numam-dpdk/drivers/net/mlx5/mlx5_rxtx.c
Stephen Hemminger 6f3f0acd95 remove extra blank lines at end of files
There should not be blank lines at end of files.

Signed-off-by: Stephen Hemminger <stephen@networkplumber.org>
Acked-by: Bruce Richardson <bruce.richardson@intel.com>
2019-08-05 15:19:32 +02:00

5164 lines
150 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright 2015 6WIND S.A.
* Copyright 2015-2019 Mellanox Technologies, Ltd
*/
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
/* Verbs header. */
/* ISO C doesn't support unnamed structs/unions, disabling -pedantic. */
#ifdef PEDANTIC
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
#include <infiniband/verbs.h>
#include <infiniband/mlx5dv.h>
#ifdef PEDANTIC
#pragma GCC diagnostic error "-Wpedantic"
#endif
#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <rte_ether.h>
#include <rte_cycles.h>
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_autoconf.h"
#include "mlx5_defs.h"
#include "mlx5_prm.h"
/* TX burst subroutines return codes. */
enum mlx5_txcmp_code {
MLX5_TXCMP_CODE_EXIT = 0,
MLX5_TXCMP_CODE_ERROR,
MLX5_TXCMP_CODE_SINGLE,
MLX5_TXCMP_CODE_MULTI,
MLX5_TXCMP_CODE_TSO,
MLX5_TXCMP_CODE_EMPW,
};
/*
* These defines are used to configure Tx burst routine option set
* supported at compile time. The not specified options are optimized out
* out due to if conditions can be explicitly calculated at compile time.
* The offloads with bigger runtime check (require more CPU cycles to
* skip) overhead should have the bigger index - this is needed to
* select the better matching routine function if no exact match and
* some offloads are not actually requested.
*/
#define MLX5_TXOFF_CONFIG_MULTI (1u << 0) /* Multi-segment packets.*/
#define MLX5_TXOFF_CONFIG_TSO (1u << 1) /* TCP send offload supported.*/
#define MLX5_TXOFF_CONFIG_SWP (1u << 2) /* Tunnels/SW Parser offloads.*/
#define MLX5_TXOFF_CONFIG_CSUM (1u << 3) /* Check Sums offloaded. */
#define MLX5_TXOFF_CONFIG_INLINE (1u << 4) /* Data inlining supported. */
#define MLX5_TXOFF_CONFIG_VLAN (1u << 5) /* VLAN insertion supported.*/
#define MLX5_TXOFF_CONFIG_METADATA (1u << 6) /* Flow metadata. */
#define MLX5_TXOFF_CONFIG_EMPW (1u << 8) /* Enhanced MPW supported.*/
/* The most common offloads groups. */
#define MLX5_TXOFF_CONFIG_NONE 0
#define MLX5_TXOFF_CONFIG_FULL (MLX5_TXOFF_CONFIG_MULTI | \
MLX5_TXOFF_CONFIG_TSO | \
MLX5_TXOFF_CONFIG_SWP | \
MLX5_TXOFF_CONFIG_CSUM | \
MLX5_TXOFF_CONFIG_INLINE | \
MLX5_TXOFF_CONFIG_VLAN | \
MLX5_TXOFF_CONFIG_METADATA)
#define MLX5_TXOFF_CONFIG(mask) (olx & MLX5_TXOFF_CONFIG_##mask)
#define MLX5_TXOFF_DECL(func, olx) \
static uint16_t mlx5_tx_burst_##func(void *txq, \
struct rte_mbuf **pkts, \
uint16_t pkts_n) \
{ \
return mlx5_tx_burst_tmpl((struct mlx5_txq_data *)txq, \
pkts, pkts_n, (olx)); \
}
#define MLX5_TXOFF_INFO(func, olx) {mlx5_tx_burst_##func, olx},
static __rte_always_inline uint32_t
rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe);
static __rte_always_inline int
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe);
static __rte_always_inline uint32_t
rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe);
static __rte_always_inline void
rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res);
static __rte_always_inline void
mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx,
const unsigned int strd_n);
static int
mlx5_queue_state_modify(struct rte_eth_dev *dev,
struct mlx5_mp_arg_queue_state_modify *sm);
static inline void
mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *restrict tcp,
volatile struct mlx5_cqe *restrict cqe,
uint32_t phcsum);
static inline void
mlx5_lro_update_hdr(uint8_t *restrict padd,
volatile struct mlx5_cqe *restrict cqe,
uint32_t len);
uint32_t mlx5_ptype_table[] __rte_cache_aligned = {
[0xff] = RTE_PTYPE_ALL_MASK, /* Last entry for errored packet. */
};
uint8_t mlx5_cksum_table[1 << 10] __rte_cache_aligned;
uint8_t mlx5_swp_types_table[1 << 10] __rte_cache_aligned;
/**
* Build a table to translate Rx completion flags to packet type.
*
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
*/
void
mlx5_set_ptype_table(void)
{
unsigned int i;
uint32_t (*p)[RTE_DIM(mlx5_ptype_table)] = &mlx5_ptype_table;
/* Last entry must not be overwritten, reserved for errored packet. */
for (i = 0; i < RTE_DIM(mlx5_ptype_table) - 1; ++i)
(*p)[i] = RTE_PTYPE_UNKNOWN;
/*
* The index to the array should have:
* bit[1:0] = l3_hdr_type
* bit[4:2] = l4_hdr_type
* bit[5] = ip_frag
* bit[6] = tunneled
* bit[7] = outer_l3_type
*/
/* L2 */
(*p)[0x00] = RTE_PTYPE_L2_ETHER;
/* L3 */
(*p)[0x01] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
(*p)[0x02] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
/* Fragmented */
(*p)[0x21] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
(*p)[0x22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
/* TCP */
(*p)[0x05] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x06] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x0d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x0e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x11] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x12] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
/* UDP */
(*p)[0x09] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
(*p)[0x0a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
/* Repeat with outer_l3_type being set. Just in case. */
(*p)[0x81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
(*p)[0x82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_NONFRAG;
(*p)[0xa1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
(*p)[0xa2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_FRAG;
(*p)[0x85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x8d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x8e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x91] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_TCP;
(*p)[0x89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
(*p)[0x8a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_L4_UDP;
/* Tunneled - L3 */
(*p)[0x40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
(*p)[0x41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
(*p)[0x42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
(*p)[0xc0] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
(*p)[0xc1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
(*p)[0xc2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_NONFRAG;
/* Tunneled - Fragmented */
(*p)[0x61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
(*p)[0x62] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
(*p)[0xe1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
(*p)[0xe2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_FRAG;
/* Tunneled - TCP */
(*p)[0x45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x4d] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x4e] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0x52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xc5] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xc6] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xcd] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xce] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xd1] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
(*p)[0xd2] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_TCP;
/* Tunneled - UDP */
(*p)[0x49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
(*p)[0x4a] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
(*p)[0xc9] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
(*p)[0xca] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
RTE_PTYPE_INNER_L4_UDP;
}
/**
* Build a table to translate packet to checksum type of Verbs.
*/
void
mlx5_set_cksum_table(void)
{
unsigned int i;
uint8_t v;
/*
* The index should have:
* bit[0] = PKT_TX_TCP_SEG
* bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
* bit[4] = PKT_TX_IP_CKSUM
* bit[8] = PKT_TX_OUTER_IP_CKSUM
* bit[9] = tunnel
*/
for (i = 0; i < RTE_DIM(mlx5_cksum_table); ++i) {
v = 0;
if (i & (1 << 9)) {
/* Tunneled packet. */
if (i & (1 << 8)) /* Outer IP. */
v |= MLX5_ETH_WQE_L3_CSUM;
if (i & (1 << 4)) /* Inner IP. */
v |= MLX5_ETH_WQE_L3_INNER_CSUM;
if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
v |= MLX5_ETH_WQE_L4_INNER_CSUM;
} else {
/* No tunnel. */
if (i & (1 << 4)) /* IP. */
v |= MLX5_ETH_WQE_L3_CSUM;
if (i & (3 << 2 | 1 << 0)) /* L4 or TSO. */
v |= MLX5_ETH_WQE_L4_CSUM;
}
mlx5_cksum_table[i] = v;
}
}
/**
* Build a table to translate packet type of mbuf to SWP type of Verbs.
*/
void
mlx5_set_swp_types_table(void)
{
unsigned int i;
uint8_t v;
/*
* The index should have:
* bit[0:1] = PKT_TX_L4_MASK
* bit[4] = PKT_TX_IPV6
* bit[8] = PKT_TX_OUTER_IPV6
* bit[9] = PKT_TX_OUTER_UDP
*/
for (i = 0; i < RTE_DIM(mlx5_swp_types_table); ++i) {
v = 0;
if (i & (1 << 8))
v |= MLX5_ETH_WQE_L3_OUTER_IPV6;
if (i & (1 << 9))
v |= MLX5_ETH_WQE_L4_OUTER_UDP;
if (i & (1 << 4))
v |= MLX5_ETH_WQE_L3_INNER_IPV6;
if ((i & 3) == (PKT_TX_UDP_CKSUM >> 52))
v |= MLX5_ETH_WQE_L4_INNER_UDP;
mlx5_swp_types_table[i] = v;
}
}
/**
* Set Software Parser flags and offsets in Ethernet Segment of WQE.
* Flags must be preliminary initialized to zero.
*
* @param loc
* Pointer to burst routine local context.
* @param swp_flags
* Pointer to store Software Parser flags
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Software Parser offsets packed in dword.
* Software Parser flags are set by pointer.
*/
static __rte_always_inline uint32_t
txq_mbuf_to_swp(struct mlx5_txq_local *restrict loc,
uint8_t *swp_flags,
unsigned int olx)
{
uint64_t ol, tunnel;
unsigned int idx, off;
uint32_t set;
if (!MLX5_TXOFF_CONFIG(SWP))
return 0;
ol = loc->mbuf->ol_flags;
tunnel = ol & PKT_TX_TUNNEL_MASK;
/*
* Check whether Software Parser is required.
* Only customized tunnels may ask for.
*/
if (likely(tunnel != PKT_TX_TUNNEL_UDP && tunnel != PKT_TX_TUNNEL_IP))
return 0;
/*
* The index should have:
* bit[0:1] = PKT_TX_L4_MASK
* bit[4] = PKT_TX_IPV6
* bit[8] = PKT_TX_OUTER_IPV6
* bit[9] = PKT_TX_OUTER_UDP
*/
idx = (ol & (PKT_TX_L4_MASK | PKT_TX_IPV6 | PKT_TX_OUTER_IPV6)) >> 52;
idx |= (tunnel == PKT_TX_TUNNEL_UDP) ? (1 << 9) : 0;
*swp_flags = mlx5_swp_types_table[idx];
/*
* Set offsets for SW parser. Since ConnectX-5, SW parser just
* complements HW parser. SW parser starts to engage only if HW parser
* can't reach a header. For the older devices, HW parser will not kick
* in if any of SWP offsets is set. Therefore, all of the L3 offsets
* should be set regardless of HW offload.
*/
off = loc->mbuf->outer_l2_len;
if (MLX5_TXOFF_CONFIG(VLAN) && ol & PKT_TX_VLAN_PKT)
off += sizeof(struct rte_vlan_hdr);
set = (off >> 1) << 8; /* Outer L3 offset. */
off += loc->mbuf->outer_l3_len;
if (tunnel == PKT_TX_TUNNEL_UDP)
set |= off >> 1; /* Outer L4 offset. */
if (ol & (PKT_TX_IPV4 | PKT_TX_IPV6)) { /* Inner IP. */
const uint64_t csum = ol & PKT_TX_L4_MASK;
off += loc->mbuf->l2_len;
set |= (off >> 1) << 24; /* Inner L3 offset. */
if (csum == PKT_TX_TCP_CKSUM ||
csum == PKT_TX_UDP_CKSUM ||
(MLX5_TXOFF_CONFIG(TSO) && ol & PKT_TX_TCP_SEG)) {
off += loc->mbuf->l3_len;
set |= (off >> 1) << 16; /* Inner L4 offset. */
}
}
set = rte_cpu_to_le_32(set);
return set;
}
/**
* Convert the Checksum offloads to Verbs.
*
* @param buf
* Pointer to the mbuf.
*
* @return
* Converted checksum flags.
*/
static __rte_always_inline uint8_t
txq_ol_cksum_to_cs(struct rte_mbuf *buf)
{
uint32_t idx;
uint8_t is_tunnel = !!(buf->ol_flags & PKT_TX_TUNNEL_MASK);
const uint64_t ol_flags_mask = PKT_TX_TCP_SEG | PKT_TX_L4_MASK |
PKT_TX_IP_CKSUM | PKT_TX_OUTER_IP_CKSUM;
/*
* The index should have:
* bit[0] = PKT_TX_TCP_SEG
* bit[2:3] = PKT_TX_UDP_CKSUM, PKT_TX_TCP_CKSUM
* bit[4] = PKT_TX_IP_CKSUM
* bit[8] = PKT_TX_OUTER_IP_CKSUM
* bit[9] = tunnel
*/
idx = ((buf->ol_flags & ol_flags_mask) >> 50) | (!!is_tunnel << 9);
return mlx5_cksum_table[idx];
}
/**
* Internal function to compute the number of used descriptors in an RX queue
*
* @param rxq
* The Rx queue.
*
* @return
* The number of used rx descriptor.
*/
static uint32_t
rx_queue_count(struct mlx5_rxq_data *rxq)
{
struct rxq_zip *zip = &rxq->zip;
volatile struct mlx5_cqe *cqe;
const unsigned int cqe_n = (1 << rxq->cqe_n);
const unsigned int cqe_cnt = cqe_n - 1;
unsigned int cq_ci;
unsigned int used;
/* if we are processing a compressed cqe */
if (zip->ai) {
used = zip->cqe_cnt - zip->ca;
cq_ci = zip->cq_ci;
} else {
used = 0;
cq_ci = rxq->cq_ci;
}
cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
while (check_cqe(cqe, cqe_n, cq_ci) != MLX5_CQE_STATUS_HW_OWN) {
int8_t op_own;
unsigned int n;
op_own = cqe->op_own;
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED)
n = rte_be_to_cpu_32(cqe->byte_cnt);
else
n = 1;
cq_ci += n;
used += n;
cqe = &(*rxq->cqes)[cq_ci & cqe_cnt];
}
used = RTE_MIN(used, (1U << rxq->elts_n) - 1);
return used;
}
/**
* DPDK callback to check the status of a rx descriptor.
*
* @param rx_queue
* The Rx queue.
* @param[in] offset
* The index of the descriptor in the ring.
*
* @return
* The status of the tx descriptor.
