
rte_free(cache_matcher);
return rte_flow_error_set(error, ENOMEM,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL, "cannot create matcher");
}
rte_atomic32_inc(&cache_matcher->refcnt);
LIST_INSERT_HEAD(&priv->matchers, cache_matcher, next);
dev_flow->dv.matcher = cache_matcher;
DRV_LOG(DEBUG, "priority %hd new %s matcher %p: refcnt %d",
cache_matcher->priority,
cache_matcher->egress ? "tx" : "rx", (void *)cache_matcher,
rte_atomic32_read(&cache_matcher->refcnt));
return 0;
}
/**
* Fill the flow with DV spec.
*
* @param[in] dev
* Pointer to rte_eth_dev structure.
* @param[in, out] dev_flow
* Pointer to the sub flow.
* @param[in] attr
* Pointer to the flow attributes.
* @param[in] items
* Pointer to the list of items.
* @param[in] actions
* Pointer to the list of actions.
* @param[out] error
* Pointer to the error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_ernno is set.
*/
static int
flow_dv_translate(struct rte_eth_dev *dev,
struct mlx5_flow *dev_flow,
const struct rte_flow_attr *attr,
const struct rte_flow_item items[],
const struct rte_flow_action actions[],
struct rte_flow_error *error)
{
struct priv *priv = dev->data->dev_private;
struct rte_flow *flow = dev_flow->flow;
uint64_t item_flags = 0;
uint64_t last_item = 0;
uint64_t action_flags = 0;
uint64_t priority = attr->priority;
struct mlx5_flow_dv_matcher matcher = {
.mask = {
.size = sizeof(matcher.mask.buf),
},
};
int actions_n = 0;
if (priority == MLX5_FLOW_PRIO_RSVD)
priority = priv->config.flow_prio - 1;
for (; actions->type != RTE_FLOW_ACTION_TYPE_END; actions++) {
const struct rte_flow_action_queue *queue;
const struct rte_flow_action_rss *rss;
const struct rte_flow_action *action = actions;
const uint8_t *rss_key;
switch (actions->type) {
case RTE_FLOW_ACTION_TYPE_VOID:
break;
case RTE_FLOW_ACTION_TYPE_FLAG:
dev_flow->dv.actions[actions_n].type =
MLX5DV_FLOW_ACTION_TAG;
dev_flow->dv.actions[actions_n].tag_value =
mlx5_flow_mark_set(MLX5_FLOW_MARK_DEFAULT);
actions_n++;
action_flags |= MLX5_FLOW_ACTION_FLAG;
break;
case RTE_FLOW_ACTION_TYPE_MARK:
dev_flow->dv.actions[actions_n].type =
MLX5DV_FLOW_ACTION_TAG;
dev_flow->dv.actions[actions_n].tag_value =
mlx5_flow_mark_set
(((const struct rte_flow_action_mark *)
(actions->conf))->id);
actions_n++;
action_flags |= MLX5_FLOW_ACTION_MARK;
break;
case RTE_FLOW_ACTION_TYPE_DROP:
dev_flow->dv.actions[actions_n].type =
MLX5DV_FLOW_ACTION_DROP;
action_flags |= MLX5_FLOW_ACTION_DROP;
break;
case RTE_FLOW_ACTION_TYPE_QUEUE:
queue = actions->conf;
flow->rss.queue_num = 1;
(*flow->queue)[0] = queue->index;
action_flags |= MLX5_FLOW_ACTION_QUEUE;
break;
case RTE_FLOW_ACTION_TYPE_RSS:
rss = actions->conf;
if (flow->queue)
memcpy((*flow->queue), rss->queue,
rss->queue_num * sizeof(uint16_t));
flow->rss.queue_num = rss->queue_num;
/* NULL RSS key indicates default RSS key. */
rss_key = !rss->key ? rss_hash_default_key : rss->key;
memcpy(flow->key, rss_key, MLX5_RSS_HASH_KEY_LEN);
/* RSS type 0 indicates default RSS type ETH_RSS_IP. */
flow->rss.types = !rss->types ? ETH_RSS_IP : rss->types;
flow->rss.level = rss->level;
action_flags |= MLX5_FLOW_ACTION_RSS;
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
if (flow_dv_create_action_l2_encap(dev, actions,
dev_flow, error))
return -rte_errno;
dev_flow->dv.actions[actions_n].type =
MLX5DV_FLOW_ACTION_IBV_FLOW_ACTION;
dev_flow->dv.actions[actions_n].action =
dev_flow->dv.encap_decap->verbs_action;
actions_n++;
action_flags |= actions->type ==
RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP ?
