numam-dpdk/app/test/test_bpf.c
Tyler Retzlaff 55ae8965bf test/bpf: skip test if libpcap is unavailable
test_bpf_convert is being conditionally registered depending on the
presence of RTE_HAS_LIBPCAP except the UT unconditionally lists it as a
test to run.

When the UT runs test_bpf_convert test-dpdk can't find the registration
and assumes the DPDK_TEST environment variable hasn't been defined
resulting in test-dpdk dropping to interactive mode and subsequently
waiting for the remainder of the UT fast-test timeout period before
reporting the test as having timed out.

* unconditionally register test_bpf_convert,
* if ! RTE_HAS_LIBPCAP provide a stub test_bpf_convert that reports the
  test is skipped similar to that done with the test_bpf test.

Fixes: 2eccf6afbe ("bpf: add function to convert classic BPF to DPDK BPF")
Cc: stable@dpdk.org

Signed-off-by: Tyler Retzlaff <roretzla@linux.microsoft.com>
Acked-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Konstantin Ananyev <konstantin.ananyev@intel.com>
2022-04-26 09:31:52 +02:00

3477 lines
71 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2018 Intel Corporation
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <rte_memory.h>
#include <rte_debug.h>
#include <rte_hexdump.h>
#include <rte_malloc.h>
#include <rte_random.h>
#include <rte_byteorder.h>
#include <rte_errno.h>
#include "test.h"
#if !defined(RTE_LIB_BPF)
static int
test_bpf(void)
{
printf("BPF not supported, skipping test\n");
return TEST_SKIPPED;
}
#else
#include <rte_bpf.h>
#include <rte_ether.h>
#include <rte_ip.h>
/*
* Basic functional tests for librte_bpf.
* The main procedure - load eBPF program, execute it and
* compare results with expected values.
*/
struct dummy_offset {
uint64_t u64;
uint32_t u32;
uint16_t u16;
uint8_t u8;
};
struct dummy_vect8 {
struct dummy_offset in[8];
struct dummy_offset out[8];
};
struct dummy_net {
struct rte_ether_hdr eth_hdr;
struct rte_vlan_hdr vlan_hdr;
struct rte_ipv4_hdr ip_hdr;
};
#define DUMMY_MBUF_NUM 2
/* first mbuf in the packet, should always be at offset 0 */
struct dummy_mbuf {
struct rte_mbuf mb[DUMMY_MBUF_NUM];
uint8_t buf[DUMMY_MBUF_NUM][RTE_MBUF_DEFAULT_BUF_SIZE];
};
#define TEST_FILL_1 0xDEADBEEF
#define TEST_MUL_1 21
#define TEST_MUL_2 -100
#define TEST_SHIFT_1 15
#define TEST_SHIFT_2 33
#define TEST_SHIFT32_MASK (CHAR_BIT * sizeof(uint32_t) - 1)
#define TEST_SHIFT64_MASK (CHAR_BIT * sizeof(uint64_t) - 1)
#define TEST_JCC_1 0
#define TEST_JCC_2 -123
#define TEST_JCC_3 5678
#define TEST_JCC_4 TEST_FILL_1
#define TEST_IMM_1 UINT64_MAX
#define TEST_IMM_2 ((uint64_t)INT64_MIN)
#define TEST_IMM_3 ((uint64_t)INT64_MAX + INT32_MAX)
#define TEST_IMM_4 ((uint64_t)UINT32_MAX)
#define TEST_IMM_5 ((uint64_t)UINT32_MAX + 1)
#define TEST_MEMFROB 0x2a2a2a2a
#define STRING_GEEK 0x6B656567
#define STRING_WEEK 0x6B656577
#define TEST_NETMASK 0xffffff00
#define TEST_SUBNET 0xaca80200
uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF };
uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA };
uint32_t ip_src_addr = (172U << 24) | (168U << 16) | (2 << 8) | 1;
uint32_t ip_dst_addr = (172U << 24) | (168U << 16) | (2 << 8) | 2;
struct bpf_test {
const char *name;
size_t arg_sz;
struct rte_bpf_prm prm;
void (*prepare)(void *);
int (*check_result)(uint64_t, const void *);
uint32_t allow_fail;
};
/*
* Compare return value and result data with expected ones.
* Report a failure if they don't match.
*/
static int
cmp_res(const char *func, uint64_t exp_rc, uint64_t ret_rc,
const void *exp_res, const void *ret_res, size_t res_sz)
{
int32_t ret;
ret = 0;
if (exp_rc != ret_rc) {
printf("%s@%d: invalid return value, expected: 0x%" PRIx64
",result: 0x%" PRIx64 "\n",
func, __LINE__, exp_rc, ret_rc);
ret |= -1;
}
if (memcmp(exp_res, ret_res, res_sz) != 0) {
printf("%s: invalid value\n", func);
rte_memdump(stdout, "expected", exp_res, res_sz);
rte_memdump(stdout, "result", ret_res, res_sz);
ret |= -1;
}
return ret;
}
/* store immediate test-cases */
static const struct ebpf_insn test_store1_prog[] = {
{
.code = (BPF_ST | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u8),
.imm = TEST_FILL_1,
},
{
.code = (BPF_ST | BPF_MEM | BPF_H),
.dst_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u16),
.imm = TEST_FILL_1,
},
{
.code = (BPF_ST | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u32),
.imm = TEST_FILL_1,
},
{
.code = (BPF_ST | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u64),
.imm = TEST_FILL_1,
},
/* return 1 */
{
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 1,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static void
test_store1_prepare(void *arg)
{
struct dummy_offset *df;
df = arg;
memset(df, 0, sizeof(*df));
}
static int
test_store1_check(uint64_t rc, const void *arg)
{
const struct dummy_offset *dft;
struct dummy_offset dfe;
dft = arg;
memset(&dfe, 0, sizeof(dfe));
dfe.u64 = (int32_t)TEST_FILL_1;
dfe.u32 = dfe.u64;
dfe.u16 = dfe.u64;
dfe.u8 = dfe.u64;
return cmp_res(__func__, 1, rc, &dfe, dft, sizeof(dfe));
}
/* store register test-cases */
static const struct ebpf_insn test_store2_prog[] = {
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = TEST_FILL_1,
},
{
.code = (BPF_STX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_offset, u8),
},
{
.code = (BPF_STX | BPF_MEM | BPF_H),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_offset, u16),
},
{
.code = (BPF_STX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_offset, u64),
},
/* return 1 */
{
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 1,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
/* load test-cases */
static const struct ebpf_insn test_load1_prog[] = {
{
.code = (BPF_LDX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u8),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_H),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u16),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u64),
},
/* return sum */
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_4,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_3,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_2,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static void
test_load1_prepare(void *arg)
{
struct dummy_offset *df;
df = arg;
memset(df, 0, sizeof(*df));
df->u64 = (int32_t)TEST_FILL_1;
df->u32 = df->u64;
df->u16 = df->u64;
df->u8 = df->u64;
}
static int
test_load1_check(uint64_t rc, const void *arg)
{
uint64_t v;
const struct dummy_offset *dft;
dft = arg;
v = dft->u64;
v += dft->u32;
v += dft->u16;
v += dft->u8;
return cmp_res(__func__, v, rc, dft, dft, sizeof(*dft));
}
/* load immediate test-cases */
static const struct ebpf_insn test_ldimm1_prog[] = {
{
.code = (BPF_LD | BPF_IMM | EBPF_DW),
.dst_reg = EBPF_REG_0,
.imm = (uint32_t)TEST_IMM_1,
},
{
.imm = TEST_IMM_1 >> 32,
},
{
.code = (BPF_LD | BPF_IMM | EBPF_DW),
.dst_reg = EBPF_REG_3,
.imm = (uint32_t)TEST_IMM_2,
},
{
.imm = TEST_IMM_2 >> 32,
},
{
.code = (BPF_LD | BPF_IMM | EBPF_DW),
.dst_reg = EBPF_REG_5,
.imm = (uint32_t)TEST_IMM_3,
},
{
.imm = TEST_IMM_3 >> 32,
},
{
.code = (BPF_LD | BPF_IMM | EBPF_DW),
.dst_reg = EBPF_REG_7,
.imm = (uint32_t)TEST_IMM_4,
},
{
.imm = TEST_IMM_4 >> 32,
},
{
.code = (BPF_LD | BPF_IMM | EBPF_DW),
.dst_reg = EBPF_REG_9,
.imm = (uint32_t)TEST_IMM_5,
},
{
.imm = TEST_IMM_5 >> 32,
},
/* return sum */
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_3,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_5,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_7,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_9,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static int
test_ldimm1_check(uint64_t rc, const void *arg)
{
uint64_t v1, v2;
v1 = TEST_IMM_1;
v2 = TEST_IMM_2;
v1 += v2;
v2 = TEST_IMM_3;
v1 += v2;
v2 = TEST_IMM_4;
v1 += v2;
v2 = TEST_IMM_5;
v1 += v2;
return cmp_res(__func__, v1, rc, arg, arg, 0);
}
/* alu mul test-cases */
static const struct ebpf_insn test_mul1_prog[] = {
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[1].u64),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[2].u32),
},
{
.code = (BPF_ALU | BPF_MUL | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = TEST_MUL_1,
},
{
.code = (EBPF_ALU64 | BPF_MUL | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = TEST_MUL_2,
},
{
.code = (BPF_ALU | BPF_MUL | BPF_X),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_2,
},
{
.code = (EBPF_ALU64 | BPF_MUL | BPF_X),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_3,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_vect8, out[0].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_vect8, out[1].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_4,
.off = offsetof(struct dummy_vect8, out[2].u64),
},
/* return 1 */
{