*/
int
mlx5_rx_descriptor_status(void *rx_queue, uint16_t offset)
{
struct mlx5_rxq_data *rxq = rx_queue;
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
struct rte_eth_dev *dev = ETH_DEV(rxq_ctrl->priv);
if (dev->rx_pkt_burst != mlx5_rx_burst) {
rte_errno = ENOTSUP;
return -rte_errno;
}
if (offset >= (1 << rxq->elts_n)) {
rte_errno = EINVAL;
return -rte_errno;
}
if (offset < rx_queue_count(rxq))
return RTE_ETH_RX_DESC_DONE;
return RTE_ETH_RX_DESC_AVAIL;
}
/**
* DPDK callback to get the number of used descriptors in a RX queue
*
* @param dev
* Pointer to the device structure.
*
* @param rx_queue_id
* The Rx queue.
*
* @return
* The number of used rx descriptor.
* -EINVAL if the queue is invalid
*/
uint32_t
mlx5_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_rxq_data *rxq;
if (dev->rx_pkt_burst != mlx5_rx_burst) {
rte_errno = ENOTSUP;
return -rte_errno;
}
rxq = (*priv->rxqs)[rx_queue_id];
if (!rxq) {
rte_errno = EINVAL;
return -rte_errno;
}
return rx_queue_count(rxq);
}
#define MLX5_SYSTEM_LOG_DIR "/var/log"
/**
* Dump debug information to log file.
*
* @param fname
* The file name.
* @param hex_title
* If not NULL this string is printed as a header to the output
* and the output will be in hexadecimal view.
* @param buf
* This is the buffer address to print out.
* @param len
* The number of bytes to dump out.
*/
void
mlx5_dump_debug_information(const char *fname, const char *hex_title,
const void *buf, unsigned int hex_len)
{
FILE *fd;
MKSTR(path, "%s/%s", MLX5_SYSTEM_LOG_DIR, fname);
fd = fopen(path, "a+");
if (!fd) {
DRV_LOG(WARNING, "cannot open %s for debug dump\n",
path);
MKSTR(path2, "./%s", fname);
fd = fopen(path2, "a+");
if (!fd) {
DRV_LOG(ERR, "cannot open %s for debug dump\n",
path2);
return;
}
DRV_LOG(INFO, "New debug dump in file %s\n", path2);
} else {
DRV_LOG(INFO, "New debug dump in file %s\n", path);
}
if (hex_title)
rte_hexdump(fd, hex_title, buf, hex_len);
else
fprintf(fd, "%s", (const char *)buf);
fprintf(fd, "\n\n\n");
fclose(fd);
}
/**
* Move QP from error state to running state and initialize indexes.
*
* @param txq_ctrl
* Pointer to TX queue control structure.
*
* @return
* 0 on success, else -1.
*/
static int
tx_recover_qp(struct mlx5_txq_ctrl *txq_ctrl)
{
struct mlx5_mp_arg_queue_state_modify sm = {
.is_wq = 0,
.queue_id = txq_ctrl->txq.idx,
};
if (mlx5_queue_state_modify(ETH_DEV(txq_ctrl->priv), &sm))
return -1;
txq_ctrl->txq.wqe_ci = 0;
txq_ctrl->txq.wqe_pi = 0;
txq_ctrl->txq.elts_comp = 0;
return 0;
}
/* Return 1 if the error CQE is signed otherwise, sign it and return 0. */
static int
check_err_cqe_seen(volatile struct mlx5_err_cqe *err_cqe)
{
static const uint8_t magic[] = "seen";
int ret = 1;
unsigned int i;
for (i = 0; i < sizeof(magic); ++i)
if (!ret || err_cqe->rsvd1[i] != magic[i]) {
ret = 0;
err_cqe->rsvd1[i] = magic[i];
}
return ret;
}
/**
* Handle error CQE.
*
* @param txq
* Pointer to TX queue structure.
* @param error_cqe
* Pointer to the error CQE.
*
* @return
* The last Tx buffer element to free.
*/
uint16_t
mlx5_tx_error_cqe_handle(struct mlx5_txq_data *restrict txq,
volatile struct mlx5_err_cqe *err_cqe)
{
if (err_cqe->syndrome != MLX5_CQE_SYNDROME_WR_FLUSH_ERR) {
const uint16_t wqe_m = ((1 << txq->wqe_n) - 1);
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
uint16_t new_wqe_pi = rte_be_to_cpu_16(err_cqe->wqe_counter);
int seen = check_err_cqe_seen(err_cqe);
if (!seen && txq_ctrl->dump_file_n <
txq_ctrl->priv->config.max_dump_files_num) {
MKSTR(err_str, "Unexpected CQE error syndrome "
"0x%02x CQN = %u SQN = %u wqe_counter = %u "
"wq_ci = %u cq_ci = %u", err_cqe->syndrome,
txq->cqe_s, txq->qp_num_8s >> 8,
rte_be_to_cpu_16(err_cqe->wqe_counter),
txq->wqe_ci, txq->cq_ci);
MKSTR(name, "dpdk_mlx5_port_%u_txq_%u_index_%u_%u",
PORT_ID(txq_ctrl->priv), txq->idx,
txq_ctrl->dump_file_n, (uint32_t)rte_rdtsc());
mlx5_dump_debug_information(name, NULL, err_str, 0);
mlx5_dump_debug_information(name, "MLX5 Error CQ:",
(const void *)((uintptr_t)
txq->cqes),
sizeof(*err_cqe) *
(1 << txq->cqe_n));
mlx5_dump_debug_information(name, "MLX5 Error SQ:",
(const void *)((uintptr_t)
txq->wqes),
MLX5_WQE_SIZE *
(1 << txq->wqe_n));
txq_ctrl->dump_file_n++;
}
if (!seen)
/*
* Count errors in WQEs units.
* Later it can be improved to count error packets,
* for example, by SQ parsing to find how much packets
* should be counted for each WQE.
*/
txq->stats.oerrors += ((txq->wqe_ci & wqe_m) -
new_wqe_pi) & wqe_m;
if (tx_recover_qp(txq_ctrl) == 0) {
txq->cq_ci++;
/* Release all the remaining buffers. */
return txq->elts_head;
}
/* Recovering failed - try again later on the same WQE. */
} else {
txq->cq_ci++;
}
/* Do not release buffers. */
return txq->elts_tail;
}
/**
* Translate RX completion flags to packet type.
*
* @param[in] rxq
* Pointer to RX queue structure.
* @param[in] cqe
* Pointer to CQE.
*
* @note: fix mlx5_dev_supported_ptypes_get() if any change here.
*
* @return
* Packet type for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_pkt_type(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe)
{
uint8_t idx;
uint8_t pinfo = cqe->pkt_info;
uint16_t ptype = cqe->hdr_type_etc;
/*
* The index to the array should have:
* bit[1:0] = l3_hdr_type
* bit[4:2] = l4_hdr_type
* bit[5] = ip_frag
* bit[6] = tunneled
* bit[7] = outer_l3_type
*/
idx = ((pinfo & 0x3) << 6) | ((ptype & 0xfc00) >> 10);
return mlx5_ptype_table[idx] | rxq->tunnel * !!(idx & (1 << 6));
}
/**
* Initialize Rx WQ and indexes.
*
* @param[in] rxq
* Pointer to RX queue structure.
*/
void
mlx5_rxq_initialize(struct mlx5_rxq_data *rxq)
{
const unsigned int wqe_n = 1 << rxq->elts_n;
unsigned int i;
for (i = 0; (i != wqe_n); ++i) {
volatile struct mlx5_wqe_data_seg *scat;
uintptr_t addr;
uint32_t byte_count;
if (mlx5_rxq_mprq_enabled(rxq)) {
struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[i];
scat = &((volatile struct mlx5_wqe_mprq *)
rxq->wqes)[i].dseg;
addr = (uintptr_t)mlx5_mprq_buf_addr(buf,
1 << rxq->strd_num_n);
byte_count = (1 << rxq->strd_sz_n) *
(1 << rxq->strd_num_n);
} else {
struct rte_mbuf *buf = (*rxq->elts)[i];
scat = &((volatile struct mlx5_wqe_data_seg *)
rxq->wqes)[i];
addr = rte_pktmbuf_mtod(buf, uintptr_t);
byte_count = DATA_LEN(buf);
}
/* scat->addr must be able to store a pointer. */
assert(sizeof(scat->addr) >= sizeof(uintptr_t));
*scat = (struct mlx5_wqe_data_seg){
.addr = rte_cpu_to_be_64(addr),
.byte_count = rte_cpu_to_be_32(byte_count),
.lkey = mlx5_rx_addr2mr(rxq, addr),
};
}
rxq->consumed_strd = 0;
rxq->decompressed = 0;
rxq->rq_pi = 0;
rxq->zip = (struct rxq_zip){
.ai = 0,
};
/* Update doorbell counter. */
rxq->rq_ci = wqe_n >> rxq->sges_n;
rte_cio_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
}
/**
* Modify a Verbs/DevX queue state.
* This must be called from the primary process.
*
* @param dev
* Pointer to Ethernet device.
* @param sm
* State modify request parameters.
*
* @return
* 0 in case of success else non-zero value and rte_errno is set.
*/
int
mlx5_queue_state_modify_primary(struct rte_eth_dev *dev,
const struct mlx5_mp_arg_queue_state_modify *sm)
{
int ret;
struct mlx5_priv *priv = dev->data->dev_private;
if (sm->is_wq) {
struct mlx5_rxq_data *rxq = (*priv->rxqs)[sm->queue_id];
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
if (rxq_ctrl->obj->type == MLX5_RXQ_OBJ_TYPE_IBV) {
struct ibv_wq_attr mod = {
.attr_mask = IBV_WQ_ATTR_STATE,
.wq_state = sm->state,
};
ret = mlx5_glue->modify_wq(rxq_ctrl->obj->wq, &mod);
} else { /* rxq_ctrl->obj->type == MLX5_RXQ_OBJ_TYPE_DEVX_RQ. */
struct mlx5_devx_modify_rq_attr rq_attr;
memset(&rq_attr, 0, sizeof(rq_attr));
if (sm->state == IBV_WQS_RESET) {
rq_attr.rq_state = MLX5_RQC_STATE_ERR;
rq_attr.state = MLX5_RQC_STATE_RST;
} else if (sm->state == IBV_WQS_RDY) {
rq_attr.rq_state = MLX5_RQC_STATE_RST;
rq_attr.state = MLX5_RQC_STATE_RDY;
} else if (sm->state == IBV_WQS_ERR) {
rq_attr.rq_state = MLX5_RQC_STATE_RDY;
rq_attr.state = MLX5_RQC_STATE_ERR;
}
ret = mlx5_devx_cmd_modify_rq(rxq_ctrl->obj->rq,
&rq_attr);
}
if (ret) {
DRV_LOG(ERR, "Cannot change Rx WQ state to %u - %s\n",
sm->state, strerror(errno));
rte_errno = errno;
return ret;
}
} else {
struct mlx5_txq_data *txq = (*priv->txqs)[sm->queue_id];
struct mlx5_txq_ctrl *txq_ctrl =
container_of(txq, struct mlx5_txq_ctrl, txq);
struct ibv_qp_attr mod = {
.qp_state = IBV_QPS_RESET,
.port_num = (uint8_t)priv->ibv_port,
};
struct ibv_qp *qp = txq_ctrl->ibv->qp;
ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE);
if (ret) {
DRV_LOG(ERR, "Cannot change the Tx QP state to RESET "
"%s\n", strerror(errno));
rte_errno = errno;
return ret;
}
mod.qp_state = IBV_QPS_INIT;
ret = mlx5_glue->modify_qp(qp, &mod,
(IBV_QP_STATE | IBV_QP_PORT));
if (ret) {
DRV_LOG(ERR, "Cannot change Tx QP state to INIT %s\n",
strerror(errno));
rte_errno = errno;
return ret;
}
mod.qp_state = IBV_QPS_RTR;
ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE);
if (ret) {
DRV_LOG(ERR, "Cannot change Tx QP state to RTR %s\n",
strerror(errno));
rte_errno = errno;
return ret;
}
mod.qp_state = IBV_QPS_RTS;
ret = mlx5_glue->modify_qp(qp, &mod, IBV_QP_STATE);
if (ret) {
DRV_LOG(ERR, "Cannot change Tx QP state to RTS %s\n",
strerror(errno));
rte_errno = errno;
return ret;
}
}
return 0;
}
/**
* Modify a Verbs queue state.
*
* @param dev
* Pointer to Ethernet device.
* @param sm
* State modify request parameters.
*
* @return
* 0 in case of success else non-zero value.
*/
static int
mlx5_queue_state_modify(struct rte_eth_dev *dev,
struct mlx5_mp_arg_queue_state_modify *sm)
{
int ret = 0;
switch (rte_eal_process_type()) {
case RTE_PROC_PRIMARY:
ret = mlx5_queue_state_modify_primary(dev, sm);
break;
case RTE_PROC_SECONDARY:
ret = mlx5_mp_req_queue_state_modify(dev, sm);
break;
default:
break;
}
return ret;
}
/**
* Handle a Rx error.
* The function inserts the RQ state to reset when the first error CQE is
* shown, then drains the CQ by the caller function loop. When the CQ is empty,
* it moves the RQ state to ready and initializes the RQ.
* Next CQE identification and error counting are in the caller responsibility.
*
* @param[in] rxq
* Pointer to RX queue structure.
* @param[in] mbuf_prepare
* Whether to prepare mbufs for the RQ.
*
* @return
* -1 in case of recovery error, otherwise the CQE status.