MLX5_FLOW_ACTION_VXLAN_ENCAP :
MLX5_FLOW_ACTION_NVGRE_ENCAP;
break;
case RTE_FLOW_ACTION_TYPE_VXLAN_DECAP:
case RTE_FLOW_ACTION_TYPE_NVGRE_DECAP:
if (flow_dv_create_action_l2_decap(dev, dev_flow,
error))
return -rte_errno;
dev_flow->dv.actions[actions_n].type =
MLX5DV_FLOW_ACTION_IBV_FLOW_ACTION;
dev_flow->dv.actions[actions_n].action =
dev_flow->dv.encap_decap->verbs_action;
actions_n++;
action_flags |= actions->type ==
RTE_FLOW_ACTION_TYPE_VXLAN_DECAP ?
MLX5_FLOW_ACTION_VXLAN_DECAP :
MLX5_FLOW_ACTION_NVGRE_DECAP;
break;
case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
/* Handle encap with preceding decap. */
if (action_flags & MLX5_FLOW_ACTION_RAW_DECAP) {
if (flow_dv_create_action_raw_encap
(dev, actions, dev_flow, attr, error))
return -rte_errno;
dev_flow->dv.actions[actions_n].type =
MLX5DV_FLOW_ACTION_IBV_FLOW_ACTION;
dev_flow->dv.actions[actions_n].action =
dev_flow->dv.encap_decap->verbs_action;
} else {
/* Handle encap without preceding decap. */
if (flow_dv_create_action_l2_encap(dev, actions,
dev_flow,
error))
return -rte_errno;
dev_flow->dv.actions[actions_n].type =
MLX5DV_FLOW_ACTION_IBV_FLOW_ACTION;
dev_flow->dv.actions[actions_n].action =
dev_flow->dv.encap_decap->verbs_action;
}
actions_n++;
action_flags |= MLX5_FLOW_ACTION_RAW_ENCAP;
break;
case RTE_FLOW_ACTION_TYPE_RAW_DECAP:
/* Check if this decap is followed by encap. */
for (; action->type != RTE_FLOW_ACTION_TYPE_END &&
action->type != RTE_FLOW_ACTION_TYPE_RAW_ENCAP;
action++) {
}
/* Handle decap only if it isn't followed by encap. */
if (action->type != RTE_FLOW_ACTION_TYPE_RAW_ENCAP) {
if (flow_dv_create_action_l2_decap(dev,
dev_flow,
error))
return -rte_errno;
dev_flow->dv.actions[actions_n].type =
MLX5DV_FLOW_ACTION_IBV_FLOW_ACTION;
dev_flow->dv.actions[actions_n].action =
dev_flow->dv.encap_decap->verbs_action;
actions_n++;
}
/* If decap is followed by encap, handle it at encap. */
action_flags |= MLX5_FLOW_ACTION_RAW_DECAP;
break;
default:
break;
}
}
dev_flow->dv.actions_n = actions_n;
flow->actions = action_flags;
for (; items->type != RTE_FLOW_ITEM_TYPE_END; items++) {
int tunnel = !!(item_flags & MLX5_FLOW_LAYER_TUNNEL);
void *match_mask = matcher.mask.buf;
void *match_value = dev_flow->dv.value.buf;
switch (items->type) {
case RTE_FLOW_ITEM_TYPE_ETH:
flow_dv_translate_item_eth(match_mask, match_value,
items, tunnel);
matcher.priority = MLX5_PRIORITY_MAP_L2;
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L2 :
MLX5_FLOW_LAYER_OUTER_L2;
break;
case RTE_FLOW_ITEM_TYPE_VLAN:
flow_dv_translate_item_vlan(match_mask, match_value,
items, tunnel);
matcher.priority = MLX5_PRIORITY_MAP_L2;
last_item = tunnel ? (MLX5_FLOW_LAYER_INNER_L2 |
MLX5_FLOW_LAYER_INNER_VLAN) :
(MLX5_FLOW_LAYER_OUTER_L2 |
MLX5_FLOW_LAYER_OUTER_VLAN);
break;
case RTE_FLOW_ITEM_TYPE_IPV4:
flow_dv_translate_item_ipv4(match_mask, match_value,
items, tunnel);
matcher.priority = MLX5_PRIORITY_MAP_L3;
dev_flow->dv.hash_fields |=
mlx5_flow_hashfields_adjust
(dev_flow, tunnel,
MLX5_IPV4_LAYER_TYPES,
MLX5_IPV4_IBV_RX_HASH);
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV4 :
MLX5_FLOW_LAYER_OUTER_L3_IPV4;
break;
case RTE_FLOW_ITEM_TYPE_IPV6:
flow_dv_translate_item_ipv6(match_mask, match_value,
items, tunnel);
matcher.priority = MLX5_PRIORITY_MAP_L3;
dev_flow->dv.hash_fields |=
mlx5_flow_hashfields_adjust
(dev_flow, tunnel,
MLX5_IPV6_LAYER_TYPES,
MLX5_IPV6_IBV_RX_HASH);
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L3_IPV6 :
MLX5_FLOW_LAYER_OUTER_L3_IPV6;
break;
case RTE_FLOW_ITEM_TYPE_TCP:
flow_dv_translate_item_tcp(match_mask, match_value,
items, tunnel);
matcher.priority = MLX5_PRIORITY_MAP_L4;
dev_flow->dv.hash_fields |=
mlx5_flow_hashfields_adjust
(dev_flow, tunnel, ETH_RSS_TCP,
IBV_RX_HASH_SRC_PORT_TCP |
IBV_RX_HASH_DST_PORT_TCP);
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L4_TCP :
MLX5_FLOW_LAYER_OUTER_L4_TCP;
break;
case RTE_FLOW_ITEM_TYPE_UDP:
flow_dv_translate_item_udp(match_mask, match_value,
items, tunnel);
matcher.priority = MLX5_PRIORITY_MAP_L4;
dev_flow->dv.hash_fields |=
mlx5_flow_hashfields_adjust
(dev_flow, tunnel, ETH_RSS_UDP,
IBV_RX_HASH_SRC_PORT_UDP |
IBV_RX_HASH_DST_PORT_UDP);
last_item = tunnel ? MLX5_FLOW_LAYER_INNER_L4_UDP :
MLX5_FLOW_LAYER_OUTER_L4_UDP;
break;
case RTE_FLOW_ITEM_TYPE_GRE:
flow_dv_translate_item_gre(match_mask, match_value,
items, tunnel);
last_item = MLX5_FLOW_LAYER_GRE;
break;
case RTE_FLOW_ITEM_TYPE_NVGRE:
flow_dv_translate_item_nvgre(match_mask, match_value,
items, tunnel);
last_item = MLX5_FLOW_LAYER_GRE;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN:
flow_dv_translate_item_vxlan(match_mask, match_value,
items, tunnel);
last_item = MLX5_FLOW_LAYER_VXLAN;
break;
case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
flow_dv_translate_item_vxlan(match_mask, match_value,
items, tunnel);
last_item = MLX5_FLOW_LAYER_VXLAN_GPE;
break;
case RTE_FLOW_ITEM_TYPE_MPLS:
flow_dv_translate_item_mpls(match_mask, match_value,
items, last_item, tunnel);
last_item = MLX5_FLOW_LAYER_MPLS;
break;
case RTE_FLOW_ITEM_TYPE_META:
flow_dv_translate_item_meta(match_mask, match_value,
items);
last_item = MLX5_FLOW_ITEM_METADATA;
break;
default:
break;
}
item_flags |= last_item;
}
assert(!flow_dv_check_valid_spec(matcher.mask.buf,
dev_flow->dv.value.buf));
dev_flow->layers = item_flags;
/* Register matcher. */
matcher.crc = rte_raw_cksum((const void *)matcher.mask.buf,
matcher.mask.size);
matcher.priority = mlx5_flow_adjust_priority(dev, priority,
matcher.priority);
matcher.egress = attr->egress;
if (flow_dv_matcher_register(dev, &matcher, dev_flow, error))
return -rte_errno;
return 0;
}
/**
* Apply the flow to the NIC.