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 1,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static void
test_mul1_prepare(void *arg)
{
struct dummy_vect8 *dv;
uint64_t v;
dv = arg;
v = rte_rand();
memset(dv, 0, sizeof(*dv));
dv->in[0].u32 = v;
dv->in[1].u64 = v << 12 | v >> 6;
dv->in[2].u32 = -v;
}
static int
test_mul1_check(uint64_t rc, const void *arg)
{
uint64_t r2, r3, r4;
const struct dummy_vect8 *dvt;
struct dummy_vect8 dve;
dvt = arg;
memset(&dve, 0, sizeof(dve));
r2 = dvt->in[0].u32;
r3 = dvt->in[1].u64;
r4 = dvt->in[2].u32;
r2 = (uint32_t)r2 * TEST_MUL_1;
r3 *= TEST_MUL_2;
r4 = (uint32_t)(r4 * r2);
r4 *= r3;
dve.out[0].u64 = r2;
dve.out[1].u64 = r3;
dve.out[2].u64 = r4;
return cmp_res(__func__, 1, rc, dve.out, dvt->out, sizeof(dve.out));
}
/* alu shift test-cases */
static const struct ebpf_insn test_shift1_prog[] = {
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[1].u64),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[2].u32),
},
{
.code = (BPF_ALU | BPF_LSH | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = TEST_SHIFT_1,
},
{
.code = (EBPF_ALU64 | EBPF_ARSH | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = TEST_SHIFT_2,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_vect8, out[0].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_vect8, out[1].u64),
},
{
.code = (BPF_ALU | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_4,
.imm = TEST_SHIFT64_MASK,
},
{
.code = (EBPF_ALU64 | BPF_LSH | BPF_X),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_4,
},
{
.code = (BPF_ALU | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_4,
.imm = TEST_SHIFT32_MASK,
},
{
.code = (BPF_ALU | BPF_RSH | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_4,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_vect8, out[2].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_vect8, out[3].u64),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[1].u64),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[2].u32),
},
{
.code = (BPF_ALU | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = TEST_SHIFT64_MASK,
},
{
.code = (EBPF_ALU64 | EBPF_ARSH | BPF_X),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_2,
},
{
.code = (BPF_ALU | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = TEST_SHIFT32_MASK,
},
{
.code = (BPF_ALU | BPF_LSH | BPF_X),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_2,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_4,
.off = offsetof(struct dummy_vect8, out[4].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_vect8, out[5].u64),
},
/* return 1 */
{
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 1,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static void
test_shift1_prepare(void *arg)
{
struct dummy_vect8 *dv;
uint64_t v;
dv = arg;
v = rte_rand();
memset(dv, 0, sizeof(*dv));
dv->in[0].u32 = v;
dv->in[1].u64 = v << 12 | v >> 6;
dv->in[2].u32 = (-v ^ 5);
}
static int
test_shift1_check(uint64_t rc, const void *arg)
{
uint64_t r2, r3, r4;
const struct dummy_vect8 *dvt;
struct dummy_vect8 dve;
dvt = arg;
memset(&dve, 0, sizeof(dve));
r2 = dvt->in[0].u32;
r3 = dvt->in[1].u64;
r4 = dvt->in[2].u32;
r2 = (uint32_t)r2 << TEST_SHIFT_1;
r3 = (int64_t)r3 >> TEST_SHIFT_2;
dve.out[0].u64 = r2;
dve.out[1].u64 = r3;
r4 &= TEST_SHIFT64_MASK;
r3 <<= r4;
r4 &= TEST_SHIFT32_MASK;
r2 = (uint32_t)r2 >> r4;
dve.out[2].u64 = r2;
dve.out[3].u64 = r3;
r2 = dvt->in[0].u32;
r3 = dvt->in[1].u64;
r4 = dvt->in[2].u32;
r2 &= TEST_SHIFT64_MASK;
r3 = (int64_t)r3 >> r2;
r2 &= TEST_SHIFT32_MASK;
r4 = (uint32_t)r4 << r2;
dve.out[4].u64 = r4;
dve.out[5].u64 = r3;
return cmp_res(__func__, 1, rc, dve.out, dvt->out, sizeof(dve.out));
}
/* jmp test-cases */
static const struct ebpf_insn test_jump1_prog[] = {
[0] = {
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0,
},
[1] = {
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u32),
},
[2] = {
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u64),
},
[3] = {
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[1].u32),
},
[4] = {
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_5,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[1].u64),
},
[5] = {
.code = (BPF_JMP | BPF_JEQ | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = TEST_JCC_1,
.off = 8,
},
[6] = {
.code = (BPF_JMP | EBPF_JSLE | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = TEST_JCC_2,
.off = 9,
},
[7] = {
.code = (BPF_JMP | BPF_JGT | BPF_K),
.dst_reg = EBPF_REG_4,
.imm = TEST_JCC_3,
.off = 10,
},
[8] = {
.code = (BPF_JMP | BPF_JSET | BPF_K),
.dst_reg = EBPF_REG_5,
.imm = TEST_JCC_4,
.off = 11,
},
[9] = {
.code = (BPF_JMP | EBPF_JNE | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_3,
.off = 12,
},
[10] = {
.code = (BPF_JMP | EBPF_JSGT | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_4,
.off = 13,
},
[11] = {
.code = (BPF_JMP | EBPF_JLE | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_5,
.off = 14,
},
[12] = {
.code = (BPF_JMP | BPF_JSET | BPF_X),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_5,
.off = 15,
},
[13] = {
.code = (BPF_JMP | EBPF_EXIT),
},
[14] = {
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0x1,
},
[15] = {
.code = (BPF_JMP | BPF_JA),
.off = -10,
},
[16] = {
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0x2,
},
[17] = {
.code = (BPF_JMP | BPF_JA),
.off = -11,
},
[18] = {
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0x4,
},
[19] = {
.code = (BPF_JMP | BPF_JA),
.off = -12,
},
[20] = {
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0x8,
},
[21] = {
.code = (BPF_JMP | BPF_JA),
.off = -13,
},
[22] = {
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0x10,
},
[23] = {
.code = (BPF_JMP | BPF_JA),
.off = -14,
},
[24] = {
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0x20,
},
[25] = {
.code = (BPF_JMP | BPF_JA),
.off = -15,
},
[26] = {
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0x40,
},
[27] = {
.code = (BPF_JMP | BPF_JA),
.off = -16,
},
[28] = {
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0x80,
},
[29] = {
.code = (BPF_JMP | BPF_JA),
.off = -17,
},
};
static void
test_jump1_prepare(void *arg)
{
struct dummy_vect8 *dv;
uint64_t v1, v2;
dv = arg;
v1 = rte_rand();
v2 = rte_rand();
memset(dv, 0, sizeof(*dv));
dv->in[0].u64 = v1;
dv->in[1].u64 = v2;
dv->in[0].u32 = (v1 << 12) + (v2 >> 6);
dv->in[1].u32 = (v2 << 12) - (v1 >> 6);
}
static int
test_jump1_check(uint64_t rc, const void *arg)
{
uint64_t r2, r3, r4, r5, rv;
const struct dummy_vect8 *dvt;
dvt = arg;
rv = 0;
r2 = dvt->in[0].u32;
r3 = dvt->in[0].u64;
r4 = dvt->in[1].u32;
r5 = dvt->in[1].u64;
if (r2 == TEST_JCC_1)
rv |= 0x1;
if ((int64_t)r3 <= TEST_JCC_2)
rv |= 0x2;
if (r4 > TEST_JCC_3)
rv |= 0x4;
if (r5 & TEST_JCC_4)
rv |= 0x8;
if (r2 != r3)
rv |= 0x10;
if ((int64_t)r2 > (int64_t)r4)
rv |= 0x20;
if (r2 <= r5)
rv |= 0x40;
if (r3 & r5)
rv |= 0x80;
return cmp_res(__func__, rv, rc, &rv, &rc, sizeof(rv));
}
/* Jump test case - check ip4_dest in particular subnet */
static const struct ebpf_insn test_jump2_prog[] = {
[0] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = 0xe,
},
[1] = {
.code = (BPF_LDX | BPF_MEM | BPF_H),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = 12,
},
[2] = {
.code = (BPF_JMP | EBPF_JNE | BPF_K),
.dst_reg = EBPF_REG_3,
.off = 2,
.imm = 0x81,
},
[3] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = 0x12,
},
[4] = {
.code = (BPF_LDX | BPF_MEM | BPF_H),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = 16,
},
[5] = {
.code = (EBPF_ALU64 | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = 0xffff,
},
[6] = {
.code = (BPF_JMP | EBPF_JNE | BPF_K),
.dst_reg = EBPF_REG_3,
.off = 9,
.imm = 0x8,
},
[7] = {
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
},
[8] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0,
},
[9] = {
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_1,
.off = 16,
},
[10] = {
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = TEST_NETMASK,
},
[11] = {
.code = (BPF_ALU | EBPF_END | EBPF_TO_BE),
.dst_reg = EBPF_REG_3,
.imm = sizeof(uint32_t) * CHAR_BIT,
},
[12] = {
.code = (BPF_ALU | BPF_AND | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
},
[13] = {
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = TEST_SUBNET,
},
[14] = {
.code = (BPF_ALU | EBPF_END | EBPF_TO_BE),
.dst_reg = EBPF_REG_3,
.imm = sizeof(uint32_t) * CHAR_BIT,
},
[15] = {
.code = (BPF_JMP | BPF_JEQ | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = 1,
},
[16] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = -1,
},
[17] = {
.code = (BPF_JMP | EBPF_EXIT),
},
};
/* Preparing a vlan packet */
static void
test_jump2_prepare(void *arg)
{
struct dummy_net *dn;
dn = arg;
memset(dn, 0, sizeof(*dn));
/*
* Initialize ether header.