*/
int
mlx5_rx_err_handle(struct mlx5_rxq_data *rxq, uint8_t mbuf_prepare)
{
const uint16_t cqe_n = 1 << rxq->cqe_n;
const uint16_t cqe_mask = cqe_n - 1;
const unsigned int wqe_n = 1 << rxq->elts_n;
struct mlx5_rxq_ctrl *rxq_ctrl =
container_of(rxq, struct mlx5_rxq_ctrl, rxq);
union {
volatile struct mlx5_cqe *cqe;
volatile struct mlx5_err_cqe *err_cqe;
} u = {
.cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_mask],
};
struct mlx5_mp_arg_queue_state_modify sm;
int ret;
switch (rxq->err_state) {
case MLX5_RXQ_ERR_STATE_NO_ERROR:
rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_RESET;
/* Fall-through */
case MLX5_RXQ_ERR_STATE_NEED_RESET:
sm.is_wq = 1;
sm.queue_id = rxq->idx;
sm.state = IBV_WQS_RESET;
if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv), &sm))
return -1;
if (rxq_ctrl->dump_file_n <
rxq_ctrl->priv->config.max_dump_files_num) {
MKSTR(err_str, "Unexpected CQE error syndrome "
"0x%02x CQN = %u RQN = %u wqe_counter = %u"
" rq_ci = %u cq_ci = %u", u.err_cqe->syndrome,
rxq->cqn, rxq_ctrl->wqn,
rte_be_to_cpu_16(u.err_cqe->wqe_counter),
rxq->rq_ci << rxq->sges_n, rxq->cq_ci);
MKSTR(name, "dpdk_mlx5_port_%u_rxq_%u_%u",
rxq->port_id, rxq->idx, (uint32_t)rte_rdtsc());
mlx5_dump_debug_information(name, NULL, err_str, 0);
mlx5_dump_debug_information(name, "MLX5 Error CQ:",
(const void *)((uintptr_t)
rxq->cqes),
sizeof(*u.cqe) * cqe_n);
mlx5_dump_debug_information(name, "MLX5 Error RQ:",
(const void *)((uintptr_t)
rxq->wqes),
16 * wqe_n);
rxq_ctrl->dump_file_n++;
}
rxq->err_state = MLX5_RXQ_ERR_STATE_NEED_READY;
/* Fall-through */
case MLX5_RXQ_ERR_STATE_NEED_READY:
ret = check_cqe(u.cqe, cqe_n, rxq->cq_ci);
if (ret == MLX5_CQE_STATUS_HW_OWN) {
rte_cio_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
rte_cio_wmb();
/*
* The RQ consumer index must be zeroed while moving
* from RESET state to RDY state.
*/
*rxq->rq_db = rte_cpu_to_be_32(0);
rte_cio_wmb();
sm.is_wq = 1;
sm.queue_id = rxq->idx;
sm.state = IBV_WQS_RDY;
if (mlx5_queue_state_modify(ETH_DEV(rxq_ctrl->priv),
&sm))
return -1;
if (mbuf_prepare) {
const uint16_t q_mask = wqe_n - 1;
uint16_t elt_idx;
struct rte_mbuf **elt;
int i;
unsigned int n = wqe_n - (rxq->rq_ci -
rxq->rq_pi);
for (i = 0; i < (int)n; ++i) {
elt_idx = (rxq->rq_ci + i) & q_mask;
elt = &(*rxq->elts)[elt_idx];
*elt = rte_mbuf_raw_alloc(rxq->mp);
if (!*elt) {
for (i--; i >= 0; --i) {
elt_idx = (rxq->rq_ci +
i) & q_mask;
elt = &(*rxq->elts)
[elt_idx];
rte_pktmbuf_free_seg
(*elt);
}
return -1;
}
}
}
mlx5_rxq_initialize(rxq);
rxq->err_state = MLX5_RXQ_ERR_STATE_NO_ERROR;
}
return ret;
default:
return -1;
}
}
/**
* Get size of the next packet for a given CQE. For compressed CQEs, the
* consumer index is updated only once all packets of the current one have
* been processed.
*
* @param rxq
* Pointer to RX queue.
* @param cqe
* CQE to process.
* @param[out] mcqe
* Store pointer to mini-CQE if compressed. Otherwise, the pointer is not
* written.
*
* @return
* 0 in case of empty CQE, otherwise the packet size in bytes.
*/
static inline int
mlx5_rx_poll_len(struct mlx5_rxq_data *rxq, volatile struct mlx5_cqe *cqe,
uint16_t cqe_cnt, volatile struct mlx5_mini_cqe8 **mcqe)
{
struct rxq_zip *zip = &rxq->zip;
uint16_t cqe_n = cqe_cnt + 1;
int len;
uint16_t idx, end;
do {
len = 0;
/* Process compressed data in the CQE and mini arrays. */
if (zip->ai) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)[zip->ca &
cqe_cnt].pkt_info);
len = rte_be_to_cpu_32((*mc)[zip->ai & 7].byte_cnt);
*mcqe = &(*mc)[zip->ai & 7];
if ((++zip->ai & 7) == 0) {
/* Invalidate consumed CQEs */
idx = zip->ca;
end = zip->na;
while (idx != end) {
(*rxq->cqes)[idx & cqe_cnt].op_own =
MLX5_CQE_INVALIDATE;
++idx;
}
/*
* Increment consumer index to skip the number
* of CQEs consumed. Hardware leaves holes in
* the CQ ring for software use.
*/
zip->ca = zip->na;
zip->na += 8;
}
if (unlikely(rxq->zip.ai == rxq->zip.cqe_cnt)) {
/* Invalidate the rest */
idx = zip->ca;
end = zip->cq_ci;
while (idx != end) {
(*rxq->cqes)[idx & cqe_cnt].op_own =
MLX5_CQE_INVALIDATE;
++idx;
}
rxq->cq_ci = zip->cq_ci;
zip->ai = 0;
}
/*
* No compressed data, get next CQE and verify if it is
* compressed.
*/
} else {
int ret;
int8_t op_own;
ret = check_cqe(cqe, cqe_n, rxq->cq_ci);
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
if (unlikely(ret == MLX5_CQE_STATUS_ERR ||
rxq->err_state)) {
ret = mlx5_rx_err_handle(rxq, 0);
if (ret == MLX5_CQE_STATUS_HW_OWN ||
ret == -1)
return 0;
} else {
return 0;
}
}
++rxq->cq_ci;
op_own = cqe->op_own;
if (MLX5_CQE_FORMAT(op_own) == MLX5_COMPRESSED) {
volatile struct mlx5_mini_cqe8 (*mc)[8] =
(volatile struct mlx5_mini_cqe8 (*)[8])
(uintptr_t)(&(*rxq->cqes)
[rxq->cq_ci &
cqe_cnt].pkt_info);
/* Fix endianness. */
zip->cqe_cnt = rte_be_to_cpu_32(cqe->byte_cnt);
/*
* Current mini array position is the one
* returned by check_cqe64().
*
* If completion comprises several mini arrays,
* as a special case the second one is located
* 7 CQEs after the initial CQE instead of 8
* for subsequent ones.
*/
zip->ca = rxq->cq_ci;
zip->na = zip->ca + 7;
/* Compute the next non compressed CQE. */
--rxq->cq_ci;
zip->cq_ci = rxq->cq_ci + zip->cqe_cnt;
/* Get packet size to return. */
len = rte_be_to_cpu_32((*mc)[0].byte_cnt);
*mcqe = &(*mc)[0];
zip->ai = 1;
/* Prefetch all to be invalidated */
idx = zip->ca;
end = zip->cq_ci;
while (idx != end) {
rte_prefetch0(&(*rxq->cqes)[(idx) &
cqe_cnt]);
++idx;
}
} else {
len = rte_be_to_cpu_32(cqe->byte_cnt);
}
}
if (unlikely(rxq->err_state)) {
cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
++rxq->stats.idropped;
} else {
return len;
}
} while (1);
}
/**
* Translate RX completion flags to offload flags.
*
* @param[in] cqe
* Pointer to CQE.
*
* @return
* Offload flags (ol_flags) for struct rte_mbuf.
*/
static inline uint32_t
rxq_cq_to_ol_flags(volatile struct mlx5_cqe *cqe)
{
uint32_t ol_flags = 0;
uint16_t flags = rte_be_to_cpu_16(cqe->hdr_type_etc);
ol_flags =
TRANSPOSE(flags,
MLX5_CQE_RX_L3_HDR_VALID,
PKT_RX_IP_CKSUM_GOOD) |
TRANSPOSE(flags,
MLX5_CQE_RX_L4_HDR_VALID,
PKT_RX_L4_CKSUM_GOOD);
return ol_flags;
}
/**
* Fill in mbuf fields from RX completion flags.
* Note that pkt->ol_flags should be initialized outside of this function.
*
* @param rxq
* Pointer to RX queue.
* @param pkt
* mbuf to fill.
* @param cqe
* CQE to process.
* @param rss_hash_res
* Packet RSS Hash result.
*/
static inline void
rxq_cq_to_mbuf(struct mlx5_rxq_data *rxq, struct rte_mbuf *pkt,
volatile struct mlx5_cqe *cqe, uint32_t rss_hash_res)
{
/* Update packet information. */
pkt->packet_type = rxq_cq_to_pkt_type(rxq, cqe);
if (rss_hash_res && rxq->rss_hash) {
pkt->hash.rss = rss_hash_res;
pkt->ol_flags |= PKT_RX_RSS_HASH;
}
if (rxq->mark && MLX5_FLOW_MARK_IS_VALID(cqe->sop_drop_qpn)) {
pkt->ol_flags |= PKT_RX_FDIR;
if (cqe->sop_drop_qpn !=
rte_cpu_to_be_32(MLX5_FLOW_MARK_DEFAULT)) {
uint32_t mark = cqe->sop_drop_qpn;
pkt->ol_flags |= PKT_RX_FDIR_ID;
pkt->hash.fdir.hi = mlx5_flow_mark_get(mark);
}
}
if (rxq->csum)
pkt->ol_flags |= rxq_cq_to_ol_flags(cqe);
if (rxq->vlan_strip &&
(cqe->hdr_type_etc & rte_cpu_to_be_16(MLX5_CQE_VLAN_STRIPPED))) {
pkt->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
pkt->vlan_tci = rte_be_to_cpu_16(cqe->vlan_info);
}
if (rxq->hw_timestamp) {
pkt->timestamp = rte_be_to_cpu_64(cqe->timestamp);
pkt->ol_flags |= PKT_RX_TIMESTAMP;
}
}
/**
* DPDK callback for RX.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct mlx5_rxq_data *rxq = dpdk_rxq;
const unsigned int wqe_cnt = (1 << rxq->elts_n) - 1;
const unsigned int cqe_cnt = (1 << rxq->cqe_n) - 1;
const unsigned int sges_n = rxq->sges_n;
struct rte_mbuf *pkt = NULL;
struct rte_mbuf *seg = NULL;
volatile struct mlx5_cqe *cqe =
&(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
unsigned int i = 0;
unsigned int rq_ci = rxq->rq_ci << sges_n;
int len = 0; /* keep its value across iterations. */
while (pkts_n) {
unsigned int idx = rq_ci & wqe_cnt;
volatile struct mlx5_wqe_data_seg *wqe =
&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[idx];
struct rte_mbuf *rep = (*rxq->elts)[idx];
volatile struct mlx5_mini_cqe8 *mcqe = NULL;
uint32_t rss_hash_res;
if (pkt)
NEXT(seg) = rep;
seg = rep;
rte_prefetch0(seg);
rte_prefetch0(cqe);
rte_prefetch0(wqe);
rep = rte_mbuf_raw_alloc(rxq->mp);
if (unlikely(rep == NULL)) {
++rxq->stats.rx_nombuf;
if (!pkt) {
/*
* no buffers before we even started,
* bail out silently.
*/
break;
}
while (pkt != seg) {
assert(pkt != (*rxq->elts)[idx]);
rep = NEXT(pkt);
NEXT(pkt) = NULL;
NB_SEGS(pkt) = 1;
rte_mbuf_raw_free(pkt);
pkt = rep;
}
break;
}
if (!pkt) {
cqe = &(*rxq->cqes)[rxq->cq_ci & cqe_cnt];
len = mlx5_rx_poll_len(rxq, cqe, cqe_cnt, &mcqe);
if (!len) {
rte_mbuf_raw_free(rep);
break;
}
pkt = seg;
assert(len >= (rxq->crc_present << 2));
pkt->ol_flags = 0;
/* If compressed, take hash result from mini-CQE. */
rss_hash_res = rte_be_to_cpu_32(mcqe == NULL ?
cqe->rx_hash_res :
mcqe->rx_hash_result);
rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
if (rxq->crc_present)
len -= RTE_ETHER_CRC_LEN;
PKT_LEN(pkt) = len;
if (cqe->lro_num_seg > 1) {
mlx5_lro_update_hdr
(rte_pktmbuf_mtod(pkt, uint8_t *), cqe,
len);
pkt->ol_flags |= PKT_RX_LRO;
pkt->tso_segsz = len / cqe->lro_num_seg;
}
}
DATA_LEN(rep) = DATA_LEN(seg);
PKT_LEN(rep) = PKT_LEN(seg);
SET_DATA_OFF(rep, DATA_OFF(seg));
PORT(rep) = PORT(seg);
(*rxq->elts)[idx] = rep;
/*
* Fill NIC descriptor with the new buffer. The lkey and size
* of the buffers are already known, only the buffer address
* changes.
*/
wqe->addr = rte_cpu_to_be_64(rte_pktmbuf_mtod(rep, uintptr_t));
/* If there's only one MR, no need to replace LKey in WQE. */
if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
wqe->lkey = mlx5_rx_mb2mr(rxq, rep);
if (len > DATA_LEN(seg)) {
len -= DATA_LEN(seg);
++NB_SEGS(pkt);
++rq_ci;
continue;
}
DATA_LEN(seg) = len;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment bytes counter. */
rxq->stats.ibytes += PKT_LEN(pkt);
#endif
/* Return packet. */
*(pkts++) = pkt;
pkt = NULL;
--pkts_n;
++i;
/* Align consumer index to the next stride. */
rq_ci >>= sges_n;
++rq_ci;
rq_ci <<= sges_n;
}
if (unlikely((i == 0) && ((rq_ci >> sges_n) == rxq->rq_ci)))
return 0;
/* Update the consumer index. */
rxq->rq_ci = rq_ci >> sges_n;
rte_cio_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
rte_cio_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment packets counter. */
rxq->stats.ipackets += i;
#endif
return i;
}
/**
* Update LRO packet TCP header.
* The HW LRO feature doesn't update the TCP header after coalescing the
* TCP segments but supplies information in CQE to fill it by SW.
*
* @param tcp
* Pointer to the TCP header.
* @param cqe
* Pointer to the completion entry..
* @param phcsum
* The L3 pseudo-header checksum.
*/
static inline void
mlx5_lro_update_tcp_hdr(struct rte_tcp_hdr *restrict tcp,
volatile struct mlx5_cqe *restrict cqe,
uint32_t phcsum)
{
uint8_t l4_type = (rte_be_to_cpu_16(cqe->hdr_type_etc) &
MLX5_CQE_L4_TYPE_MASK) >> MLX5_CQE_L4_TYPE_SHIFT;
/*
* The HW calculates only the TCP payload checksum, need to complete
* the TCP header checksum and the L3 pseudo-header checksum.
*/
uint32_t csum = phcsum + cqe->csum;
if (l4_type == MLX5_L4_HDR_TYPE_TCP_EMPTY_ACK ||
l4_type == MLX5_L4_HDR_TYPE_TCP_WITH_ACL) {
tcp->tcp_flags |= RTE_TCP_ACK_FLAG;
tcp->recv_ack = cqe->lro_ack_seq_num;
tcp->rx_win = cqe->lro_tcp_win;
}
if (cqe->lro_tcppsh_abort_dupack & MLX5_CQE_LRO_PUSH_MASK)
tcp->tcp_flags |= RTE_TCP_PSH_FLAG;
tcp->cksum = 0;
csum += rte_raw_cksum(tcp, (tcp->data_off & 0xF) * 4);
csum = ((csum & 0xffff0000) >> 16) + (csum & 0xffff);
csum = (~csum) & 0xffff;
if (csum == 0)
csum = 0xffff;
tcp->cksum = csum;
}
/**
* Update LRO packet headers.