*
* @param[in] dev
* Pointer to the Ethernet device structure.
* @param[in, out] flow
* Pointer to flow structure.
* @param[out] error
* Pointer to error structure.
*
* @return
* 0 on success, a negative errno value otherwise and rte_errno is set.
*/
static int
flow_dv_apply(struct rte_eth_dev *dev, struct rte_flow *flow,
struct rte_flow_error *error)
{
struct mlx5_flow_dv *dv;
struct mlx5_flow *dev_flow;
int n;
int err;
LIST_FOREACH(dev_flow, &flow->dev_flows, next) {
dv = &dev_flow->dv;
n = dv->actions_n;
if (flow->actions & MLX5_FLOW_ACTION_DROP) {
dv->hrxq = mlx5_hrxq_drop_new(dev);
if (!dv->hrxq) {
rte_flow_error_set
(error, errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"cannot get drop hash queue");
goto error;
}
dv->actions[n].type = MLX5DV_FLOW_ACTION_DEST_IBV_QP;
dv->actions[n].qp = dv->hrxq->qp;
n++;
} else if (flow->actions &
(MLX5_FLOW_ACTION_QUEUE | MLX5_FLOW_ACTION_RSS)) {
struct mlx5_hrxq *hrxq;
hrxq = mlx5_hrxq_get(dev, flow->key,
MLX5_RSS_HASH_KEY_LEN,
dv->hash_fields,
(*flow->queue),
flow->rss.queue_num);
if (!hrxq)
hrxq = mlx5_hrxq_new
(dev, flow->key, MLX5_RSS_HASH_KEY_LEN,
dv->hash_fields, (*flow->queue),
flow->rss.queue_num,
!!(dev_flow->layers &
MLX5_FLOW_LAYER_TUNNEL));
if (!hrxq) {
rte_flow_error_set
(error, rte_errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED, NULL,
"cannot get hash queue");
goto error;
}
dv->hrxq = hrxq;
dv->actions[n].type = MLX5DV_FLOW_ACTION_DEST_IBV_QP;
dv->actions[n].qp = hrxq->qp;
n++;
}
dv->flow =
mlx5_glue->dv_create_flow(dv->matcher->matcher_object,
(void *)&dv->value, n,
dv->actions);
if (!dv->flow) {
rte_flow_error_set(error, errno,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"hardware refuses to create flow");
goto error;
}
}
return 0;
error:
err = rte_errno; /* Save rte_errno before cleanup. */
LIST_FOREACH(dev_flow, &flow->dev_flows, next) {
struct mlx5_flow_dv *dv = &dev_flow->dv;
if (dv->hrxq) {
if (flow->actions & MLX5_FLOW_ACTION_DROP)
mlx5_hrxq_drop_release(dev);
else
mlx5_hrxq_release(dev, dv->hrxq);
dv->hrxq = NULL;
}
}
rte_errno = err; /* Restore rte_errno. */
return -rte_errno;
}
/**
* Release the flow matcher.
*
* @param dev
* Pointer to Ethernet device.
* @param flow
* Pointer to mlx5_flow.
*
* @return
* 1 while a reference on it exists, 0 when freed.