*/
rte_ether_addr_copy((struct rte_ether_addr *)dst_mac,
&dn->eth_hdr.dst_addr);
rte_ether_addr_copy((struct rte_ether_addr *)src_mac,
&dn->eth_hdr.src_addr);
dn->eth_hdr.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
/*
* Initialize vlan header.
*/
dn->vlan_hdr.eth_proto = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
dn->vlan_hdr.vlan_tci = 32;
/*
* Initialize IP header.
*/
dn->ip_hdr.version_ihl = 0x45; /*IP_VERSION | IP_HDRLEN*/
dn->ip_hdr.time_to_live = 64; /* IP_DEFTTL */
dn->ip_hdr.next_proto_id = IPPROTO_TCP;
dn->ip_hdr.packet_id = rte_cpu_to_be_16(0x463c);
dn->ip_hdr.total_length = rte_cpu_to_be_16(60);
dn->ip_hdr.src_addr = rte_cpu_to_be_32(ip_src_addr);
dn->ip_hdr.dst_addr = rte_cpu_to_be_32(ip_dst_addr);
}
static int
test_jump2_check(uint64_t rc, const void *arg)
{
const struct rte_ether_hdr *eth_hdr = arg;
const struct rte_ipv4_hdr *ipv4_hdr;
const void *next = eth_hdr;
uint16_t eth_type;
uint64_t v = -1;
if (eth_hdr->ether_type == htons(0x8100)) {
const struct rte_vlan_hdr *vlan_hdr =
(const void *)(eth_hdr + 1);
eth_type = vlan_hdr->eth_proto;
next = vlan_hdr + 1;
} else {
eth_type = eth_hdr->ether_type;
next = eth_hdr + 1;
}
if (eth_type == htons(0x0800)) {
ipv4_hdr = next;
if ((ipv4_hdr->dst_addr & rte_cpu_to_be_32(TEST_NETMASK)) ==
rte_cpu_to_be_32(TEST_SUBNET)) {
v = 0;
}
}
return cmp_res(__func__, v, rc, arg, arg, sizeof(arg));
}
/* alu (add, sub, and, or, xor, neg) test-cases */
static const struct ebpf_insn test_alu1_prog[] = {
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u64),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[1].u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_5,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[1].u64),
},
{
.code = (BPF_ALU | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = TEST_FILL_1,
},
{
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = TEST_FILL_1,
},
{
.code = (BPF_ALU | BPF_XOR | BPF_K),
.dst_reg = EBPF_REG_4,
.imm = TEST_FILL_1,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_K),
.dst_reg = EBPF_REG_5,
.imm = TEST_FILL_1,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_vect8, out[0].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_vect8, out[1].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_4,
.off = offsetof(struct dummy_vect8, out[2].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_5,
.off = offsetof(struct dummy_vect8, out[3].u64),
},
{
.code = (BPF_ALU | BPF_OR | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_3,
},
{
.code = (EBPF_ALU64 | BPF_XOR | BPF_X),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_4,
},
{
.code = (BPF_ALU | BPF_SUB | BPF_X),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_5,
},
{
.code = (EBPF_ALU64 | BPF_AND | BPF_X),
.dst_reg = EBPF_REG_5,
.src_reg = EBPF_REG_2,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_vect8, out[4].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_vect8, out[5].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_4,
.off = offsetof(struct dummy_vect8, out[6].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_5,
.off = offsetof(struct dummy_vect8, out[7].u64),
},
/* return (-r2 + (-r3)) */
{
.code = (BPF_ALU | BPF_NEG),
.dst_reg = EBPF_REG_2,
},
{
.code = (EBPF_ALU64 | BPF_NEG),
.dst_reg = EBPF_REG_3,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_3,
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_2,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static int
test_alu1_check(uint64_t rc, const void *arg)
{
uint64_t r2, r3, r4, r5, rv;
const struct dummy_vect8 *dvt;
struct dummy_vect8 dve;
dvt = arg;
memset(&dve, 0, sizeof(dve));
r2 = dvt->in[0].u32;
r3 = dvt->in[0].u64;
r4 = dvt->in[1].u32;
r5 = dvt->in[1].u64;
r2 = (uint32_t)r2 & TEST_FILL_1;
r3 |= (int32_t) TEST_FILL_1;
r4 = (uint32_t)r4 ^ TEST_FILL_1;
r5 += (int32_t)TEST_FILL_1;
dve.out[0].u64 = r2;
dve.out[1].u64 = r3;
dve.out[2].u64 = r4;
dve.out[3].u64 = r5;
r2 = (uint32_t)r2 | (uint32_t)r3;
r3 ^= r4;
r4 = (uint32_t)r4 - (uint32_t)r5;
r5 &= r2;
dve.out[4].u64 = r2;
dve.out[5].u64 = r3;
dve.out[6].u64 = r4;
dve.out[7].u64 = r5;
r2 = -(int32_t)r2;
rv = (uint32_t)r2;
r3 = -r3;
rv += r3;
return cmp_res(__func__, rv, rc, dve.out, dvt->out, sizeof(dve.out));
}
/* endianness conversions (BE->LE/LE->BE) test-cases */
static const struct ebpf_insn test_bele1_prog[] = {
{
.code = (BPF_LDX | BPF_MEM | BPF_H),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u16),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u64),
},
{
.code = (BPF_ALU | EBPF_END | EBPF_TO_BE),
.dst_reg = EBPF_REG_2,
.imm = sizeof(uint16_t) * CHAR_BIT,
},
{
.code = (BPF_ALU | EBPF_END | EBPF_TO_BE),
.dst_reg = EBPF_REG_3,
.imm = sizeof(uint32_t) * CHAR_BIT,
},
{
.code = (BPF_ALU | EBPF_END | EBPF_TO_BE),
.dst_reg = EBPF_REG_4,
.imm = sizeof(uint64_t) * CHAR_BIT,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_vect8, out[0].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_vect8, out[1].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_4,
.off = offsetof(struct dummy_vect8, out[2].u64),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_H),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u16),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u64),
},
{
.code = (BPF_ALU | EBPF_END | EBPF_TO_LE),
.dst_reg = EBPF_REG_2,
.imm = sizeof(uint16_t) * CHAR_BIT,
},
{
.code = (BPF_ALU | EBPF_END | EBPF_TO_LE),
.dst_reg = EBPF_REG_3,
.imm = sizeof(uint32_t) * CHAR_BIT,
},
{
.code = (BPF_ALU | EBPF_END | EBPF_TO_LE),
.dst_reg = EBPF_REG_4,
.imm = sizeof(uint64_t) * CHAR_BIT,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_vect8, out[3].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_vect8, out[4].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_4,
.off = offsetof(struct dummy_vect8, out[5].u64),
},
/* return 1 */
{
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 1,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static void
test_bele1_prepare(void *arg)
{
struct dummy_vect8 *dv;
dv = arg;
memset(dv, 0, sizeof(*dv));
dv->in[0].u64 = rte_rand();
dv->in[0].u32 = dv->in[0].u64;
dv->in[0].u16 = dv->in[0].u64;
}
static int
test_bele1_check(uint64_t rc, const void *arg)
{
uint64_t r2, r3, r4;
const struct dummy_vect8 *dvt;
struct dummy_vect8 dve;
dvt = arg;
memset(&dve, 0, sizeof(dve));
r2 = dvt->in[0].u16;
r3 = dvt->in[0].u32;
r4 = dvt->in[0].u64;
r2 = rte_cpu_to_be_16(r2);
r3 = rte_cpu_to_be_32(r3);
r4 = rte_cpu_to_be_64(r4);
dve.out[0].u64 = r2;
dve.out[1].u64 = r3;
dve.out[2].u64 = r4;
r2 = dvt->in[0].u16;
r3 = dvt->in[0].u32;
r4 = dvt->in[0].u64;
r2 = rte_cpu_to_le_16(r2);
r3 = rte_cpu_to_le_32(r3);
r4 = rte_cpu_to_le_64(r4);
dve.out[3].u64 = r2;
dve.out[4].u64 = r3;
dve.out[5].u64 = r4;
return cmp_res(__func__, 1, rc, dve.out, dvt->out, sizeof(dve.out));
}
/* atomic add test-cases */
static const struct ebpf_insn test_xadd1_prog[] = {
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = 1,
},
{
.code = (BPF_STX | EBPF_XADD | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_STX | EBPF_XADD | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_offset, u64),
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = -1,
},
{
.code = (BPF_STX | EBPF_XADD | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_STX | EBPF_XADD | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_offset, u64),
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_4,
.imm = TEST_FILL_1,
},
{
.code = (BPF_STX | EBPF_XADD | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_4,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_STX | EBPF_XADD | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_4,