* The HW LRO feature doesn't update the L3/TCP headers after coalescing the
* TCP segments but supply information in CQE to fill it by SW.
*
* @param padd
* The packet address.
* @param cqe
* Pointer to the completion entry..
* @param len
* The packet length.
*/
static inline void
mlx5_lro_update_hdr(uint8_t *restrict padd,
volatile struct mlx5_cqe *restrict cqe,
uint32_t len)
{
union {
struct rte_ether_hdr *eth;
struct rte_vlan_hdr *vlan;
struct rte_ipv4_hdr *ipv4;
struct rte_ipv6_hdr *ipv6;
struct rte_tcp_hdr *tcp;
uint8_t *hdr;
} h = {
.hdr = padd,
};
uint16_t proto = h.eth->ether_type;
uint32_t phcsum;
h.eth++;
while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) ||
proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) {
proto = h.vlan->eth_proto;
h.vlan++;
}
if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) {
h.ipv4->time_to_live = cqe->lro_min_ttl;
h.ipv4->total_length = rte_cpu_to_be_16(len - (h.hdr - padd));
h.ipv4->hdr_checksum = 0;
h.ipv4->hdr_checksum = rte_ipv4_cksum(h.ipv4);
phcsum = rte_ipv4_phdr_cksum(h.ipv4, 0);
h.ipv4++;
} else {
h.ipv6->hop_limits = cqe->lro_min_ttl;
h.ipv6->payload_len = rte_cpu_to_be_16(len - (h.hdr - padd) -
sizeof(*h.ipv6));
phcsum = rte_ipv6_phdr_cksum(h.ipv6, 0);
h.ipv6++;
}
mlx5_lro_update_tcp_hdr(h.tcp, cqe, phcsum);
}
void
mlx5_mprq_buf_free_cb(void *addr __rte_unused, void *opaque)
{
struct mlx5_mprq_buf *buf = opaque;
if (rte_atomic16_read(&buf->refcnt) == 1) {
rte_mempool_put(buf->mp, buf);
} else if (rte_atomic16_add_return(&buf->refcnt, -1) == 0) {
rte_atomic16_set(&buf->refcnt, 1);
rte_mempool_put(buf->mp, buf);
}
}
void
mlx5_mprq_buf_free(struct mlx5_mprq_buf *buf)
{
mlx5_mprq_buf_free_cb(NULL, buf);
}
static inline void
mprq_buf_replace(struct mlx5_rxq_data *rxq, uint16_t rq_idx,
const unsigned int strd_n)
{
struct mlx5_mprq_buf *rep = rxq->mprq_repl;
volatile struct mlx5_wqe_data_seg *wqe =
&((volatile struct mlx5_wqe_mprq *)rxq->wqes)[rq_idx].dseg;
void *addr;
assert(rep != NULL);
/* Replace MPRQ buf. */
(*rxq->mprq_bufs)[rq_idx] = rep;
/* Replace WQE. */
addr = mlx5_mprq_buf_addr(rep, strd_n);
wqe->addr = rte_cpu_to_be_64((uintptr_t)addr);
/* If there's only one MR, no need to replace LKey in WQE. */
if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1))
wqe->lkey = mlx5_rx_addr2mr(rxq, (uintptr_t)addr);
/* Stash a mbuf for next replacement. */
if (likely(!rte_mempool_get(rxq->mprq_mp, (void **)&rep)))
rxq->mprq_repl = rep;
else
rxq->mprq_repl = NULL;
}
/**
* DPDK callback for RX with Multi-Packet RQ support.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
mlx5_rx_burst_mprq(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
struct mlx5_rxq_data *rxq = dpdk_rxq;
const unsigned int strd_n = 1 << rxq->strd_num_n;
const unsigned int strd_sz = 1 << rxq->strd_sz_n;
const unsigned int strd_shift =
MLX5_MPRQ_STRIDE_SHIFT_BYTE * rxq->strd_shift_en;
const unsigned int cq_mask = (1 << rxq->cqe_n) - 1;
const unsigned int wq_mask = (1 << rxq->elts_n) - 1;
volatile struct mlx5_cqe *cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
unsigned int i = 0;
uint32_t rq_ci = rxq->rq_ci;
uint16_t consumed_strd = rxq->consumed_strd;
uint16_t headroom_sz = rxq->strd_headroom_en * RTE_PKTMBUF_HEADROOM;
struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
while (i < pkts_n) {
struct rte_mbuf *pkt;
void *addr;
int ret;
unsigned int len;
uint16_t strd_cnt;
uint16_t strd_idx;
uint32_t offset;
uint32_t byte_cnt;
volatile struct mlx5_mini_cqe8 *mcqe = NULL;
uint32_t rss_hash_res = 0;
uint8_t lro_num_seg;
if (consumed_strd == strd_n) {
/* Replace WQE only if the buffer is still in use. */
if (rte_atomic16_read(&buf->refcnt) > 1) {
mprq_buf_replace(rxq, rq_ci & wq_mask, strd_n);
/* Release the old buffer. */
mlx5_mprq_buf_free(buf);
} else if (unlikely(rxq->mprq_repl == NULL)) {
struct mlx5_mprq_buf *rep;
/*
* Currently, the MPRQ mempool is out of buffer
* and doing memcpy regardless of the size of Rx
* packet. Retry allocation to get back to
* normal.
*/
if (!rte_mempool_get(rxq->mprq_mp,
(void **)&rep))
rxq->mprq_repl = rep;
}
/* Advance to the next WQE. */
consumed_strd = 0;
++rq_ci;
buf = (*rxq->mprq_bufs)[rq_ci & wq_mask];
}
cqe = &(*rxq->cqes)[rxq->cq_ci & cq_mask];
ret = mlx5_rx_poll_len(rxq, cqe, cq_mask, &mcqe);
if (!ret)
break;
byte_cnt = ret;
strd_cnt = (byte_cnt & MLX5_MPRQ_STRIDE_NUM_MASK) >>
MLX5_MPRQ_STRIDE_NUM_SHIFT;
assert(strd_cnt);
consumed_strd += strd_cnt;
if (byte_cnt & MLX5_MPRQ_FILLER_MASK)
continue;
if (mcqe == NULL) {
rss_hash_res = rte_be_to_cpu_32(cqe->rx_hash_res);
strd_idx = rte_be_to_cpu_16(cqe->wqe_counter);
} else {
/* mini-CQE for MPRQ doesn't have hash result. */
strd_idx = rte_be_to_cpu_16(mcqe->stride_idx);
}
assert(strd_idx < strd_n);
assert(!((rte_be_to_cpu_16(cqe->wqe_id) ^ rq_ci) & wq_mask));
lro_num_seg = cqe->lro_num_seg;
/*
* Currently configured to receive a packet per a stride. But if
* MTU is adjusted through kernel interface, device could
* consume multiple strides without raising an error. In this
* case, the packet should be dropped because it is bigger than
* the max_rx_pkt_len.
*/
if (unlikely(!lro_num_seg && strd_cnt > 1)) {
++rxq->stats.idropped;
continue;
}
pkt = rte_pktmbuf_alloc(rxq->mp);
if (unlikely(pkt == NULL)) {
++rxq->stats.rx_nombuf;
break;
}
len = (byte_cnt & MLX5_MPRQ_LEN_MASK) >> MLX5_MPRQ_LEN_SHIFT;
assert((int)len >= (rxq->crc_present << 2));
if (rxq->crc_present)
len -= RTE_ETHER_CRC_LEN;
offset = strd_idx * strd_sz + strd_shift;
addr = RTE_PTR_ADD(mlx5_mprq_buf_addr(buf, strd_n), offset);
/*
* Memcpy packets to the target mbuf if:
* - The size of packet is smaller than mprq_max_memcpy_len.
* - Out of buffer in the Mempool for Multi-Packet RQ.
*/
if (len <= rxq->mprq_max_memcpy_len || rxq->mprq_repl == NULL) {
/*
* When memcpy'ing packet due to out-of-buffer, the
* packet must be smaller than the target mbuf.
*/
if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
rte_pktmbuf_free_seg(pkt);
++rxq->stats.idropped;
continue;
}
rte_memcpy(rte_pktmbuf_mtod(pkt, void *), addr, len);
DATA_LEN(pkt) = len;
} else {
rte_iova_t buf_iova;
struct rte_mbuf_ext_shared_info *shinfo;
uint16_t buf_len = strd_cnt * strd_sz;
void *buf_addr;
/* Increment the refcnt of the whole chunk. */
rte_atomic16_add_return(&buf->refcnt, 1);
assert((uint16_t)rte_atomic16_read(&buf->refcnt) <=
strd_n + 1);
buf_addr = RTE_PTR_SUB(addr, headroom_sz);
/*
* MLX5 device doesn't use iova but it is necessary in a
* case where the Rx packet is transmitted via a
* different PMD.
*/
buf_iova = rte_mempool_virt2iova(buf) +
RTE_PTR_DIFF(buf_addr, buf);
shinfo = &buf->shinfos[strd_idx];
rte_mbuf_ext_refcnt_set(shinfo, 1);
/*
* EXT_ATTACHED_MBUF will be set to pkt->ol_flags when
* attaching the stride to mbuf and more offload flags
* will be added below by calling rxq_cq_to_mbuf().
* Other fields will be overwritten.
*/
rte_pktmbuf_attach_extbuf(pkt, buf_addr, buf_iova,
buf_len, shinfo);
/* Set mbuf head-room. */
pkt->data_off = headroom_sz;
assert(pkt->ol_flags == EXT_ATTACHED_MBUF);
/*
* Prevent potential overflow due to MTU change through
* kernel interface.
*/
if (unlikely(rte_pktmbuf_tailroom(pkt) < len)) {
rte_pktmbuf_free_seg(pkt);
++rxq->stats.idropped;
continue;
}
DATA_LEN(pkt) = len;
/*
* LRO packet may consume all the stride memory, in this
* case packet head-room space is not guaranteed so must
* to add an empty mbuf for the head-room.
*/
if (!rxq->strd_headroom_en) {
struct rte_mbuf *headroom_mbuf =
rte_pktmbuf_alloc(rxq->mp);
if (unlikely(headroom_mbuf == NULL)) {
rte_pktmbuf_free_seg(pkt);
++rxq->stats.rx_nombuf;
break;
}
PORT(pkt) = rxq->port_id;
NEXT(headroom_mbuf) = pkt;
pkt = headroom_mbuf;
NB_SEGS(pkt) = 2;
}
}
rxq_cq_to_mbuf(rxq, pkt, cqe, rss_hash_res);
if (lro_num_seg > 1) {
mlx5_lro_update_hdr(addr, cqe, len);
pkt->ol_flags |= PKT_RX_LRO;
pkt->tso_segsz = strd_sz;
}
PKT_LEN(pkt) = len;
PORT(pkt) = rxq->port_id;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment bytes counter. */
rxq->stats.ibytes += PKT_LEN(pkt);
#endif
/* Return packet. */
*(pkts++) = pkt;
++i;
}
/* Update the consumer indexes. */
rxq->consumed_strd = consumed_strd;
rte_cio_wmb();
*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
if (rq_ci != rxq->rq_ci) {
rxq->rq_ci = rq_ci;
rte_cio_wmb();
*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment packets counter. */
rxq->stats.ipackets += i;
#endif
return i;
}
/**
* Dummy DPDK callback for TX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
uint16_t
removed_tx_burst(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
rte_mb();
return 0;
}
/**
* Dummy DPDK callback for RX.
*
* This function is used to temporarily replace the real callback during
* unsafe control operations on the queue, or in case of error.
*
* @param dpdk_rxq
* Generic pointer to RX queue structure.
* @param[out] pkts
* Array to store received packets.
* @param pkts_n
* Maximum number of packets in array.
*
* @return
* Number of packets successfully received (<= pkts_n).
*/
uint16_t
removed_rx_burst(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
rte_mb();
return 0;
}
/*
* Vectorized Rx/Tx routines are not compiled in when required vector
* instructions are not supported on a target architecture. The following null
* stubs are needed for linkage when those are not included outside of this file
* (e.g. mlx5_rxtx_vec_sse.c for x86).
*/
__rte_weak uint16_t
mlx5_rx_burst_vec(void *dpdk_txq __rte_unused,
struct rte_mbuf **pkts __rte_unused,
uint16_t pkts_n __rte_unused)
{
return 0;
}
__rte_weak int
mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq __rte_unused)
{
return -ENOTSUP;
}
__rte_weak int
mlx5_check_vec_rx_support(struct rte_eth_dev *dev __rte_unused)
{
return -ENOTSUP;
}
/**
* Free the mbufs from the linear array of pointers.
*
* @param pkts
* Pointer to array of packets to be free.
* @param pkts_n
* Number of packets to be freed.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_free_mbuf(struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
unsigned int olx __rte_unused)
{
struct rte_mempool *pool = NULL;
struct rte_mbuf **p_free = NULL;
struct rte_mbuf *mbuf;
unsigned int n_free = 0;
/*
* The implemented algorithm eliminates
* copying pointers to temporary array
* for rte_mempool_put_bulk() calls.
*/
assert(pkts);
assert(pkts_n);
for (;;) {
for (;;) {
/*
* Decrement mbuf reference counter, detach
* indirect and external buffers if needed.
*/
mbuf = rte_pktmbuf_prefree_seg(*pkts);
if (likely(mbuf != NULL)) {
assert(mbuf == *pkts);
if (likely(n_free != 0)) {
if (unlikely(pool != mbuf->pool))
/* From different pool. */
break;
} else {
/* Start new scan array. */
pool = mbuf->pool;
p_free = pkts;
}
++n_free;
++pkts;
--pkts_n;
if (unlikely(pkts_n == 0)) {
mbuf = NULL;
break;
}
} else {
/*
* This happens if mbuf is still referenced.
* We can't put it back to the pool, skip.
*/
++pkts;
--pkts_n;
if (unlikely(n_free != 0))
/* There is some array to free.*/
break;
if (unlikely(pkts_n == 0))
/* Last mbuf, nothing to free. */
return;
}
}
for (;;) {
/*
* This loop is implemented to avoid multiple
* inlining of rte_mempool_put_bulk().
*/
assert(pool);
assert(p_free);
assert(n_free);
/*
* Free the array of pre-freed mbufs
* belonging to the same memory pool.