*/
static int
flow_dv_matcher_release(struct rte_eth_dev *dev,
struct mlx5_flow *flow)
{
struct mlx5_flow_dv_matcher *matcher = flow->dv.matcher;
assert(matcher->matcher_object);
DRV_LOG(DEBUG, "port %u matcher %p: refcnt %d--",
dev->data->port_id, (void *)matcher,
rte_atomic32_read(&matcher->refcnt));
if (rte_atomic32_dec_and_test(&matcher->refcnt)) {
claim_zero(mlx5_glue->dv_destroy_flow_matcher
(matcher->matcher_object));
LIST_REMOVE(matcher, next);
rte_free(matcher);
DRV_LOG(DEBUG, "port %u matcher %p: removed",
dev->data->port_id, (void *)matcher);
return 0;
}
return 1;
}
/**
* Release an encap/decap resource.
*
* @param flow
* Pointer to mlx5_flow.
*
* @return
* 1 while a reference on it exists, 0 when freed.
*/
static int
flow_dv_encap_decap_resource_release(struct mlx5_flow *flow)
{
struct mlx5_flow_dv_encap_decap_resource *cache_resource =
flow->dv.encap_decap;
assert(cache_resource->verbs_action);
DRV_LOG(DEBUG, "encap/decap resource %p: refcnt %d--",
(void *)cache_resource,
rte_atomic32_read(&cache_resource->refcnt));
if (rte_atomic32_dec_and_test(&cache_resource->refcnt)) {
claim_zero(mlx5_glue->destroy_flow_action
(cache_resource->verbs_action));
LIST_REMOVE(cache_resource, next);
rte_free(cache_resource);
DRV_LOG(DEBUG, "encap/decap resource %p: removed",
(void *)cache_resource);
return 0;
}
return 1;
}
/**
* Remove the flow from the NIC but keeps it in memory.
*
* @param[in] dev
* Pointer to Ethernet device.
* @param[in, out] flow
* Pointer to flow structure.
*/
static void
flow_dv_remove(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct mlx5_flow_dv *dv;
struct mlx5_flow *dev_flow;
if (!flow)
return;
LIST_FOREACH(dev_flow, &flow->dev_flows, next) {
dv = &dev_flow->dv;
if (dv->flow) {
claim_zero(mlx5_glue->destroy_flow(dv->flow));
dv->flow = NULL;
}
if (dv->hrxq) {
if (flow->actions & MLX5_FLOW_ACTION_DROP)
mlx5_hrxq_drop_release(dev);
else
mlx5_hrxq_release(dev, dv->hrxq);
dv->hrxq = NULL;
}
}
if (flow->counter)
flow->counter = NULL;
}
/**
* Remove the flow from the NIC and the memory.
*
* @param[in] dev
* Pointer to the Ethernet device structure.
* @param[in, out] flow
* Pointer to flow structure.
*/
static void
flow_dv_destroy(struct rte_eth_dev *dev, struct rte_flow *flow)
{
struct mlx5_flow *dev_flow;
if (!flow)
return;
flow_dv_remove(dev, flow);
while (!LIST_EMPTY(&flow->dev_flows)) {
dev_flow = LIST_FIRST(&flow->dev_flows);
LIST_REMOVE(dev_flow, next);
if (dev_flow->dv.matcher)
flow_dv_matcher_release(dev, dev_flow);
if (dev_flow->dv.encap_decap)
flow_dv_encap_decap_resource_release(dev_flow);
rte_free(dev_flow);
}
}
/**
* Query a flow.
*
* @see rte_flow_query()
* @see rte_flow_ops
*/
static int
flow_dv_query(struct rte_eth_dev *dev __rte_unused,
struct rte_flow *flow __rte_unused,
const struct rte_flow_action *actions __rte_unused,
void *data __rte_unused,
struct rte_flow_error *error __rte_unused)
{
return rte_flow_error_set(error, ENOTSUP,
RTE_FLOW_ERROR_TYPE_UNSPECIFIED,
NULL,
"flow query with DV is not supported");
}
const struct mlx5_flow_driver_ops mlx5_flow_dv_drv_ops = {
.validate = flow_dv_validate,
.prepare = flow_dv_prepare,
.translate = flow_dv_translate,
.apply = flow_dv_apply,
.remove = flow_dv_remove,
.destroy = flow_dv_destroy,
.query = flow_dv_query,
};
#endif /* HAVE_IBV_FLOW_DV_SUPPORT */