.off = offsetof(struct dummy_offset, u64),
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_5,
.imm = TEST_MUL_1,
},
{
.code = (BPF_STX | EBPF_XADD | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_5,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_STX | EBPF_XADD | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_5,
.off = offsetof(struct dummy_offset, u64),
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_6,
.imm = TEST_MUL_2,
},
{
.code = (BPF_STX | EBPF_XADD | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_6,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_STX | EBPF_XADD | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_6,
.off = offsetof(struct dummy_offset, u64),
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_7,
.imm = TEST_JCC_2,
},
{
.code = (BPF_STX | EBPF_XADD | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_7,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_STX | EBPF_XADD | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_7,
.off = offsetof(struct dummy_offset, u64),
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_8,
.imm = TEST_JCC_3,
},
{
.code = (BPF_STX | EBPF_XADD | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_8,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_STX | EBPF_XADD | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_8,
.off = offsetof(struct dummy_offset, u64),
},
/* return 1 */
{
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 1,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static int
test_xadd1_check(uint64_t rc, const void *arg)
{
uint64_t rv;
const struct dummy_offset *dft;
struct dummy_offset dfe;
dft = arg;
memset(&dfe, 0, sizeof(dfe));
rv = 1;
__atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED);
__atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED);
rv = -1;
__atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED);
__atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED);
rv = (int32_t)TEST_FILL_1;
__atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED);
__atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED);
rv = TEST_MUL_1;
__atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED);
__atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED);
rv = TEST_MUL_2;
__atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED);
__atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED);
rv = TEST_JCC_2;
__atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED);
__atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED);
rv = TEST_JCC_3;
__atomic_fetch_add(&dfe.u32, rv, __ATOMIC_RELAXED);
__atomic_fetch_add(&dfe.u64, rv, __ATOMIC_RELAXED);
return cmp_res(__func__, 1, rc, &dfe, dft, sizeof(dfe));
}
/* alu div test-cases */
static const struct ebpf_insn test_div1_prog[] = {
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[0].u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[1].u64),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[2].u32),
},
{
.code = (BPF_ALU | BPF_DIV | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = TEST_MUL_1,
},
{
.code = (EBPF_ALU64 | BPF_MOD | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = TEST_MUL_2,
},
{
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = 1,
},
{
.code = (EBPF_ALU64 | BPF_OR | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = 1,
},
{
.code = (BPF_ALU | BPF_MOD | BPF_X),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_2,
},
{
.code = (EBPF_ALU64 | BPF_DIV | BPF_X),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_3,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
.off = offsetof(struct dummy_vect8, out[0].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_3,
.off = offsetof(struct dummy_vect8, out[1].u64),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_4,
.off = offsetof(struct dummy_vect8, out[2].u64),
},
/* check that we can handle division by zero gracefully. */
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_vect8, in[3].u32),
},
{
.code = (BPF_ALU | BPF_DIV | BPF_X),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_2,
},
/* return 1 */
{
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 1,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static int
test_div1_check(uint64_t rc, const void *arg)
{
uint64_t r2, r3, r4;
const struct dummy_vect8 *dvt;
struct dummy_vect8 dve;
dvt = arg;
memset(&dve, 0, sizeof(dve));
r2 = dvt->in[0].u32;
r3 = dvt->in[1].u64;
r4 = dvt->in[2].u32;
r2 = (uint32_t)r2 / TEST_MUL_1;
r3 %= TEST_MUL_2;
r2 |= 1;
r3 |= 1;
r4 = (uint32_t)(r4 % r2);
r4 /= r3;
dve.out[0].u64 = r2;
dve.out[1].u64 = r3;
dve.out[2].u64 = r4;
/*
* in the test prog we attempted to divide by zero.
* so return value should return 0.
*/
return cmp_res(__func__, 0, rc, dve.out, dvt->out, sizeof(dve.out));
}
/* call test-cases */
static const struct ebpf_insn test_call1_prog[] = {
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_1,
.off = offsetof(struct dummy_offset, u64),
},
{
.code = (BPF_STX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_10,
.src_reg = EBPF_REG_2,
.off = -4,
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_10,
.src_reg = EBPF_REG_3,
.off = -16,
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_10,
},
{
.code = (EBPF_ALU64 | BPF_SUB | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = 4,
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_10,
},
{
.code = (EBPF_ALU64 | BPF_SUB | BPF_K),
.dst_reg = EBPF_REG_3,
.imm = 16,
},
{
.code = (BPF_JMP | EBPF_CALL),
.imm = 0,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_10,
.off = -4,
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_10,
.off = -16
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_2,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static void
dummy_func1(const void *p, uint32_t *v32, uint64_t *v64)
{
const struct dummy_offset *dv;
dv = p;
v32[0] += dv->u16;
v64[0] += dv->u8;
}
static int
test_call1_check(uint64_t rc, const void *arg)
{
uint32_t v32;
uint64_t v64;
const struct dummy_offset *dv;
dv = arg;
v32 = dv->u32;
v64 = dv->u64;
dummy_func1(arg, &v32, &v64);
v64 += v32;
return cmp_res(__func__, v64, rc, dv, dv, sizeof(*dv));
}
static const struct rte_bpf_xsym test_call1_xsym[] = {
{
.name = RTE_STR(dummy_func1),
.type = RTE_BPF_XTYPE_FUNC,
.func = {
.val = (void *)dummy_func1,
.nb_args = 3,
.args = {
[0] = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
[1] = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(uint32_t),
},
[2] = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(uint64_t),
},
},
},
},
};
static const struct ebpf_insn test_call2_prog[] = {
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_K),
.dst_reg = EBPF_REG_1,
.imm = -(int32_t)sizeof(struct dummy_offset),
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_10,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = -2 * (int32_t)sizeof(struct dummy_offset),
},
{
.code = (BPF_JMP | EBPF_CALL),
.imm = 0,
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
.off = -(int32_t)(sizeof(struct dummy_offset) -
offsetof(struct dummy_offset, u64)),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_10,
.off = -(int32_t)(sizeof(struct dummy_offset) -
offsetof(struct dummy_offset, u32)),
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_1,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_H),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
.off = -(int32_t)(2 * sizeof(struct dummy_offset) -