*/
rte_mempool_put_bulk(pool, (void *)p_free, n_free);
if (unlikely(mbuf != NULL)) {
/* There is the request to start new scan. */
pool = mbuf->pool;
p_free = pkts++;
n_free = 1;
--pkts_n;
if (likely(pkts_n != 0))
break;
/*
* This is the last mbuf to be freed.
* Do one more loop iteration to complete.
* This is rare case of the last unique mbuf.
*/
mbuf = NULL;
continue;
}
if (likely(pkts_n == 0))
return;
n_free = 0;
break;
}
}
}
/**
* Free the mbuf from the elts ring buffer till new tail.
*
* @param txq
* Pointer to Tx queue structure.
* @param tail
* Index in elts to free up to, becomes new elts tail.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_free_elts(struct mlx5_txq_data *restrict txq,
uint16_t tail,
unsigned int olx __rte_unused)
{
uint16_t n_elts = tail - txq->elts_tail;
assert(n_elts);
assert(n_elts <= txq->elts_s);
/*
* Implement a loop to support ring buffer wraparound
* with single inlining of mlx5_tx_free_mbuf().
*/
do {
unsigned int part;
part = txq->elts_s - (txq->elts_tail & txq->elts_m);
part = RTE_MIN(part, n_elts);
assert(part);
assert(part <= txq->elts_s);
mlx5_tx_free_mbuf(&txq->elts[txq->elts_tail & txq->elts_m],
part, olx);
txq->elts_tail += part;
n_elts -= part;
} while (n_elts);
}
/**
* Store the mbuf being sent into elts ring buffer.
* On Tx completion these mbufs will be freed.
*
* @param txq
* Pointer to Tx queue structure.
* @param pkts
* Pointer to array of packets to be stored.
* @param pkts_n
* Number of packets to be stored.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_copy_elts(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
unsigned int olx __rte_unused)
{
unsigned int part;
struct rte_mbuf **elts = (struct rte_mbuf **)txq->elts;
assert(pkts);
assert(pkts_n);
part = txq->elts_s - (txq->elts_head & txq->elts_m);
assert(part);
assert(part <= txq->elts_s);
/* This code is a good candidate for vectorizing with SIMD. */
rte_memcpy((void *)(elts + (txq->elts_head & txq->elts_m)),
(void *)pkts,
RTE_MIN(part, pkts_n) * sizeof(struct rte_mbuf *));
txq->elts_head += pkts_n;
if (unlikely(part < pkts_n))
/* The copy is wrapping around the elts array. */
rte_memcpy((void *)elts, (void *)(pkts + part),
(pkts_n - part) * sizeof(struct rte_mbuf *));
}
/**
* Manage TX completions. This routine checks the CQ for
* arrived CQEs, deduces the last accomplished WQE in SQ,
* updates SQ producing index and frees all completed mbufs.
*
* @param txq
* Pointer to TX queue structure.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* NOTE: not inlined intentionally, it makes tx_burst
* routine smaller, simple and faster - from experiments.
*/
static void
mlx5_tx_handle_completion(struct mlx5_txq_data *restrict txq,
unsigned int olx __rte_unused)
{
unsigned int count = MLX5_TX_COMP_MAX_CQE;
bool update = false;
uint16_t tail = txq->elts_tail;
int ret;
do {
volatile struct mlx5_cqe *cqe;
cqe = &txq->cqes[txq->cq_ci & txq->cqe_m];
ret = check_cqe(cqe, txq->cqe_s, txq->cq_ci);
if (unlikely(ret != MLX5_CQE_STATUS_SW_OWN)) {
if (likely(ret != MLX5_CQE_STATUS_ERR)) {
/* No new CQEs in completion queue. */
assert(ret == MLX5_CQE_STATUS_HW_OWN);
break;
}
/* Some error occurred, try to restart. */
rte_wmb();
tail = mlx5_tx_error_cqe_handle
(txq, (volatile struct mlx5_err_cqe *)cqe);
if (likely(tail != txq->elts_tail)) {
mlx5_tx_free_elts(txq, tail, olx);
assert(tail == txq->elts_tail);
}
/* Allow flushing all CQEs from the queue. */
count = txq->cqe_s;
} else {
volatile struct mlx5_wqe_cseg *cseg;
/* Normal transmit completion. */
++txq->cq_ci;
rte_cio_rmb();
txq->wqe_pi = rte_be_to_cpu_16(cqe->wqe_counter);
cseg = (volatile struct mlx5_wqe_cseg *)
(txq->wqes + (txq->wqe_pi & txq->wqe_m));
tail = cseg->misc;
}
#ifndef NDEBUG
if (txq->cq_pi)
--txq->cq_pi;
#endif
update = true;
/*
* We have to restrict the amount of processed CQEs
* in one tx_burst routine call. The CQ may be large
* and many CQEs may be updated by the NIC in one
* transaction. Buffers freeing is time consuming,
* multiple iterations may introduce significant
* latency.
*/
} while (--count);
if (likely(tail != txq->elts_tail)) {
/* Free data buffers from elts. */
mlx5_tx_free_elts(txq, tail, olx);
assert(tail == txq->elts_tail);
}
if (likely(update)) {
/* Update the consumer index. */
rte_compiler_barrier();
*txq->cq_db =
rte_cpu_to_be_32(txq->cq_ci);
}
}
/**
* Check if the completion request flag should be set in the last WQE.
* Both pushed mbufs and WQEs are monitored and the completion request
* flag is set if any of thresholds is reached.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_request_completion(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
uint16_t head = txq->elts_head;
unsigned int part;
part = MLX5_TXOFF_CONFIG(INLINE) ? 0 : loc->pkts_sent -
(MLX5_TXOFF_CONFIG(MULTI) ? loc->pkts_copy : 0);
head += part;
if ((uint16_t)(head - txq->elts_comp) >= MLX5_TX_COMP_THRESH ||
(MLX5_TXOFF_CONFIG(INLINE) &&
(uint16_t)(txq->wqe_ci - txq->wqe_comp) >= txq->wqe_thres)) {
volatile struct mlx5_wqe *last = loc->wqe_last;
txq->elts_comp = head;
if (MLX5_TXOFF_CONFIG(INLINE))
txq->wqe_comp = txq->wqe_ci;
/* Request unconditional completion on last WQE. */
last->cseg.flags = RTE_BE32(MLX5_COMP_ALWAYS <<
MLX5_COMP_MODE_OFFSET);
/* Save elts_head in unused "immediate" field of WQE. */
last->cseg.misc = head;
/*
* A CQE slot must always be available. Count the
* issued CEQ "always" request instead of production
* index due to here can be CQE with errors and
* difference with ci may become inconsistent.
*/
assert(txq->cqe_s > ++txq->cq_pi);
}
}
/**
* DPDK callback to check the status of a tx descriptor.
*
* @param tx_queue
* The tx queue.
* @param[in] offset
* The index of the descriptor in the ring.
*
* @return
* The status of the tx descriptor.
*/
int
mlx5_tx_descriptor_status(void *tx_queue, uint16_t offset)
{
struct mlx5_txq_data *restrict txq = tx_queue;
uint16_t used;
mlx5_tx_handle_completion(txq, 0);
used = txq->elts_head - txq->elts_tail;
if (offset < used)
return RTE_ETH_TX_DESC_FULL;
return RTE_ETH_TX_DESC_DONE;
}
/**
* Build the Control Segment with specified opcode:
* - MLX5_OPCODE_SEND
* - MLX5_OPCODE_ENHANCED_MPSW
* - MLX5_OPCODE_TSO
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Control Segment.
* @param ds
* Supposed length of WQE in segments.
* @param opcode
* SQ WQE opcode to put into Control Segment.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_cseg_init(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc __rte_unused,
struct mlx5_wqe *restrict wqe,
unsigned int ds,
unsigned int opcode,
unsigned int olx __rte_unused)
{
struct mlx5_wqe_cseg *restrict cs = &wqe->cseg;
cs->opcode = rte_cpu_to_be_32((txq->wqe_ci << 8) | opcode);
cs->sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
cs->flags = RTE_BE32(MLX5_COMP_ONLY_FIRST_ERR <<
MLX5_COMP_MODE_OFFSET);
cs->misc = RTE_BE32(0);
}
/**
* Build the Ethernet Segment without inlined data.
* Supports Software Parser, Checksums and VLAN
* insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_eseg_none(struct mlx5_txq_data *restrict txq __rte_unused,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int olx)
{
struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
uint32_t csum;
/*
* Calculate and set check sum flags first, dword field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
es->flags = rte_cpu_to_le_32(csum);
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_METADATA ?
loc->mbuf->tx_metadata : 0 : 0;
/* Engage VLAN tag insertion feature if requested. */
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
/*
* We should get here only if device support
* this feature correctly.
*/
assert(txq->vlan_en);
es->inline_hdr = rte_cpu_to_be_32(MLX5_ETH_WQE_VLAN_INSERT |
loc->mbuf->vlan_tci);
} else {
es->inline_hdr = RTE_BE32(0);
}
}
/**
* Build the Ethernet Segment with minimal inlined data
* of MLX5_ESEG_MIN_INLINE_SIZE bytes length. This is
* used to fill the gap in single WQEBB WQEs.
* Supports Software Parser, Checksums and VLAN
* insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param vlan
* Length of VLAN tag insertion if any.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_eseg_dmin(struct mlx5_txq_data *restrict txq __rte_unused,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int vlan,
unsigned int olx)
{
struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
uint32_t csum;
uint8_t *psrc, *pdst;
/*
* Calculate and set check sum flags first, dword field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
es->flags = rte_cpu_to_le_32(csum);
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_METADATA ?
loc->mbuf->tx_metadata : 0 : 0;
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(rte_v128u32_t)),
"invalid Ethernet Segment data size");
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(struct rte_vlan_hdr) +
2 * RTE_ETHER_ADDR_LEN),
"invalid Ethernet Segment data size");
psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
es->inline_hdr_sz = RTE_BE16(MLX5_ESEG_MIN_INLINE_SIZE);
es->inline_data = *(unaligned_uint16_t *)psrc;
psrc += sizeof(uint16_t);
pdst = (uint8_t *)(es + 1);
if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
/* Implement VLAN tag insertion as part inline data. */
memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
/* Insert VLAN ethertype + VLAN tag. */
*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
/* Copy the rest two bytes from packet data. */
assert(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
} else {
/* Fill the gap in the title WQEBB with inline data. */
rte_mov16(pdst, psrc);
}
}
/**
* Build the Ethernet Segment with entire packet
* data inlining. Checks the boundary of WQEBB and
* ring buffer wrapping, supports Software Parser,
* Checksums and VLAN insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param vlan
* Length of VLAN tag insertion if any.
* @param inlen
* Length of data to inline (VLAN included, if any).
* @param tso
* TSO flag, set mss field from the packet.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment (aligned and wrapped around).
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_eseg_data(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int vlan,
unsigned int inlen,
unsigned int tso,
unsigned int olx)
{
struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
uint32_t csum;
uint8_t *psrc, *pdst;
unsigned int part;
/*
* Calculate and set check sum flags first, dword field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
if (tso) {
csum <<= 24;
csum |= loc->mbuf->tso_segsz;
es->flags = rte_cpu_to_be_32(csum);
} else {
es->flags = rte_cpu_to_le_32(csum);
}
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_METADATA ?
loc->mbuf->tx_metadata : 0 : 0;
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(rte_v128u32_t)),
"invalid Ethernet Segment data size");
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(struct rte_vlan_hdr) +
2 * RTE_ETHER_ADDR_LEN),
"invalid Ethernet Segment data size");
psrc = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
es->inline_hdr_sz = rte_cpu_to_be_16(inlen);
es->inline_data = *(unaligned_uint16_t *)psrc;
psrc += sizeof(uint16_t);
pdst = (uint8_t *)(es + 1);
if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
/* Implement VLAN tag insertion as part inline data. */
memcpy(pdst, psrc, 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t));
pdst += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
psrc += 2 * RTE_ETHER_ADDR_LEN - sizeof(uint16_t);
/* Insert VLAN ethertype + VLAN tag. */
*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
/* Copy the rest two bytes from packet data. */
assert(pdst == RTE_PTR_ALIGN(pdst, sizeof(uint16_t)));
*(uint16_t *)pdst = *(unaligned_uint16_t *)psrc;
psrc += sizeof(uint16_t);
} else {
/* Fill the gap in the title WQEBB with inline data. */
rte_mov16(pdst, psrc);
psrc += sizeof(rte_v128u32_t);
}
pdst = (uint8_t *)(es + 2);
assert(inlen >= MLX5_ESEG_MIN_INLINE_SIZE);
assert(pdst < (uint8_t *)txq->wqes_end);
inlen -= MLX5_ESEG_MIN_INLINE_SIZE;
if (!inlen) {
assert(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
return (struct mlx5_wqe_dseg *)pdst;
}
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, inlen);
do {
rte_memcpy(pdst, psrc, part);
inlen -= part;
if (likely(!inlen)) {
/*
* If return value is not used by the caller
* the code below will be optimized out.
*/
pdst += part;
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
pdst = (uint8_t *)txq->wqes;
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
psrc += part;
part = inlen;
} while (true);
}
/**
* Copy data from chain of mbuf to the specified linear buffer.
* Checksums and VLAN insertion Tx offload features. If data
* from some mbuf copied completely this mbuf is freed. Local
* structure is used to keep the byte stream state.
*
* @param pdst
* Pointer to the destination linear buffer.
* @param loc
* Pointer to burst routine local context.
* @param len
* Length of data to be copied.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_mseg_memcpy(uint8_t *pdst,
struct mlx5_txq_local *restrict loc,
unsigned int len,
unsigned int olx __rte_unused)
{
struct rte_mbuf *mbuf;
unsigned int part, dlen;
uint8_t *psrc;
assert(len);
do {
/* Allow zero length packets, must check first. */
dlen = rte_pktmbuf_data_len(loc->mbuf);
if (dlen <= loc->mbuf_off) {
/* Exhausted packet, just free. */
mbuf = loc->mbuf;
loc->mbuf = mbuf->next;
rte_pktmbuf_free_seg(mbuf);
loc->mbuf_off = 0;
assert(loc->mbuf_nseg > 1);
assert(loc->mbuf);
--loc->mbuf_nseg;
continue;
}
dlen -= loc->mbuf_off;
psrc = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
loc->mbuf_off);
part = RTE_MIN(len, dlen);
rte_memcpy(pdst, psrc, part);
loc->mbuf_off += part;
len -= part;
if (!len) {
if (loc->mbuf_off >= rte_pktmbuf_data_len(loc->mbuf)) {
loc->mbuf_off = 0;
/* Exhausted packet, just free. */
mbuf = loc->mbuf;
loc->mbuf = mbuf->next;
rte_pktmbuf_free_seg(mbuf);
loc->mbuf_off = 0;
assert(loc->mbuf_nseg >= 1);
--loc->mbuf_nseg;
}
return;
}
pdst += part;
} while (true);
}
/**
* Build the Ethernet Segment with inlined data from
* multi-segment packet. Checks the boundary of WQEBB
* and ring buffer wrapping, supports Software Parser,
* Checksums and VLAN insertion Tx offload features.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet Segment.
