numam-dpdk/drivers/net/bnxt/bnxt_vnic.c
Ajit Khaparde 0a256e4a54 net/bnxt: fix Rx ring count limitation
Fixed size of fw_grp_ids in VNIC is limiting the number of Rx rings
being created. With this patch we are allocating fw_grp_ids dynamically,
allowing us to get over this artificial limit.

Fixes: 9738793f28ec ("net/bnxt: add VNIC functions and structs")
Cc: stable@dpdk.org

Signed-off-by: Ajit Khaparde <ajit.khaparde@broadcom.com>
2018-07-03 01:35:58 +02:00

241 lines
5.6 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2014-2018 Broadcom
* All rights reserved.
*/
#include <inttypes.h>
#include <rte_memzone.h>
#include <rte_malloc.h>
#include "bnxt.h"
#include "bnxt_vnic.h"
#include "hsi_struct_def_dpdk.h"
/*
* VNIC Functions
*/
static void prandom_bytes(void *dest_ptr, size_t len)
{
char *dest = (char *)dest_ptr;
uint64_t rb;
while (len) {
rb = rte_rand();
if (len >= 8) {
memcpy(dest, &rb, 8);
len -= 8;
dest += 8;
} else {
memcpy(dest, &rb, len);
dest += len;
len = 0;
}
}
}
void bnxt_init_vnics(struct bnxt *bp)
{
struct bnxt_vnic_info *vnic;
uint16_t max_vnics;
int i;
max_vnics = bp->max_vnics;
STAILQ_INIT(&bp->free_vnic_list);
for (i = 0; i < max_vnics; i++) {
vnic = &bp->vnic_info[i];
vnic->fw_vnic_id = (uint16_t)HWRM_NA_SIGNATURE;
vnic->rss_rule = (uint16_t)HWRM_NA_SIGNATURE;
vnic->cos_rule = (uint16_t)HWRM_NA_SIGNATURE;
vnic->lb_rule = (uint16_t)HWRM_NA_SIGNATURE;
vnic->hash_mode =
HWRM_VNIC_RSS_CFG_INPUT_HASH_MODE_FLAGS_DEFAULT;
prandom_bytes(vnic->rss_hash_key, HW_HASH_KEY_SIZE);
STAILQ_INIT(&vnic->filter);
STAILQ_INIT(&vnic->flow_list);
STAILQ_INSERT_TAIL(&bp->free_vnic_list, vnic, next);
}
for (i = 0; i < MAX_FF_POOLS; i++)
STAILQ_INIT(&bp->ff_pool[i]);
}
int bnxt_free_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic,
int pool)
{
struct bnxt_vnic_info *temp;
temp = STAILQ_FIRST(&bp->ff_pool[pool]);
while (temp) {
if (temp == vnic) {
STAILQ_REMOVE(&bp->ff_pool[pool], vnic,
bnxt_vnic_info, next);
vnic->fw_vnic_id = (uint16_t)HWRM_NA_SIGNATURE;
STAILQ_INSERT_TAIL(&bp->free_vnic_list, vnic,
next);
return 0;
}
temp = STAILQ_NEXT(temp, next);
}
PMD_DRV_LOG(ERR, "VNIC %p is not found in pool[%d]\n", vnic, pool);
return -EINVAL;
}
struct bnxt_vnic_info *bnxt_alloc_vnic(struct bnxt *bp)
{
struct bnxt_vnic_info *vnic;
/* Find the 1st unused vnic from the free_vnic_list pool*/
vnic = STAILQ_FIRST(&bp->free_vnic_list);
if (!vnic) {
PMD_DRV_LOG(ERR, "No more free VNIC resources\n");
return NULL;
}
STAILQ_REMOVE_HEAD(&bp->free_vnic_list, next);
return vnic;
}
void bnxt_free_all_vnics(struct bnxt *bp)
{
struct bnxt_vnic_info *temp, *next;
int i;
for (i = 0; i < MAX_FF_POOLS; i++) {
temp = STAILQ_FIRST(&bp->ff_pool[i]);
while (temp) {
next = STAILQ_NEXT(temp, next);
STAILQ_REMOVE(&bp->ff_pool[i], temp, bnxt_vnic_info,
next);
STAILQ_INSERT_TAIL(&bp->free_vnic_list, temp, next);
temp = next;
}
}
}
void bnxt_free_vnic_attributes(struct bnxt *bp)
{