offsetof(struct dummy_offset, u16)),
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_1,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
.off = -(int32_t)(2 * sizeof(struct dummy_offset) -
offsetof(struct dummy_offset, u8)),
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_1,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static void
dummy_func2(struct dummy_offset *a, struct dummy_offset *b)
{
uint64_t v;
v = 0;
a->u64 = v++;
a->u32 = v++;
a->u16 = v++;
a->u8 = v++;
b->u64 = v++;
b->u32 = v++;
b->u16 = v++;
b->u8 = v++;
}
static int
test_call2_check(uint64_t rc, const void *arg)
{
uint64_t v;
struct dummy_offset a, b;
RTE_SET_USED(arg);
dummy_func2(&a, &b);
v = a.u64 + a.u32 + b.u16 + b.u8;
return cmp_res(__func__, v, rc, arg, arg, 0);
}
static const struct rte_bpf_xsym test_call2_xsym[] = {
{
.name = RTE_STR(dummy_func2),
.type = RTE_BPF_XTYPE_FUNC,
.func = {
.val = (void *)dummy_func2,
.nb_args = 2,
.args = {
[0] = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
[1] = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
},
},
},
};
static const struct ebpf_insn test_call3_prog[] = {
{
.code = (BPF_JMP | EBPF_CALL),
.imm = 0,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_0,
.off = offsetof(struct dummy_offset, u8),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_H),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_0,
.off = offsetof(struct dummy_offset, u16),
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_0,
.off = offsetof(struct dummy_offset, u32),
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_0,
.off = offsetof(struct dummy_offset, u64),
},
/* return sum */
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_4,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_3,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_2,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static const struct dummy_offset *
dummy_func3(const struct dummy_vect8 *p)
{
return &p->in[RTE_DIM(p->in) - 1];
}
static void
test_call3_prepare(void *arg)
{
struct dummy_vect8 *pv;
struct dummy_offset *df;
pv = arg;
df = (struct dummy_offset *)(uintptr_t)dummy_func3(pv);
memset(pv, 0, sizeof(*pv));
df->u64 = (int32_t)TEST_FILL_1;
df->u32 = df->u64;
df->u16 = df->u64;
df->u8 = df->u64;
}
static int
test_call3_check(uint64_t rc, const void *arg)
{
uint64_t v;
const struct dummy_vect8 *pv;
const struct dummy_offset *dft;
pv = arg;
dft = dummy_func3(pv);
v = dft->u64;
v += dft->u32;
v += dft->u16;
v += dft->u8;
return cmp_res(__func__, v, rc, pv, pv, sizeof(*pv));
}
static const struct rte_bpf_xsym test_call3_xsym[] = {
{
.name = RTE_STR(dummy_func3),
.type = RTE_BPF_XTYPE_FUNC,
.func = {
.val = (void *)dummy_func3,
.nb_args = 1,
.args = {
[0] = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_vect8),
},
},
.ret = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
},
},
};
/* Test for stack corruption in multiple function calls */
static const struct ebpf_insn test_call4_prog[] = {
{
.code = (BPF_ST | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_10,
.off = -4,
.imm = 1,
},
{
.code = (BPF_ST | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_10,
.off = -3,
.imm = 2,
},
{
.code = (BPF_ST | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_10,
.off = -2,
.imm = 3,
},
{
.code = (BPF_ST | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_10,
.off = -1,
.imm = 4,
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = 4,
},
{
.code = (EBPF_ALU64 | BPF_SUB | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_2,
},
{
.code = (BPF_JMP | EBPF_CALL),
.imm = 0,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
.off = -4,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_10,
.off = -3,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_3,
.src_reg = EBPF_REG_10,
.off = -2,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_4,
.src_reg = EBPF_REG_10,
.off = -1,
},
{
.code = (BPF_JMP | EBPF_CALL),
.imm = 1,
},
{
.code = (EBPF_ALU64 | BPF_XOR | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = TEST_MEMFROB,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
/* Gathering the bytes together */
static uint32_t
dummy_func4_1(uint8_t a, uint8_t b, uint8_t c, uint8_t d)
{
return (a << 24) | (b << 16) | (c << 8) | (d << 0);
}
/* Implementation of memfrob */
static uint32_t
dummy_func4_0(uint32_t *s, uint8_t n)
{
char *p = (char *) s;
while (n-- > 0)
*p++ ^= 42;
return *s;
}
static int
test_call4_check(uint64_t rc, const void *arg)
{
uint8_t a[4] = {1, 2, 3, 4};
uint32_t s, v = 0;
RTE_SET_USED(arg);
s = dummy_func4_0((uint32_t *)a, 4);
s = dummy_func4_1(a[0], a[1], a[2], a[3]);
v = s ^ TEST_MEMFROB;
return cmp_res(__func__, v, rc, &v, &rc, sizeof(v));
}
static const struct rte_bpf_xsym test_call4_xsym[] = {
[0] = {
.name = RTE_STR(dummy_func4_0),
.type = RTE_BPF_XTYPE_FUNC,
.func = {
.val = (void *)dummy_func4_0,
.nb_args = 2,
.args = {
[0] = {
.type = RTE_BPF_ARG_PTR,
.size = 4 * sizeof(uint8_t),
},
[1] = {
.type = RTE_BPF_ARG_RAW,
.size = sizeof(uint8_t),
},
},
.ret = {
.type = RTE_BPF_ARG_RAW,
.size = sizeof(uint32_t),
},
},
},
[1] = {
.name = RTE_STR(dummy_func4_1),
.type = RTE_BPF_XTYPE_FUNC,
.func = {
.val = (void *)dummy_func4_1,
.nb_args = 4,
.args = {
[0] = {
.type = RTE_BPF_ARG_RAW,
.size = sizeof(uint8_t),
},
[1] = {
.type = RTE_BPF_ARG_RAW,
.size = sizeof(uint8_t),
},
[2] = {
.type = RTE_BPF_ARG_RAW,
.size = sizeof(uint8_t),
},
[3] = {
.type = RTE_BPF_ARG_RAW,
.size = sizeof(uint8_t),
},
},
.ret = {
.type = RTE_BPF_ARG_RAW,
.size = sizeof(uint32_t),
},
},
},
};
/* string compare test case */
static const struct ebpf_insn test_call5_prog[] = {
[0] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_1,
.imm = STRING_GEEK,
},
[1] = {
.code = (BPF_STX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_10,
.src_reg = EBPF_REG_1,
.off = -8,
},
[2] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_6,
.imm = 0,
},
[3] = {
.code = (BPF_STX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_10,
.src_reg = EBPF_REG_6,
.off = -4,
},
[4] = {
.code = (BPF_STX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_10,
.src_reg = EBPF_REG_6,
.off = -12,
},
[5] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_1,
.imm = STRING_WEEK,
},
[6] = {
.code = (BPF_STX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_10,
.src_reg = EBPF_REG_1,
.off = -16,
},
[7] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
},
[8] = {
.code = (EBPF_ALU64 | BPF_ADD | BPF_K),
.dst_reg = EBPF_REG_1,
.imm = -8,
},
[9] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_1,
},
[10] = {
.code = (BPF_JMP | EBPF_CALL),
.imm = 0,
},
[11] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_0,
},
[12] = {
.code = (BPF_ALU | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = -1,
},
[13] = {
.code = (EBPF_ALU64 | BPF_LSH | BPF_K),
.dst_reg = EBPF_REG_1,
.imm = 0x20,
},
[14] = {
.code = (EBPF_ALU64 | BPF_RSH | BPF_K),
.dst_reg = EBPF_REG_1,
.imm = 0x20,
},
[15] = {
.code = (BPF_JMP | EBPF_JNE | BPF_K),
.dst_reg = EBPF_REG_1,
.off = 11,
.imm = 0,
},
[16] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
},
[17] = {
.code = (EBPF_ALU64 | BPF_ADD | BPF_K),
.dst_reg = EBPF_REG_1,
.imm = -8,
},
[18] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_10,
},
[19] = {
.code = (EBPF_ALU64 | BPF_ADD | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = -16,
},
[20] = {
.code = (BPF_JMP | EBPF_CALL),
.imm = 0,
},
[21] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_0,
},
[22] = {
.code = (EBPF_ALU64 | BPF_LSH | BPF_K),
.dst_reg = EBPF_REG_1,