* @param vlan
* Length of VLAN tag insertion if any.
* @param inlen
* Length of data to inline (VLAN included, if any).
* @param tso
* TSO flag, set mss field from the packet.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment (aligned and
* possible NOT wrapped around - caller should do
* wrapping check on its own).
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_eseg_mdat(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int vlan,
unsigned int inlen,
unsigned int tso,
unsigned int olx)
{
struct mlx5_wqe_eseg *restrict es = &wqe->eseg;
uint32_t csum;
uint8_t *pdst;
unsigned int part;
/*
* Calculate and set check sum flags first, uint32_t field
* in segment may be shared with Software Parser flags.
*/
csum = MLX5_TXOFF_CONFIG(CSUM) ? txq_ol_cksum_to_cs(loc->mbuf) : 0;
if (tso) {
csum <<= 24;
csum |= loc->mbuf->tso_segsz;
es->flags = rte_cpu_to_be_32(csum);
} else {
es->flags = rte_cpu_to_le_32(csum);
}
/*
* Calculate and set Software Parser offsets and flags.
* These flags a set for custom UDP and IP tunnel packets.
*/
es->swp_offs = txq_mbuf_to_swp(loc, &es->swp_flags, olx);
/* Fill metadata field if needed. */
es->metadata = MLX5_TXOFF_CONFIG(METADATA) ?
loc->mbuf->ol_flags & PKT_TX_METADATA ?
loc->mbuf->tx_metadata : 0 : 0;
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(rte_v128u32_t)),
"invalid Ethernet Segment data size");
static_assert(MLX5_ESEG_MIN_INLINE_SIZE ==
(sizeof(uint16_t) +
sizeof(struct rte_vlan_hdr) +
2 * RTE_ETHER_ADDR_LEN),
"invalid Ethernet Segment data size");
assert(inlen > MLX5_ESEG_MIN_INLINE_SIZE);
es->inline_hdr_sz = rte_cpu_to_be_16(inlen);
pdst = (uint8_t *)&es->inline_data;
if (MLX5_TXOFF_CONFIG(VLAN) && vlan) {
/* Implement VLAN tag insertion as part inline data. */
mlx5_tx_mseg_memcpy(pdst, loc, 2 * RTE_ETHER_ADDR_LEN, olx);
pdst += 2 * RTE_ETHER_ADDR_LEN;
*(unaligned_uint32_t *)pdst = rte_cpu_to_be_32
((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
inlen -= 2 * RTE_ETHER_ADDR_LEN + sizeof(struct rte_vlan_hdr);
}
assert(pdst < (uint8_t *)txq->wqes_end);
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, inlen);
assert(part);
do {
mlx5_tx_mseg_memcpy(pdst, loc, part, olx);
inlen -= part;
if (likely(!inlen)) {
pdst += part;
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
part = inlen;
} while (true);
}
/**
* Build the Data Segment of pointer type.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to WQE to fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_dseg_ptr(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe_dseg *restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
assert(len);
dseg->bcount = rte_cpu_to_be_32(len);
dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
}
/**
* Build the Data Segment of pointer type or inline
* if data length is less than buffer in minimal
* Data Segment size.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to WQE to fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*/
static __rte_always_inline void
mlx5_tx_dseg_iptr(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe_dseg *restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
uintptr_t dst, src;
assert(len);
if (len > MLX5_DSEG_MIN_INLINE_SIZE) {
dseg->bcount = rte_cpu_to_be_32(len);
dseg->lkey = mlx5_tx_mb2mr(txq, loc->mbuf);
dseg->pbuf = rte_cpu_to_be_64((uintptr_t)buf);
return;
}
dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
/* Unrolled implementation of generic rte_memcpy. */
dst = (uintptr_t)&dseg->inline_data[0];
src = (uintptr_t)buf;
#ifdef RTE_ARCH_STRICT_ALIGN
memcpy(dst, src, len);
#else
if (len & 0x08) {
*(uint64_t *)dst = *(uint64_t *)src;
dst += sizeof(uint64_t);
src += sizeof(uint64_t);
}
if (len & 0x04) {
*(uint32_t *)dst = *(uint32_t *)src;
dst += sizeof(uint32_t);
src += sizeof(uint32_t);
}
if (len & 0x02) {
*(uint16_t *)dst = *(uint16_t *)src;
dst += sizeof(uint16_t);
src += sizeof(uint16_t);
}
if (len & 0x01)
*(uint8_t *)dst = *(uint8_t *)src;
#endif
}
/**
* Build the Data Segment of inlined data from single
* segment packet, no VLAN insertion.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to WQE to fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment after inlined data.
* Ring buffer wraparound check is needed. We do not
* do it here because it may not be needed for the
* last packet in the eMPW session.
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_dseg_empw(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc __rte_unused,
struct mlx5_wqe_dseg *restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
unsigned int part;
uint8_t *pdst;
dseg->bcount = rte_cpu_to_be_32(len | MLX5_ETH_WQE_DATA_INLINE);
pdst = &dseg->inline_data[0];
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, len);
do {
rte_memcpy(pdst, buf, part);
len -= part;
if (likely(!len)) {
pdst += part;
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
/* Note: no final wraparound check here. */
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
buf += part;
part = len;
} while (true);
}
/**
* Build the Data Segment of inlined data from single
* segment packet with VLAN insertion.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param dseg
* Pointer to the dseg fill with built Data Segment.
* @param buf
* Data buffer to point.
* @param len
* Data buffer length.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Pointer to the next Data Segment after inlined data.
* Ring buffer wraparound check is needed.
*/
static __rte_always_inline struct mlx5_wqe_dseg *
mlx5_tx_dseg_vlan(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc __rte_unused,
struct mlx5_wqe_dseg *restrict dseg,
uint8_t *buf,
unsigned int len,
unsigned int olx __rte_unused)
{
unsigned int part;
uint8_t *pdst;
assert(len > MLX5_ESEG_MIN_INLINE_SIZE);
static_assert(MLX5_DSEG_MIN_INLINE_SIZE ==
(2 * RTE_ETHER_ADDR_LEN),
"invalid Data Segment data size");
dseg->bcount = rte_cpu_to_be_32((len + sizeof(struct rte_vlan_hdr)) |
MLX5_ETH_WQE_DATA_INLINE);
pdst = &dseg->inline_data[0];
memcpy(pdst, buf, MLX5_DSEG_MIN_INLINE_SIZE);
buf += MLX5_DSEG_MIN_INLINE_SIZE;
pdst += MLX5_DSEG_MIN_INLINE_SIZE;
/* Insert VLAN ethertype + VLAN tag. Pointer is aligned. */
assert(pdst == RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE));
*(uint32_t *)pdst = rte_cpu_to_be_32((RTE_ETHER_TYPE_VLAN << 16) |
loc->mbuf->vlan_tci);
pdst += sizeof(struct rte_vlan_hdr);
if (unlikely(pdst >= (uint8_t *)txq->wqes_end))
pdst = (uint8_t *)txq->wqes;
/*
* The WQEBB space availability is checked by caller.
* Here we should be aware of WQE ring buffer wraparound only.
*/
part = (uint8_t *)txq->wqes_end - pdst;
part = RTE_MIN(part, len);
do {
rte_memcpy(pdst, buf, part);
len -= part;
if (likely(!len)) {
pdst += part;
pdst = RTE_PTR_ALIGN(pdst, MLX5_WSEG_SIZE);
/* Note: no final wraparound check here. */
return (struct mlx5_wqe_dseg *)pdst;
}
pdst = (uint8_t *)txq->wqes;
buf += part;
part = len;
} while (true);
}
/**
* Build the Ethernet Segment with optionally inlined data with
* VLAN insertion and following Data Segments (if any) from
* multi-segment packet. Used by ordinary send and TSO.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param wqe
* Pointer to WQE to fill with built Ethernet/Data Segments.
* @param vlan
* Length of VLAN header to insert, 0 means no VLAN insertion.
* @param inlen
* Data length to inline. For TSO this parameter specifies
* exact value, for ordinary send routine can be aligned by
* caller to provide better WQE space saving and data buffer
* start address alignment. This length includes VLAN header
* being inserted.
* @param tso
* Zero means ordinary send, inlined data can be extended,
* otherwise this is TSO, inlined data length is fixed.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* Actual size of built WQE in segments.
*/
static __rte_always_inline unsigned int
mlx5_tx_mseg_build(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
struct mlx5_wqe *restrict wqe,
unsigned int vlan,
unsigned int inlen,
unsigned int tso,
unsigned int olx __rte_unused)
{
struct mlx5_wqe_dseg *restrict dseg;
unsigned int ds;
assert((rte_pktmbuf_pkt_len(loc->mbuf) + vlan) >= inlen);
loc->mbuf_nseg = NB_SEGS(loc->mbuf);
loc->mbuf_off = 0;
dseg = mlx5_tx_eseg_mdat(txq, loc, wqe, vlan, inlen, tso, olx);
if (!loc->mbuf_nseg)
goto dseg_done;
/*
* There are still some mbuf remaining, not inlined.
* The first mbuf may be partially inlined and we
* must process the possible non-zero data offset.
*/
if (loc->mbuf_off) {
unsigned int dlen;
uint8_t *dptr;
/*
* Exhausted packets must be dropped before.
* Non-zero offset means there are some data
* remained in the packet.
*/
assert(loc->mbuf_off < rte_pktmbuf_data_len(loc->mbuf));
assert(rte_pktmbuf_data_len(loc->mbuf));
dptr = rte_pktmbuf_mtod_offset(loc->mbuf, uint8_t *,
loc->mbuf_off);
dlen = rte_pktmbuf_data_len(loc->mbuf) - loc->mbuf_off;
/*
* Build the pointer/minimal data Data Segment.
* Do ring buffer wrapping check in advance.
*/
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
mlx5_tx_dseg_iptr(txq, loc, dseg, dptr, dlen, olx);
/* Store the mbuf to be freed on completion. */
assert(loc->elts_free);
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
++dseg;
if (--loc->mbuf_nseg == 0)
goto dseg_done;
loc->mbuf = loc->mbuf->next;
loc->mbuf_off = 0;
}
do {
if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
struct rte_mbuf *mbuf;
/* Zero length segment found, just skip. */
mbuf = loc->mbuf;
loc->mbuf = loc->mbuf->next;
rte_pktmbuf_free_seg(mbuf);
if (--loc->mbuf_nseg == 0)
break;
} else {
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
mlx5_tx_dseg_iptr
(txq, loc, dseg,
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
rte_pktmbuf_data_len(loc->mbuf), olx);
assert(loc->elts_free);
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
++dseg;
if (--loc->mbuf_nseg == 0)
break;
loc->mbuf = loc->mbuf->next;
}
} while (true);
dseg_done:
/* Calculate actual segments used from the dseg pointer. */
if ((uintptr_t)wqe < (uintptr_t)dseg)
ds = ((uintptr_t)dseg - (uintptr_t)wqe) / MLX5_WSEG_SIZE;
else
ds = (((uintptr_t)dseg - (uintptr_t)wqe) +
txq->wqe_s * MLX5_WQE_SIZE) / MLX5_WSEG_SIZE;
return ds;
}
/**
* Tx one packet function for multi-segment TSO. Supports all
* types of Tx offloads, uses MLX5_OPCODE_TSO to build WQEs,
* sends one packet per WQE.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_tso(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
struct mlx5_wqe *restrict wqe;
unsigned int ds, dlen, inlen, ntcp, vlan = 0;
/*
* Calculate data length to be inlined to estimate
* the required space in WQE ring buffer.
*/
dlen = rte_pktmbuf_pkt_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
vlan = sizeof(struct rte_vlan_hdr);
inlen = loc->mbuf->l2_len + vlan +
loc->mbuf->l3_len + loc->mbuf->l4_len;
if (unlikely((!inlen || !loc->mbuf->tso_segsz)))
return MLX5_TXCMP_CODE_ERROR;
if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
inlen += loc->mbuf->outer_l2_len + loc->mbuf->outer_l3_len;
/* Packet must contain all TSO headers. */
if (unlikely(inlen > MLX5_MAX_TSO_HEADER ||
inlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
inlen > (dlen + vlan)))
return MLX5_TXCMP_CODE_ERROR;
assert(inlen >= txq->inlen_mode);
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Data Segments of pointer/min inline type
*/
ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
/* Check for maximal WQE size. */
if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_ERROR;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes/packets counters. */
ntcp = (dlen - (inlen - vlan) + loc->mbuf->tso_segsz - 1) /
loc->mbuf->tso_segsz;
/*
* One will be added for mbuf itself
* at the end of the mlx5_tx_burst from
* loc->pkts_sent field.
*/
--ntcp;
txq->stats.opackets += ntcp;
txq->stats.obytes += dlen + vlan + ntcp * inlen;
#endif
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_TSO, olx);
ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 1, olx);
wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, loc, olx);
return MLX5_TXCMP_CODE_MULTI;
}
/**
* Tx one packet function for multi-segment SEND. Supports all
* types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
* sends one packet per WQE, without any data inlining in
* Ethernet Segment.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_send(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
struct mlx5_wqe_dseg *restrict dseg;
struct mlx5_wqe *restrict wqe;
unsigned int ds, nseg;
assert(NB_SEGS(loc->mbuf) > 1);
/*
* No inline at all, it means the CPU cycles saving
* is prioritized at configuration, we should not
* copy any packet data to WQE.
*/
nseg = NB_SEGS(loc->mbuf);
ds = 2 + nseg;
if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
/* Check for maximal WQE size. */
if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_ERROR;
/*
* Some Tx offloads may cause an error if
* packet is not long enough, check against
* assumed minimal length.
*/
if (rte_pktmbuf_pkt_len(loc->mbuf) <= MLX5_ESEG_MIN_INLINE_SIZE)
return MLX5_TXCMP_CODE_ERROR;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += rte_pktmbuf_pkt_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
txq->stats.obytes += sizeof(struct rte_vlan_hdr);
#endif
/*
* SEND WQE, one WQEBB:
* - Control Segment, SEND opcode
* - Ethernet Segment, optional VLAN, no inline
* - Data Segments, pointer only type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, ds, MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_none(txq, loc, wqe, olx);
dseg = &wqe->dseg[0];
do {
if (unlikely(!rte_pktmbuf_data_len(loc->mbuf))) {
struct rte_mbuf *mbuf;
/*
* Zero length segment found, have to
* correct total size of WQE in segments.