struct bnxt_vnic_info *vnic;
STAILQ_FOREACH(vnic, &bp->free_vnic_list, next) {
if (vnic->rss_table) {
/* 'Unreserve' the rss_table */
/* N/A */
vnic->rss_table = NULL;
}
if (vnic->rss_hash_key) {
/* 'Unreserve' the rss_hash_key */
/* N/A */
vnic->rss_hash_key = NULL;
}
}
}
int bnxt_alloc_vnic_attributes(struct bnxt *bp)
{
struct bnxt_vnic_info *vnic;
struct rte_pci_device *pdev = bp->pdev;
const struct rte_memzone *mz;
char mz_name[RTE_MEMZONE_NAMESIZE];
uint32_t entry_length = RTE_CACHE_LINE_ROUNDUP(
HW_HASH_INDEX_SIZE * sizeof(*vnic->rss_table) +
HW_HASH_KEY_SIZE +
BNXT_MAX_MC_ADDRS * ETHER_ADDR_LEN);
uint16_t max_vnics;
int i;
rte_iova_t mz_phys_addr;
max_vnics = bp->max_vnics;
snprintf(mz_name, RTE_MEMZONE_NAMESIZE,
"bnxt_%04x:%02x:%02x:%02x_vnicattr", pdev->addr.domain,
pdev->addr.bus, pdev->addr.devid, pdev->addr.function);
mz_name[RTE_MEMZONE_NAMESIZE - 1] = 0;
mz = rte_memzone_lookup(mz_name);
if (!mz) {
mz = rte_memzone_reserve(mz_name,
entry_length * max_vnics, SOCKET_ID_ANY,
RTE_MEMZONE_2MB |
RTE_MEMZONE_SIZE_HINT_ONLY |
RTE_MEMZONE_IOVA_CONTIG);
if (!mz)
return -ENOMEM;
}
mz_phys_addr = mz->iova;
if ((unsigned long)mz->addr == mz_phys_addr) {
PMD_DRV_LOG(WARNING,
"Memzone physical address same as virtual.\n");
PMD_DRV_LOG(WARNING,
"Using rte_mem_virt2iova()\n");
mz_phys_addr = rte_mem_virt2iova(mz->addr);
if (mz_phys_addr == 0) {
PMD_DRV_LOG(ERR,
"unable to map vnic address to physical memory\n");
return -ENOMEM;
}
}
for (i = 0; i < max_vnics; i++) {
vnic = &bp->vnic_info[i];
/* Allocate rss table and hash key */
vnic->rss_table =
(void *)((char *)mz->addr + (entry_length * i));
memset(vnic->rss_table, -1, entry_length);
vnic->rss_table_dma_addr = mz_phys_addr + (entry_length * i);
vnic->rss_hash_key = (void *)((char *)vnic->rss_table +
HW_HASH_INDEX_SIZE * sizeof(*vnic->rss_table));
vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr +
HW_HASH_INDEX_SIZE * sizeof(*vnic->rss_table);
vnic->mc_list = (void *)((char *)vnic->rss_hash_key +
HW_HASH_KEY_SIZE);
vnic->mc_list_dma_addr = vnic->rss_hash_key_dma_addr +
HW_HASH_KEY_SIZE;
}
return 0;
}
void bnxt_free_vnic_mem(struct bnxt *bp)
{
struct bnxt_vnic_info *vnic;
uint16_t max_vnics, i;
if (bp->vnic_info == NULL)
return;
max_vnics = bp->max_vnics;
for (i = 0; i < max_vnics; i++) {
vnic = &bp->vnic_info[i];
if (vnic->fw_vnic_id != (uint16_t)HWRM_NA_SIGNATURE) {
PMD_DRV_LOG(ERR, "VNIC is not freed yet!\n");
/* TODO Call HWRM to free VNIC */
}
}
rte_free(bp->vnic_info);
bp->vnic_info = NULL;
}
int bnxt_alloc_vnic_mem(struct bnxt *bp)
{
struct bnxt_vnic_info *vnic_mem;
uint16_t max_vnics;
max_vnics = bp->max_vnics;
/* Allocate memory for VNIC pool and filter pool */
vnic_mem = rte_zmalloc("bnxt_vnic_info",
max_vnics * sizeof(struct bnxt_vnic_info), 0);
if (vnic_mem == NULL) {
PMD_DRV_LOG(ERR, "Failed to alloc memory for %d VNICs",
max_vnics);
return -ENOMEM;
}
bp->vnic_info = vnic_mem;
return 0;
}