.imm = 0x20,
},
[23] = {
.code = (EBPF_ALU64 | BPF_RSH | BPF_K),
.dst_reg = EBPF_REG_1,
.imm = 0x20,
},
[24] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_1,
},
[25] = {
.code = (BPF_JMP | BPF_JEQ | BPF_X),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_6,
.off = 1,
},
[26] = {
.code = (EBPF_ALU64 | EBPF_MOV | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 0,
},
[27] = {
.code = (BPF_JMP | EBPF_EXIT),
},
};
/* String comparison implementation, return 0 if equal else difference */
static uint32_t
dummy_func5(const char *s1, const char *s2)
{
while (*s1 && (*s1 == *s2)) {
s1++;
s2++;
}
return *(const unsigned char *)s1 - *(const unsigned char *)s2;
}
static int
test_call5_check(uint64_t rc, const void *arg)
{
char a[] = "geek";
char b[] = "week";
uint32_t v;
RTE_SET_USED(arg);
v = dummy_func5(a, a);
if (v != 0) {
v = -1;
goto fail;
}
v = dummy_func5(a, b);
if (v == 0)
goto fail;
v = 0;
fail:
return cmp_res(__func__, v, rc, &v, &rc, sizeof(v));
}
static const struct rte_bpf_xsym test_call5_xsym[] = {
[0] = {
.name = RTE_STR(dummy_func5),
.type = RTE_BPF_XTYPE_FUNC,
.func = {
.val = (void *)dummy_func5,
.nb_args = 2,
.args = {
[0] = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(char),
},
[1] = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(char),
},
},
.ret = {
.type = RTE_BPF_ARG_RAW,
.size = sizeof(uint32_t),
},
},
},
};
/* load mbuf (BPF_ABS/BPF_IND) test-cases */
static const struct ebpf_insn test_ld_mbuf1_prog[] = {
/* BPF_ABS/BPF_IND implicitly expect mbuf ptr in R6 */
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_6,
.src_reg = EBPF_REG_1,
},
/* load IPv4 version and IHL */
{
.code = (BPF_LD | BPF_ABS | BPF_B),
.imm = offsetof(struct rte_ipv4_hdr, version_ihl),
},
/* check IP version */
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_0,
},
{
.code = (BPF_ALU | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = 0xf0,
},
{
.code = (BPF_JMP | BPF_JEQ | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = IPVERSION << 4,
.off = 2,
},
/* invalid IP version, return 0 */
{
.code = (EBPF_ALU64 | BPF_XOR | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_0,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
/* load 3-rd byte of IP data */
{
.code = (BPF_ALU | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = RTE_IPV4_HDR_IHL_MASK,
},
{
.code = (BPF_ALU | BPF_LSH | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 2,
},
{
.code = (BPF_LD | BPF_IND | BPF_B),
.src_reg = EBPF_REG_0,
.imm = 3,
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_7,
.src_reg = EBPF_REG_0,
},
/* load IPv4 src addr */
{
.code = (BPF_LD | BPF_ABS | BPF_W),
.imm = offsetof(struct rte_ipv4_hdr, src_addr),
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_7,
.src_reg = EBPF_REG_0,
},
/* load IPv4 total length */
{
.code = (BPF_LD | BPF_ABS | BPF_H),
.imm = offsetof(struct rte_ipv4_hdr, total_length),
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_8,
.src_reg = EBPF_REG_0,
},
/* load last 4 bytes of IP data */
{
.code = (BPF_LD | BPF_IND | BPF_W),
.src_reg = EBPF_REG_8,
.imm = -(int32_t)sizeof(uint32_t),
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_7,
.src_reg = EBPF_REG_0,
},
/* load 2 bytes from the middle of IP data */
{
.code = (EBPF_ALU64 | BPF_RSH | BPF_K),
.dst_reg = EBPF_REG_8,
.imm = 1,
},
{
.code = (BPF_LD | BPF_IND | BPF_H),
.src_reg = EBPF_REG_8,
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_7,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
static void
dummy_mbuf_prep(struct rte_mbuf *mb, uint8_t buf[], uint32_t buf_len,
uint32_t data_len)
{
uint32_t i;
uint8_t *db;
mb->buf_addr = buf;
mb->buf_iova = (uintptr_t)buf;
mb->buf_len = buf_len;
rte_mbuf_refcnt_set(mb, 1);
/* set pool pointer to dummy value, test doesn't use it */
mb->pool = (void *)buf;
rte_pktmbuf_reset(mb);
db = (uint8_t *)rte_pktmbuf_append(mb, data_len);
for (i = 0; i != data_len; i++)
db[i] = i;
}
static void
test_ld_mbuf1_prepare(void *arg)
{
struct dummy_mbuf *dm;
struct rte_ipv4_hdr *ph;
const uint32_t plen = 400;
const struct rte_ipv4_hdr iph = {
.version_ihl = RTE_IPV4_VHL_DEF,
.total_length = rte_cpu_to_be_16(plen),
.time_to_live = IPDEFTTL,
.next_proto_id = IPPROTO_RAW,
.src_addr = rte_cpu_to_be_32(RTE_IPV4_LOOPBACK),
.dst_addr = rte_cpu_to_be_32(RTE_IPV4_BROADCAST),
};
dm = arg;
memset(dm, 0, sizeof(*dm));
dummy_mbuf_prep(&dm->mb[0], dm->buf[0], sizeof(dm->buf[0]),
plen / 2 + 1);
dummy_mbuf_prep(&dm->mb[1], dm->buf[1], sizeof(dm->buf[0]),
plen / 2 - 1);
rte_pktmbuf_chain(&dm->mb[0], &dm->mb[1]);
ph = rte_pktmbuf_mtod(dm->mb, typeof(ph));
memcpy(ph, &iph, sizeof(iph));
}
static uint64_t
test_ld_mbuf1(const struct rte_mbuf *pkt)
{
uint64_t n, v;
const uint8_t *p8;
const uint16_t *p16;
const uint32_t *p32;
struct dummy_offset dof;
/* load IPv4 version and IHL */
p8 = rte_pktmbuf_read(pkt,
offsetof(struct rte_ipv4_hdr, version_ihl), sizeof(*p8),
&dof);
if (p8 == NULL)
return 0;
/* check IP version */
if ((p8[0] & 0xf0) != IPVERSION << 4)
return 0;
n = (p8[0] & RTE_IPV4_HDR_IHL_MASK) * RTE_IPV4_IHL_MULTIPLIER;
/* load 3-rd byte of IP data */
p8 = rte_pktmbuf_read(pkt, n + 3, sizeof(*p8), &dof);
if (p8 == NULL)
return 0;
v = p8[0];
/* load IPv4 src addr */
p32 = rte_pktmbuf_read(pkt,
offsetof(struct rte_ipv4_hdr, src_addr), sizeof(*p32),
&dof);
if (p32 == NULL)
return 0;
v += rte_be_to_cpu_32(p32[0]);
/* load IPv4 total length */
p16 = rte_pktmbuf_read(pkt,
offsetof(struct rte_ipv4_hdr, total_length), sizeof(*p16),
&dof);
if (p16 == NULL)
return 0;
n = rte_be_to_cpu_16(p16[0]);
/* load last 4 bytes of IP data */
p32 = rte_pktmbuf_read(pkt, n - sizeof(*p32), sizeof(*p32), &dof);
if (p32 == NULL)
return 0;
v += rte_be_to_cpu_32(p32[0]);
/* load 2 bytes from the middle of IP data */
p16 = rte_pktmbuf_read(pkt, n / 2, sizeof(*p16), &dof);
if (p16 == NULL)
return 0;
v += rte_be_to_cpu_16(p16[0]);
return v;
}
static int
test_ld_mbuf1_check(uint64_t rc, const void *arg)
{
const struct dummy_mbuf *dm;
uint64_t v;
dm = arg;
v = test_ld_mbuf1(dm->mb);
return cmp_res(__func__, v, rc, arg, arg, 0);
}
/*
* same as ld_mbuf1, but then truncate the mbuf by 1B,
* so load of last 4B fail.
*/
static void
test_ld_mbuf2_prepare(void *arg)
{
struct dummy_mbuf *dm;
test_ld_mbuf1_prepare(arg);
dm = arg;
rte_pktmbuf_trim(dm->mb, 1);
}
static int
test_ld_mbuf2_check(uint64_t rc, const void *arg)
{
return cmp_res(__func__, 0, rc, arg, arg, 0);
}
/* same as test_ld_mbuf1, but now store intermediate results on the stack */
static const struct ebpf_insn test_ld_mbuf3_prog[] = {
/* BPF_ABS/BPF_IND implicitly expect mbuf ptr in R6 */
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_6,
.src_reg = EBPF_REG_1,
},
/* load IPv4 version and IHL */
{
.code = (BPF_LD | BPF_ABS | BPF_B),
.imm = offsetof(struct rte_ipv4_hdr, version_ihl),
},
/* check IP version */
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_2,
.src_reg = EBPF_REG_0,
},
{
.code = (BPF_ALU | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = 0xf0,
},
{
.code = (BPF_JMP | BPF_JEQ | BPF_K),
.dst_reg = EBPF_REG_2,
.imm = IPVERSION << 4,
.off = 2,
},
/* invalid IP version, return 0 */
{
.code = (EBPF_ALU64 | BPF_XOR | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_0,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
/* load 3-rd byte of IP data */
{
.code = (BPF_ALU | BPF_AND | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = RTE_IPV4_HDR_IHL_MASK,
},
{
.code = (BPF_ALU | BPF_LSH | BPF_K),
.dst_reg = EBPF_REG_0,
.imm = 2,
},
{
.code = (BPF_LD | BPF_IND | BPF_B),
.src_reg = EBPF_REG_0,