* It is supposed to be rare occasion, so
* in normal case (no zero length segments)
* we avoid extra writing to the Control
* Segment.
*/
--ds;
wqe->cseg.sq_ds -= RTE_BE32(1);
mbuf = loc->mbuf;
loc->mbuf = mbuf->next;
rte_pktmbuf_free_seg(mbuf);
if (--nseg == 0)
break;
} else {
mlx5_tx_dseg_ptr
(txq, loc, dseg,
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
rte_pktmbuf_data_len(loc->mbuf), olx);
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
if (--nseg == 0)
break;
++dseg;
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
loc->mbuf = loc->mbuf->next;
}
} while (true);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, loc, olx);
return MLX5_TXCMP_CODE_MULTI;
}
/**
* Tx one packet function for multi-segment SEND. Supports all
* types of Tx offloads, uses MLX5_OPCODE_SEND to build WQEs,
* sends one packet per WQE, with data inlining in
* Ethernet Segment and minimal Data Segments.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* Local context variables partially updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_packet_multi_inline(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
struct mlx5_wqe *restrict wqe;
unsigned int ds, inlen, dlen, vlan = 0;
assert(MLX5_TXOFF_CONFIG(INLINE));
assert(NB_SEGS(loc->mbuf) > 1);
/*
* First calculate data length to be inlined
* to estimate the required space for WQE.
*/
dlen = rte_pktmbuf_pkt_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) && loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
vlan = sizeof(struct rte_vlan_hdr);
inlen = dlen + vlan;
/* Check against minimal length. */
if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
return MLX5_TXCMP_CODE_ERROR;
assert(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
if (inlen > txq->inlen_send) {
struct rte_mbuf *mbuf;
unsigned int nxlen;
uintptr_t start;
/*
* Packet length exceeds the allowed inline
* data length, check whether the minimal
* inlining is required.
*/
if (txq->inlen_mode) {
assert(txq->inlen_mode >= MLX5_ESEG_MIN_INLINE_SIZE);
assert(txq->inlen_mode <= txq->inlen_send);
inlen = txq->inlen_mode;
} else {
if (!vlan || txq->vlan_en) {
/*
* VLAN insertion will be done inside by HW.
* It is not utmost effective - VLAN flag is
* checked twice, but we should proceed the
* inlining length correctly and take into
* account the VLAN header being inserted.
*/
return mlx5_tx_packet_multi_send
(txq, loc, olx);
}
inlen = MLX5_ESEG_MIN_INLINE_SIZE;
}
/*
* Now we know the minimal amount of data is requested
* to inline. Check whether we should inline the buffers
* from the chain beginning to eliminate some mbufs.
*/
mbuf = loc->mbuf;
nxlen = rte_pktmbuf_data_len(mbuf);
if (unlikely(nxlen <= txq->inlen_send)) {
/* We can inline first mbuf at least. */
if (nxlen < inlen) {
unsigned int smlen;
/* Scan mbufs till inlen filled. */
do {
smlen = nxlen;
mbuf = NEXT(mbuf);
assert(mbuf);
nxlen = rte_pktmbuf_data_len(mbuf);
nxlen += smlen;
} while (unlikely(nxlen < inlen));
if (unlikely(nxlen > txq->inlen_send)) {
/* We cannot inline entire mbuf. */
smlen = inlen - smlen;
start = rte_pktmbuf_mtod_offset
(mbuf, uintptr_t, smlen);
goto do_align;
}
}
do {
inlen = nxlen;
mbuf = NEXT(mbuf);
/* There should be not end of packet. */
assert(mbuf);
nxlen = inlen + rte_pktmbuf_data_len(mbuf);
} while (unlikely(nxlen < txq->inlen_send));
}
start = rte_pktmbuf_mtod(mbuf, uintptr_t);
/*
* Check whether we can do inline to align start
* address of data buffer to cacheline.
*/
do_align:
start = (~start + 1) & (RTE_CACHE_LINE_SIZE - 1);
if (unlikely(start)) {
start += inlen;
if (start <= txq->inlen_send)
inlen = start;
}
}
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Data Segments of pointer/min inline type
*
* Estimate the number of Data Segments conservatively,
* supposing no any mbufs is being freed during inlining.
*/
assert(inlen <= txq->inlen_send);
ds = NB_SEGS(loc->mbuf) + 2 + (inlen -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (unlikely(loc->wqe_free < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
/* Check for maximal WQE size. */
if (unlikely((MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE) < ((ds + 3) / 4)))
return MLX5_TXCMP_CODE_ERROR;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes/packets counters. */
txq->stats.obytes += dlen + vlan;
#endif
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 0, MLX5_OPCODE_SEND, olx);
ds = mlx5_tx_mseg_build(txq, loc, wqe, vlan, inlen, 0, olx);
wqe->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, loc, olx);
return MLX5_TXCMP_CODE_MULTI;
}
/**
* Tx burst function for multi-segment packets. Supports all
* types of Tx offloads, uses MLX5_OPCODE_SEND/TSO to build WQEs,
* sends one packet per WQE. Function stops sending if it
* encounters the single-segment packet.
*
* This routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
* MLX5_TXCMP_CODE_TSO - TSO single-segment packet encountered.
* Local context variables updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_mseg(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
assert(loc->elts_free && loc->wqe_free);
assert(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
enum mlx5_txcmp_code ret;
assert(NB_SEGS(loc->mbuf) > 1);
/*
* Estimate the number of free elts quickly but
* conservatively. Some segment may be fully inlined
* and freed, ignore this here - precise estimation
* is costly.
*/
if (loc->elts_free < NB_SEGS(loc->mbuf))
return MLX5_TXCMP_CODE_EXIT;
if (MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)) {
/* Proceed with multi-segment TSO. */
ret = mlx5_tx_packet_multi_tso(txq, loc, olx);
} else if (MLX5_TXOFF_CONFIG(INLINE)) {
/* Proceed with multi-segment SEND with inlining. */
ret = mlx5_tx_packet_multi_inline(txq, loc, olx);
} else {
/* Proceed with multi-segment SEND w/o inlining. */
ret = mlx5_tx_packet_multi_send(txq, loc, olx);
}
if (ret == MLX5_TXCMP_CODE_EXIT)
return MLX5_TXCMP_CODE_EXIT;
if (ret == MLX5_TXCMP_CODE_ERROR)
return MLX5_TXCMP_CODE_ERROR;
/* WQE is built, go to the next packet. */
++loc->pkts_sent;
--pkts_n;
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
if (pkts_n > 1)
rte_prefetch0(*pkts);
if (likely(NB_SEGS(loc->mbuf) > 1))
continue;
/* Here ends the series of multi-segment packets. */
if (MLX5_TXOFF_CONFIG(TSO) &&
unlikely(!(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)))
return MLX5_TXCMP_CODE_TSO;
return MLX5_TXCMP_CODE_SINGLE;
}
assert(false);
}
/**
* Tx burst function for single-segment packets with TSO.
* Supports all types of Tx offloads, except multi-packets.
* Uses MLX5_OPCODE_TSO to build WQEs, sends one packet per WQE.
* Function stops sending if it encounters the multi-segment
* packet or packet without TSO requested.
*
* The routine is responsible for storing processed mbuf
* into elts ring buffer and update elts_head if inline
* offloads is requested due to possible early freeing
* of the inlined mbufs (can not store pkts array in elts
* as a batch).
*
* @param txq
* Pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* MLX5_TXCMP_CODE_SINGLE - single-segment packet encountered.
* MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
* Local context variables updated.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_tso(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
assert(loc->elts_free && loc->wqe_free);
assert(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe_dseg *restrict dseg;
struct mlx5_wqe *restrict wqe;
unsigned int ds, dlen, hlen, ntcp, vlan = 0;
uint8_t *dptr;
assert(NB_SEGS(loc->mbuf) == 1);
dlen = rte_pktmbuf_data_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
vlan = sizeof(struct rte_vlan_hdr);
}
/*
* First calculate the WQE size to check
* whether we have enough space in ring buffer.
*/
hlen = loc->mbuf->l2_len + vlan +
loc->mbuf->l3_len + loc->mbuf->l4_len;
if (unlikely((!hlen || !loc->mbuf->tso_segsz)))
return MLX5_TXCMP_CODE_ERROR;
if (loc->mbuf->ol_flags & PKT_TX_TUNNEL_MASK)
hlen += loc->mbuf->outer_l2_len +
loc->mbuf->outer_l3_len;
/* Segment must contain all TSO headers. */
if (unlikely(hlen > MLX5_MAX_TSO_HEADER ||
hlen <= MLX5_ESEG_MIN_INLINE_SIZE ||
hlen > (dlen + vlan)))
return MLX5_TXCMP_CODE_ERROR;
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Finishing Data Segment of pointer type
*/
ds = 4 + (hlen - MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (loc->wqe_free < ((ds + 3) / 4))
return MLX5_TXCMP_CODE_EXIT;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes/packets counters. */
ntcp = (dlen + vlan - hlen +
loc->mbuf->tso_segsz - 1) /
loc->mbuf->tso_segsz;
/*
* One will be added for mbuf itself at the end
* of the mlx5_tx_burst from loc->pkts_sent field.
*/
--ntcp;
txq->stats.opackets += ntcp;
txq->stats.obytes += dlen + vlan + ntcp * hlen;
#endif
/*
* Build the TSO WQE:
* - Control Segment
* - Ethernet Segment with hlen bytes inlined
* - Data Segment of pointer type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, ds,
MLX5_OPCODE_TSO, olx);
dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan, hlen, 1, olx);
dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) + hlen - vlan;
dlen -= hlen - vlan;
mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
/*
* WQE is built, update the loop parameters
* and go to the next packet.
*/
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
if (MLX5_TXOFF_CONFIG(INLINE))
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
--loc->elts_free;
++loc->pkts_sent;
--pkts_n;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, loc, olx);
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
if (pkts_n > 1)
rte_prefetch0(*pkts);
if (MLX5_TXOFF_CONFIG(MULTI) &&
unlikely(NB_SEGS(loc->mbuf) > 1))
return MLX5_TXCMP_CODE_MULTI;
if (unlikely(!(loc->mbuf->ol_flags & PKT_TX_TCP_SEG)))
return MLX5_TXCMP_CODE_SINGLE;
/* Continue with the next TSO packet. */
}
assert(false);
}
/**
* Analyze the packet and select the best method to send.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
* @param newp
* The predefined flag whether do complete check for
* multi-segment packets and TSO.
*
* @return
* MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
* MLX5_TXCMP_CODE_TSO - TSO required, use TSO/LSO.
* MLX5_TXCMP_CODE_SINGLE - single-segment packet, use SEND.
* MLX5_TXCMP_CODE_EMPW - single-segment packet, use MPW.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_able_to_empw(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int olx,
bool newp)
{
/* Check for multi-segment packet. */
if (newp &&
MLX5_TXOFF_CONFIG(MULTI) &&
unlikely(NB_SEGS(loc->mbuf) > 1))
return MLX5_TXCMP_CODE_MULTI;
/* Check for TSO packet. */
if (newp &&
MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_TCP_SEG))
return MLX5_TXCMP_CODE_TSO;
/* Check if eMPW is enabled at all. */
if (!MLX5_TXOFF_CONFIG(EMPW))
return MLX5_TXCMP_CODE_SINGLE;
/* Check if eMPW can be engaged. */
if (MLX5_TXOFF_CONFIG(VLAN) &&
unlikely(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) &&
(!MLX5_TXOFF_CONFIG(INLINE) ||
unlikely((rte_pktmbuf_data_len(loc->mbuf) +
sizeof(struct rte_vlan_hdr)) > txq->inlen_empw))) {
/*
* eMPW does not support VLAN insertion offload,
* we have to inline the entire packet but
* packet is too long for inlining.
*/
return MLX5_TXCMP_CODE_SINGLE;
}
return MLX5_TXCMP_CODE_EMPW;
}
/**
* Check the next packet attributes to match with the eMPW batch ones.
*
* @param txq
* Pointer to TX queue structure.
* @param es
* Pointer to Ethernet Segment of eMPW batch.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* true - packet match with eMPW batch attributes.
* false - no match, eMPW should be restarted.
*/
static __rte_always_inline bool
mlx5_tx_match_empw(struct mlx5_txq_data *restrict txq __rte_unused,
struct mlx5_wqe_eseg *restrict es,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
uint8_t swp_flags = 0;
/* Compare the checksum flags, if any. */
if (MLX5_TXOFF_CONFIG(CSUM) &&
txq_ol_cksum_to_cs(loc->mbuf) != es->cs_flags)
return false;
/* Compare the Software Parser offsets and flags. */
if (MLX5_TXOFF_CONFIG(SWP) &&
(es->swp_offs != txq_mbuf_to_swp(loc, &swp_flags, olx) ||
es->swp_flags != swp_flags))
return false;
/* Fill metadata field if needed. */
if (MLX5_TXOFF_CONFIG(METADATA) &&
es->metadata != (loc->mbuf->ol_flags & PKT_TX_METADATA ?
loc->mbuf->tx_metadata : 0))
return false;
/* There must be no VLAN packets in eMPW loop. */
if (MLX5_TXOFF_CONFIG(VLAN))
assert(!(loc->mbuf->ol_flags & PKT_TX_VLAN_PKT));
return true;
}
/*
* Update send loop variables and WQE for eMPW loop
* without data inlining. Number of Data Segments is
* equal to the number of sent packets.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param ds
* Number of packets/Data Segments/Packets.
* @param slen
* Accumulated statistics, bytes sent
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* true - packet match with eMPW batch attributes.
* false - no match, eMPW should be restarted.
*/
static __rte_always_inline void
mlx5_tx_sdone_empw(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int ds,
unsigned int slen,
unsigned int olx)
{
assert(!MLX5_TXOFF_CONFIG(INLINE));
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += slen;
#else
(void)slen;
#endif
loc->elts_free -= ds;
loc->pkts_sent += ds;
ds += 2;
loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | ds);
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, loc, olx);
}
/*
* Update send loop variables and WQE for eMPW loop
* with data inlining. Gets the size of pushed descriptors
* and data to the WQE.
*
* @param txq
* Pointer to TX queue structure.
* @param loc
* Pointer to burst routine local context.
* @param len
* Total size of descriptor/data in bytes.
* @param slen
* Accumulated statistics, data bytes sent.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* true - packet match with eMPW batch attributes.
* false - no match, eMPW should be restarted.