.imm = 3,
},
{
.code = (BPF_STX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_10,
.src_reg = EBPF_REG_0,
.off = (int16_t)(offsetof(struct dummy_offset, u8) -
sizeof(struct dummy_offset)),
},
/* load IPv4 src addr */
{
.code = (BPF_LD | BPF_ABS | BPF_W),
.imm = offsetof(struct rte_ipv4_hdr, src_addr),
},
{
.code = (BPF_STX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_10,
.src_reg = EBPF_REG_0,
.off = (int16_t)(offsetof(struct dummy_offset, u32) -
sizeof(struct dummy_offset)),
},
/* load IPv4 total length */
{
.code = (BPF_LD | BPF_ABS | BPF_H),
.imm = offsetof(struct rte_ipv4_hdr, total_length),
},
{
.code = (EBPF_ALU64 | EBPF_MOV | BPF_X),
.dst_reg = EBPF_REG_8,
.src_reg = EBPF_REG_0,
},
/* load last 4 bytes of IP data */
{
.code = (BPF_LD | BPF_IND | BPF_W),
.src_reg = EBPF_REG_8,
.imm = -(int32_t)sizeof(uint32_t),
},
{
.code = (BPF_STX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_10,
.src_reg = EBPF_REG_0,
.off = (int16_t)(offsetof(struct dummy_offset, u64) -
sizeof(struct dummy_offset)),
},
/* load 2 bytes from the middle of IP data */
{
.code = (EBPF_ALU64 | BPF_RSH | BPF_K),
.dst_reg = EBPF_REG_8,
.imm = 1,
},
{
.code = (BPF_LD | BPF_IND | BPF_H),
.src_reg = EBPF_REG_8,
},
{
.code = (BPF_LDX | BPF_MEM | EBPF_DW),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
.off = (int16_t)(offsetof(struct dummy_offset, u64) -
sizeof(struct dummy_offset)),
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_1,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_W),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
.off = (int16_t)(offsetof(struct dummy_offset, u32) -
sizeof(struct dummy_offset)),
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_1,
},
{
.code = (BPF_LDX | BPF_MEM | BPF_B),
.dst_reg = EBPF_REG_1,
.src_reg = EBPF_REG_10,
.off = (int16_t)(offsetof(struct dummy_offset, u8) -
sizeof(struct dummy_offset)),
},
{
.code = (EBPF_ALU64 | BPF_ADD | BPF_X),
.dst_reg = EBPF_REG_0,
.src_reg = EBPF_REG_1,
},
{
.code = (BPF_JMP | EBPF_EXIT),
},
};
/* all bpf test cases */
static const struct bpf_test tests[] = {
{
.name = "test_store1",
.arg_sz = sizeof(struct dummy_offset),
.prm = {
.ins = test_store1_prog,
.nb_ins = RTE_DIM(test_store1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
},
.prepare = test_store1_prepare,
.check_result = test_store1_check,
},
{
.name = "test_store2",
.arg_sz = sizeof(struct dummy_offset),
.prm = {
.ins = test_store2_prog,
.nb_ins = RTE_DIM(test_store2_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
},
.prepare = test_store1_prepare,
.check_result = test_store1_check,
},
{
.name = "test_load1",
.arg_sz = sizeof(struct dummy_offset),
.prm = {
.ins = test_load1_prog,
.nb_ins = RTE_DIM(test_load1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
},
.prepare = test_load1_prepare,
.check_result = test_load1_check,
},
{
.name = "test_ldimm1",
.arg_sz = sizeof(struct dummy_offset),
.prm = {
.ins = test_ldimm1_prog,
.nb_ins = RTE_DIM(test_ldimm1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
},
.prepare = test_store1_prepare,
.check_result = test_ldimm1_check,
},
{
.name = "test_mul1",
.arg_sz = sizeof(struct dummy_vect8),
.prm = {
.ins = test_mul1_prog,
.nb_ins = RTE_DIM(test_mul1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_vect8),
},
},
.prepare = test_mul1_prepare,
.check_result = test_mul1_check,
},
{
.name = "test_shift1",
.arg_sz = sizeof(struct dummy_vect8),
.prm = {
.ins = test_shift1_prog,
.nb_ins = RTE_DIM(test_shift1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_vect8),
},
},
.prepare = test_shift1_prepare,
.check_result = test_shift1_check,
},
{
.name = "test_jump1",
.arg_sz = sizeof(struct dummy_vect8),
.prm = {
.ins = test_jump1_prog,
.nb_ins = RTE_DIM(test_jump1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_vect8),
},
},
.prepare = test_jump1_prepare,
.check_result = test_jump1_check,
},
{
.name = "test_jump2",
.arg_sz = sizeof(struct dummy_net),
.prm = {
.ins = test_jump2_prog,
.nb_ins = RTE_DIM(test_jump2_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_net),
},
},
.prepare = test_jump2_prepare,
.check_result = test_jump2_check,
},
{
.name = "test_alu1",
.arg_sz = sizeof(struct dummy_vect8),
.prm = {
.ins = test_alu1_prog,
.nb_ins = RTE_DIM(test_alu1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_vect8),
},
},
.prepare = test_jump1_prepare,
.check_result = test_alu1_check,
},
{
.name = "test_bele1",
.arg_sz = sizeof(struct dummy_vect8),
.prm = {
.ins = test_bele1_prog,
.nb_ins = RTE_DIM(test_bele1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_vect8),
},
},
.prepare = test_bele1_prepare,
.check_result = test_bele1_check,
},
{
.name = "test_xadd1",
.arg_sz = sizeof(struct dummy_offset),
.prm = {
.ins = test_xadd1_prog,
.nb_ins = RTE_DIM(test_xadd1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
},
.prepare = test_store1_prepare,
.check_result = test_xadd1_check,
},
{
.name = "test_div1",
.arg_sz = sizeof(struct dummy_vect8),
.prm = {
.ins = test_div1_prog,
.nb_ins = RTE_DIM(test_div1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_vect8),
},
},
.prepare = test_mul1_prepare,
.check_result = test_div1_check,
},
{
.name = "test_call1",
.arg_sz = sizeof(struct dummy_offset),
.prm = {
.ins = test_call1_prog,
.nb_ins = RTE_DIM(test_call1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
.xsym = test_call1_xsym,
.nb_xsym = RTE_DIM(test_call1_xsym),
},
.prepare = test_load1_prepare,
.check_result = test_call1_check,
/* for now don't support function calls on 32 bit platform */
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
},
{
.name = "test_call2",
.arg_sz = sizeof(struct dummy_offset),
.prm = {
.ins = test_call2_prog,
.nb_ins = RTE_DIM(test_call2_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
.xsym = test_call2_xsym,
.nb_xsym = RTE_DIM(test_call2_xsym),
},
.prepare = test_store1_prepare,
.check_result = test_call2_check,
/* for now don't support function calls on 32 bit platform */
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
},
{
.name = "test_call3",
.arg_sz = sizeof(struct dummy_vect8),
.prm = {
.ins = test_call3_prog,
.nb_ins = RTE_DIM(test_call3_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_vect8),
},
.xsym = test_call3_xsym,
.nb_xsym = RTE_DIM(test_call3_xsym),
},
.prepare = test_call3_prepare,
.check_result = test_call3_check,
/* for now don't support function calls on 32 bit platform */
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
},
{
.name = "test_call4",
.arg_sz = sizeof(struct dummy_offset),
.prm = {
.ins = test_call4_prog,
.nb_ins = RTE_DIM(test_call4_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = 2 * sizeof(struct dummy_offset),
},
.xsym = test_call4_xsym,
.nb_xsym = RTE_DIM(test_call4_xsym),
},
.prepare = test_store1_prepare,
.check_result = test_call4_check,
/* for now don't support function calls on 32 bit platform */
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
},
{
.name = "test_call5",
.arg_sz = sizeof(struct dummy_offset),
.prm = {
.ins = test_call5_prog,
.nb_ins = RTE_DIM(test_call5_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR,
.size = sizeof(struct dummy_offset),
},
.xsym = test_call5_xsym,
.nb_xsym = RTE_DIM(test_call5_xsym),
},
.prepare = test_store1_prepare,
.check_result = test_call5_check,
/* for now don't support function calls on 32 bit platform */
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
},
{
.name = "test_ld_mbuf1",
.arg_sz = sizeof(struct dummy_mbuf),
.prm = {
.ins = test_ld_mbuf1_prog,
.nb_ins = RTE_DIM(test_ld_mbuf1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR_MBUF,
.buf_size = sizeof(struct dummy_mbuf),
},
},
.prepare = test_ld_mbuf1_prepare,
.check_result = test_ld_mbuf1_check,
/* mbuf as input argument is not supported on 32 bit platform */
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
},
{
.name = "test_ld_mbuf2",
.arg_sz = sizeof(struct dummy_mbuf),
.prm = {
.ins = test_ld_mbuf1_prog,
.nb_ins = RTE_DIM(test_ld_mbuf1_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR_MBUF,
.buf_size = sizeof(struct dummy_mbuf),
},
},
.prepare = test_ld_mbuf2_prepare,
.check_result = test_ld_mbuf2_check,
/* mbuf as input argument is not supported on 32 bit platform */
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
},
{
.name = "test_ld_mbuf3",
.arg_sz = sizeof(struct dummy_mbuf),
.prm = {
.ins = test_ld_mbuf3_prog,
.nb_ins = RTE_DIM(test_ld_mbuf3_prog),
.prog_arg = {
.type = RTE_BPF_ARG_PTR_MBUF,
.buf_size = sizeof(struct dummy_mbuf),
},
},
.prepare = test_ld_mbuf1_prepare,
.check_result = test_ld_mbuf1_check,
/* mbuf as input argument is not supported on 32 bit platform */
.allow_fail = (sizeof(uint64_t) != sizeof(uintptr_t)),
},
};
static int
run_test(const struct bpf_test *tst)
{
int32_t ret, rv;
int64_t rc;
struct rte_bpf *bpf;
struct rte_bpf_jit jit;
uint8_t tbuf[tst->arg_sz];
printf("%s(%s) start\n", __func__, tst->name);
bpf = rte_bpf_load(&tst->prm);
if (bpf == NULL) {
printf("%s@%d: failed to load bpf code, error=%d(%s);\n",
__func__, __LINE__, rte_errno, strerror(rte_errno));
return -1;
}
tst->prepare(tbuf);
rc = rte_bpf_exec(bpf, tbuf);
ret = tst->check_result(rc, tbuf);
if (ret != 0) {
printf("%s@%d: check_result(%s) failed, error: %d(%s);\n",
__func__, __LINE__, tst->name, ret, strerror(ret));
}
/* repeat the same test with jit, when possible */
rte_bpf_get_jit(bpf, &jit);
if (jit.func != NULL) {
tst->prepare(tbuf);
rc = jit.func(tbuf);
rv = tst->check_result(rc, tbuf);
ret |= rv;
if (rv != 0) {
printf("%s@%d: check_result(%s) failed, "
"error: %d(%s);\n",
__func__, __LINE__, tst->name,
rv, strerror(rv));
}
}
rte_bpf_destroy(bpf);
return ret;
}
static int
test_bpf(void)
{
int32_t rc, rv;
uint32_t i;
rc = 0;
for (i = 0; i != RTE_DIM(tests); i++) {
rv = run_test(tests + i);
if (tests[i].allow_fail == 0)
rc |= rv;
}
return rc;
}
#endif /* !RTE_LIB_BPF */
REGISTER_TEST_COMMAND(bpf_autotest, test_bpf);
#ifndef RTE_HAS_LIBPCAP
static int
test_bpf_convert(void)
{
printf("BPF convert RTE_HAS_LIBPCAP is undefined, skipping test\n");
return TEST_SKIPPED;
}
#else
#include <pcap/pcap.h>
static void
test_bpf_dump(struct bpf_program *cbf, const struct rte_bpf_prm *prm)
{
printf("cBPF program (%u insns)\n", cbf->bf_len);
bpf_dump(cbf, 1);
if (prm != NULL) {
printf("\neBPF program (%u insns)\n", prm->nb_ins);
rte_bpf_dump(stdout, prm->ins, prm->nb_ins);
}
}
static int
test_bpf_match(pcap_t *pcap, const char *str,
struct rte_mbuf *mb)
{
struct bpf_program fcode;
struct rte_bpf_prm *prm = NULL;
struct rte_bpf *bpf = NULL;
int ret = -1;
uint64_t rc;
if (pcap_compile(pcap, &fcode, str, 1, PCAP_NETMASK_UNKNOWN)) {
printf("%s@%d: pcap_compile(\"%s\") failed: %s;\n",
__func__, __LINE__, str, pcap_geterr(pcap));
return -1;
}
prm = rte_bpf_convert(&fcode);
if (prm == NULL) {
printf("%s@%d: bpf_convert('%s') failed,, error=%d(%s);\n",
__func__, __LINE__, str, rte_errno, strerror(rte_errno));
goto error;
}
bpf = rte_bpf_load(prm);
if (bpf == NULL) {
printf("%s@%d: failed to load bpf code, error=%d(%s);\n",
__func__, __LINE__, rte_errno, strerror(rte_errno));
goto error;
}
rc = rte_bpf_exec(bpf, mb);
/* The return code from bpf capture filter is non-zero if matched */
ret = (rc == 0);
error:
if (bpf)
rte_bpf_destroy(bpf);
rte_free(prm);
pcap_freecode(&fcode);
return ret;
}
/* Basic sanity test can we match a IP packet */
static int
test_bpf_filter_sanity(pcap_t *pcap)
{
const uint32_t plen = 100;
struct rte_mbuf mb, *m;
uint8_t tbuf[RTE_MBUF_DEFAULT_BUF_SIZE];
struct {
struct rte_ether_hdr eth_hdr;
struct rte_ipv4_hdr ip_hdr;
} *hdr;
dummy_mbuf_prep(&mb, tbuf, sizeof(tbuf), plen);
m = &mb;
hdr = rte_pktmbuf_mtod(m, typeof(hdr));
hdr->eth_hdr = (struct rte_ether_hdr) {
.dst_addr.addr_bytes = "\xff\xff\xff\xff\xff\xff",
.ether_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4),
};
hdr->ip_hdr = (struct rte_ipv4_hdr) {
.version_ihl = RTE_IPV4_VHL_DEF,
.total_length = rte_cpu_to_be_16(plen),
.time_to_live = IPDEFTTL,
.next_proto_id = IPPROTO_RAW,
.src_addr = rte_cpu_to_be_32(RTE_IPV4_LOOPBACK),
.dst_addr = rte_cpu_to_be_32(RTE_IPV4_BROADCAST),
};
if (test_bpf_match(pcap, "ip", m) != 0) {
printf("%s@%d: filter \"ip\" doesn't match test data\n",
__func__, __LINE__);
return -1;
}
if (test_bpf_match(pcap, "not ip", m) == 0) {
printf("%s@%d: filter \"not ip\" does match test data\n",
__func__, __LINE__);
return -1;
}
return 0;
}
/*
* Some sample pcap filter strings from
* https://wiki.wireshark.org/CaptureFilters
*/
static const char * const sample_filters[] = {
"host 172.18.5.4",
"net 192.168.0.0/24",
"src net 192.168.0.0/24",
"src net 192.168.0.0 mask 255.255.255.0",
"dst net 192.168.0.0/24",
"dst net 192.168.0.0 mask 255.255.255.0",
"port 53",
"host 192.0.2.1 and not (port 80 or port 25)",
"host 2001:4b98:db0::8 and not port 80 and not port 25",
"port not 53 and not arp",
"(tcp[0:2] > 1500 and tcp[0:2] < 1550) or (tcp[2:2] > 1500 and tcp[2:2] < 1550)",
"ether proto 0x888e",
"ether[0] & 1 = 0 and ip[16] >= 224",
"icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply",
"tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net 127.0.0.1",
"not ether dst 01:80:c2:00:00:0e",
"not broadcast and not multicast",
"dst host ff02::1",
"port 80 and tcp[((tcp[12:1] & 0xf0) >> 2):4] = 0x47455420",
/* Worms */
"dst port 135 and tcp port 135 and ip[2:2]==48",
"icmp[icmptype]==icmp-echo and ip[2:2]==92 and icmp[8:4]==0xAAAAAAAA",
"dst port 135 or dst port 445 or dst port 1433"
" and tcp[tcpflags] & (tcp-syn) != 0"
" and tcp[tcpflags] & (tcp-ack) = 0 and src net 192.168.0.0/24",
"tcp src port 443 and (tcp[((tcp[12] & 0xF0) >> 4 ) * 4] = 0x18)"
" and (tcp[((tcp[12] & 0xF0) >> 4 ) * 4 + 1] = 0x03)"
" and (tcp[((tcp[12] & 0xF0) >> 4 ) * 4 + 2] < 0x04)"
" and ((ip[2:2] - 4 * (ip[0] & 0x0F) - 4 * ((tcp[12] & 0xF0) >> 4) > 69))",
/* Other */
"len = 128",
};
static int
test_bpf_filter(pcap_t *pcap, const char *s)
{
struct bpf_program fcode;
struct rte_bpf_prm *prm = NULL;
struct rte_bpf *bpf = NULL;
if (pcap_compile(pcap, &fcode, s, 1, PCAP_NETMASK_UNKNOWN)) {
printf("%s@%d: pcap_compile('%s') failed: %s;\n",
__func__, __LINE__, s, pcap_geterr(pcap));
return -1;
}
prm = rte_bpf_convert(&fcode);
if (prm == NULL) {
printf("%s@%d: bpf_convert('%s') failed,, error=%d(%s);\n",
__func__, __LINE__, s, rte_errno, strerror(rte_errno));
goto error;
}
bpf = rte_bpf_load(prm);
if (bpf == NULL) {
printf("%s@%d: failed to load bpf code, error=%d(%s);\n",
__func__, __LINE__, rte_errno, strerror(rte_errno));
goto error;
}
error:
if (bpf)
rte_bpf_destroy(bpf);
else {
printf("%s \"%s\"\n", __func__, s);
test_bpf_dump(&fcode, prm);
}
rte_free(prm);
pcap_freecode(&fcode);
return (bpf == NULL) ? -1 : 0;
}
static int
test_bpf_convert(void)
{
unsigned int i;
pcap_t *pcap;
int rc;
pcap = pcap_open_dead(DLT_EN10MB, 262144);
if (!pcap) {
printf("pcap_open_dead failed\n");
return -1;
}
rc = test_bpf_filter_sanity(pcap);
for (i = 0; i < RTE_DIM(sample_filters); i++)
rc |= test_bpf_filter(pcap, sample_filters[i]);
pcap_close(pcap);
return rc;
}
#endif /* RTE_HAS_LIBPCAP */
REGISTER_TEST_COMMAND(bpf_convert_autotest, test_bpf_convert);