*/
static __rte_always_inline void
mlx5_tx_idone_empw(struct mlx5_txq_data *restrict txq,
struct mlx5_txq_local *restrict loc,
unsigned int len,
unsigned int slen,
unsigned int olx __rte_unused)
{
assert(MLX5_TXOFF_CONFIG(INLINE));
assert((len % MLX5_WSEG_SIZE) == 0);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += slen;
#else
(void)slen;
#endif
len = len / MLX5_WSEG_SIZE + 2;
loc->wqe_last->cseg.sq_ds = rte_cpu_to_be_32(txq->qp_num_8s | len);
txq->wqe_ci += (len + 3) / 4;
loc->wqe_free -= (len + 3) / 4;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, loc, olx);
}
/**
* The set of Tx burst functions for single-segment packets
* without TSO and with Multi-Packet Writing feature support.
* Supports all types of Tx offloads, except multi-packets
* and TSO.
*
* Uses MLX5_OPCODE_EMPW to build WQEs if possible and sends
* as many packet per WQE as it can. If eMPW is not configured
* or packet can not be sent with eMPW (VLAN insertion) the
* ordinary SEND opcode is used and only one packet placed
* in WQE.
*
* Functions stop sending if it encounters the multi-segment
* packet or packet with TSO requested.
*
* The routines are responsible for storing processed mbuf
* into elts ring buffer and update elts_head if inlining
* offload is requested. Otherwise the copying mbufs to elts
* can be postponed and completed at the end of burst routine.
*
* @param txq
* Pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param loc
* Pointer to burst routine local context.
* @param olx
* Configured Tx offloads mask. It is fully defined at
* compile time and may be used for optimization.
*
* @return
* MLX5_TXCMP_CODE_EXIT - sending is done or impossible.
* MLX5_TXCMP_CODE_ERROR - some unrecoverable error occurred.
* MLX5_TXCMP_CODE_MULTI - multi-segment packet encountered.
* MLX5_TXCMP_CODE_TSO - TSO packet encountered.
* MLX5_TXCMP_CODE_SINGLE - used inside functions set.
* MLX5_TXCMP_CODE_EMPW - used inside functions set.
*
* Local context variables updated.
*
*
* The routine sends packets with MLX5_OPCODE_EMPW
* without inlining, this is dedicated optimized branch.
* No VLAN insertion is supported.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_empw_simple(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
/*
* Subroutine is the part of mlx5_tx_burst_single()
* and sends single-segment packet with eMPW opcode
* without data inlining.
*/
assert(!MLX5_TXOFF_CONFIG(INLINE));
assert(MLX5_TXOFF_CONFIG(EMPW));
assert(loc->elts_free && loc->wqe_free);
assert(pkts_n > loc->pkts_sent);
static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe_dseg *restrict dseg;
struct mlx5_wqe_eseg *restrict eseg;
enum mlx5_txcmp_code ret;
unsigned int part, loop;
unsigned int slen = 0;
next_empw:
part = RTE_MIN(pkts_n, MLX5_EMPW_MAX_PACKETS);
if (unlikely(loc->elts_free < part)) {
/* We have no enough elts to save all mbufs. */
if (unlikely(loc->elts_free < MLX5_EMPW_MIN_PACKETS))
return MLX5_TXCMP_CODE_EXIT;
/* But we still able to send at least minimal eMPW. */
part = loc->elts_free;
}
/* Check whether we have enough WQEs */
if (unlikely(loc->wqe_free < ((2 + part + 3) / 4))) {
if (unlikely(loc->wqe_free <
((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
part = (loc->wqe_free * 4) - 2;
}
if (likely(part > 1))
rte_prefetch0(*pkts);
loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m);
/*
* Build eMPW title WQEBB:
* - Control Segment, eMPW opcode
* - Ethernet Segment, no inline
*/
mlx5_tx_cseg_init(txq, loc, loc->wqe_last, part + 2,
MLX5_OPCODE_ENHANCED_MPSW, olx);
mlx5_tx_eseg_none(txq, loc, loc->wqe_last,
olx & ~MLX5_TXOFF_CONFIG_VLAN);
eseg = &loc->wqe_last->eseg;
dseg = &loc->wqe_last->dseg[0];
loop = part;
for (;;) {
uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
slen += dlen;
#endif
mlx5_tx_dseg_ptr
(txq, loc, dseg,
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
dlen, olx);
if (unlikely(--loop == 0))
break;
loc->mbuf = *pkts++;
if (likely(loop > 1))
rte_prefetch0(*pkts);
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
/*
* Unroll the completion code to avoid
* returning variable value - it results in
* unoptimized sequent checking in caller.
*/
if (ret == MLX5_TXCMP_CODE_MULTI) {
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_MULTI;
}
if (ret == MLX5_TXCMP_CODE_TSO) {
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_TSO;
}
if (ret == MLX5_TXCMP_CODE_SINGLE) {
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_SINGLE;
}
if (ret != MLX5_TXCMP_CODE_EMPW) {
assert(false);
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
return MLX5_TXCMP_CODE_ERROR;
}
/*
* Check whether packet parameters coincide
* within assumed eMPW batch:
* - check sum settings
* - metadata value
* - software parser settings
*/
if (!mlx5_tx_match_empw(txq, eseg, loc, olx)) {
assert(loop);
part -= loop;
mlx5_tx_sdone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
pkts_n -= part;
goto next_empw;
}
/* Packet attributes match, continue the same eMPW. */
++dseg;
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
}
/* eMPW is built successfully, update loop parameters. */
assert(!loop);
assert(pkts_n >= part);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += slen;
#endif
loc->elts_free -= part;
loc->pkts_sent += part;
txq->wqe_ci += (2 + part + 3) / 4;
loc->wqe_free -= (2 + part + 3) / 4;
pkts_n -= part;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, loc, olx);
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
if (unlikely(ret != MLX5_TXCMP_CODE_EMPW))
return ret;
/* Continue sending eMPW batches. */
}
assert(false);
}
/**
* The routine sends packets with MLX5_OPCODE_EMPW
* with inlining, optionally supports VLAN insertion.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_empw_inline(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
/*
* Subroutine is the part of mlx5_tx_burst_single()
* and sends single-segment packet with eMPW opcode
* with data inlining.
*/
assert(MLX5_TXOFF_CONFIG(INLINE));
assert(MLX5_TXOFF_CONFIG(EMPW));
assert(loc->elts_free && loc->wqe_free);
assert(pkts_n > loc->pkts_sent);
static_assert(MLX5_EMPW_MIN_PACKETS >= 2, "invalid min size");
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe_dseg *restrict dseg;
struct mlx5_wqe_eseg *restrict eseg;
enum mlx5_txcmp_code ret;
unsigned int room, part, nlim;
unsigned int slen = 0;
/*
* Limits the amount of packets in one WQE
* to improve CQE latency generation.
*/
nlim = RTE_MIN(pkts_n, MLX5_EMPW_MAX_PACKETS);
/* Check whether we have minimal amount WQEs */
if (unlikely(loc->wqe_free <
((2 + MLX5_EMPW_MIN_PACKETS + 3) / 4)))
return MLX5_TXCMP_CODE_EXIT;
if (likely(pkts_n > 1))
rte_prefetch0(*pkts);
loc->wqe_last = txq->wqes + (txq->wqe_ci & txq->wqe_m);
/*
* Build eMPW title WQEBB:
* - Control Segment, eMPW opcode, zero DS
* - Ethernet Segment, no inline
*/
mlx5_tx_cseg_init(txq, loc, loc->wqe_last, 0,
MLX5_OPCODE_ENHANCED_MPSW, olx);
mlx5_tx_eseg_none(txq, loc, loc->wqe_last,
olx & ~MLX5_TXOFF_CONFIG_VLAN);
eseg = &loc->wqe_last->eseg;
dseg = &loc->wqe_last->dseg[0];
room = RTE_MIN(MLX5_WQE_SIZE_MAX / MLX5_WQE_SIZE,
loc->wqe_free) * MLX5_WQE_SIZE -
MLX5_WQE_CSEG_SIZE -
MLX5_WQE_ESEG_SIZE;
/* Build WQE till we have space, packets and resources. */
part = room;
for (;;) {
uint32_t dlen = rte_pktmbuf_data_len(loc->mbuf);
uint8_t *dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *);
unsigned int tlen;
assert(room >= MLX5_WQE_DSEG_SIZE);
assert((room % MLX5_WQE_DSEG_SIZE) == 0);
assert((uintptr_t)dseg < (uintptr_t)txq->wqes_end);
/*
* Some Tx offloads may cause an error if
* packet is not long enough, check against
* assumed minimal length.
*/
if (unlikely(dlen <= MLX5_ESEG_MIN_INLINE_SIZE)) {
part -= room;
if (unlikely(!part))
return MLX5_TXCMP_CODE_ERROR;
/*
* We have some successfully built
* packet Data Segments to send.
*/
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
return MLX5_TXCMP_CODE_ERROR;
}
/* Inline or not inline - that's the Question. */
if (dlen > txq->inlen_empw)
goto pointer_empw;
/* Inline entire packet, optional VLAN insertion. */
tlen = sizeof(dseg->bcount) + dlen;
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
/*
* The packet length must be checked in
* mlx5_tx_able_to_empw() and packet
* fits into inline length guaranteed.
*/
assert((dlen + sizeof(struct rte_vlan_hdr)) <=
txq->inlen_empw);
tlen += sizeof(struct rte_vlan_hdr);
if (room < tlen)
break;
dseg = mlx5_tx_dseg_vlan(txq, loc, dseg,
dptr, dlen, olx);
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
slen += sizeof(struct rte_vlan_hdr);
#endif
} else {
if (room < tlen)
break;
dseg = mlx5_tx_dseg_empw(txq, loc, dseg,
dptr, dlen, olx);
}
tlen = RTE_ALIGN(tlen, MLX5_WSEG_SIZE);
assert(room >= tlen);
room -= tlen;
/*
* Packet data are completely inlined,
* free the packet immediately.
*/
rte_pktmbuf_free_seg(loc->mbuf);
goto next_mbuf;
pointer_empw:
/*
* Not inlinable VLAN packets are
* proceeded outside of this routine.
*/
assert(room >= MLX5_WQE_DSEG_SIZE);
if (MLX5_TXOFF_CONFIG(VLAN))
assert(!(loc->mbuf->ol_flags &
PKT_TX_VLAN_PKT));
mlx5_tx_dseg_ptr(txq, loc, dseg, dptr, dlen, olx);
/* We have to store mbuf in elts.*/
txq->elts[txq->elts_head++ & txq->elts_m] = loc->mbuf;
room -= MLX5_WQE_DSEG_SIZE;
/* Ring buffer wraparound is checked at the loop end.*/
++dseg;
next_mbuf:
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
slen += dlen;
#endif
loc->pkts_sent++;
loc->elts_free--;
pkts_n--;
if (unlikely(!pkts_n || !loc->elts_free)) {
/*
* We have no resources/packets to
* continue build descriptors.
*/
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
return MLX5_TXCMP_CODE_EXIT;
}
loc->mbuf = *pkts++;
if (likely(pkts_n > 1))
rte_prefetch0(*pkts);
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
/*
* Unroll the completion code to avoid
* returning variable value - it results in
* unoptimized sequent checking in caller.
*/
if (ret == MLX5_TXCMP_CODE_MULTI) {
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_MULTI;
}
if (ret == MLX5_TXCMP_CODE_TSO) {
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_TSO;
}
if (ret == MLX5_TXCMP_CODE_SINGLE) {
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
return MLX5_TXCMP_CODE_SINGLE;
}
if (ret != MLX5_TXCMP_CODE_EMPW) {
assert(false);
part -= room;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
return MLX5_TXCMP_CODE_ERROR;
}
/* Check if we have minimal room left. */
nlim--;
if (unlikely(!nlim || room < MLX5_WQE_DSEG_SIZE))
break;
/*
* Check whether packet parameters coincide
* within assumed eMPW batch:
* - check sum settings
* - metadata value
* - software parser settings
*/
if (!mlx5_tx_match_empw(txq, eseg, loc, olx))
break;
/* Packet attributes match, continue the same eMPW. */
if ((uintptr_t)dseg >= (uintptr_t)txq->wqes_end)
dseg = (struct mlx5_wqe_dseg *)txq->wqes;
}
/*
* We get here to close an existing eMPW
* session and start the new one.
*/
assert(pkts_n);
part -= room;
if (unlikely(!part))
return MLX5_TXCMP_CODE_EXIT;
mlx5_tx_idone_empw(txq, loc, part, slen, olx);
if (unlikely(!loc->elts_free ||
!loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
/* Continue the loop with new eMPW session. */
}
assert(false);
}
/**
* The routine sends packets with ordinary MLX5_OPCODE_SEND.
* Data inlining and VLAN insertion are supported.
*/
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_single_send(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
/*
* Subroutine is the part of mlx5_tx_burst_single()
* and sends single-segment packet with SEND opcode.
*/
assert(loc->elts_free && loc->wqe_free);
assert(pkts_n > loc->pkts_sent);
pkts += loc->pkts_sent + 1;
pkts_n -= loc->pkts_sent;
for (;;) {
struct mlx5_wqe *restrict wqe;
enum mlx5_txcmp_code ret;
assert(NB_SEGS(loc->mbuf) == 1);
if (MLX5_TXOFF_CONFIG(INLINE)) {
unsigned int inlen, vlan = 0;
inlen = rte_pktmbuf_data_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT) {
vlan = sizeof(struct rte_vlan_hdr);
inlen += vlan;
static_assert((sizeof(struct rte_vlan_hdr) +
sizeof(struct rte_ether_hdr)) ==
MLX5_ESEG_MIN_INLINE_SIZE,
"invalid min inline data size");
}
/*
* If inlining is enabled at configuration time
* the limit must be not less than minimal size.
* Otherwise we would do extra check for data
* size to avoid crashes due to length overflow.
*/
assert(txq->inlen_send >= MLX5_ESEG_MIN_INLINE_SIZE);
if (inlen <= txq->inlen_send) {
unsigned int seg_n, wqe_n;
rte_prefetch0(rte_pktmbuf_mtod
(loc->mbuf, uint8_t *));
/* Check against minimal length. */
if (inlen <= MLX5_ESEG_MIN_INLINE_SIZE)
return MLX5_TXCMP_CODE_ERROR;
/*
* Completely inlined packet data WQE:
* - Control Segment, SEND opcode
* - Ethernet Segment, no VLAN insertion
* - Data inlined, VLAN optionally inserted
* - Alignment to MLX5_WSEG_SIZE
* Have to estimate amount of WQEBBs
*/
seg_n = (inlen + 3 * MLX5_WSEG_SIZE -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
/* Check if there are enough WQEBBs. */
wqe_n = (seg_n + 3) / 4;
if (wqe_n > loc->wqe_free)
return MLX5_TXCMP_CODE_EXIT;
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, seg_n,
MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_data(txq, loc, wqe,
vlan, inlen, 0, olx);
txq->wqe_ci += wqe_n;
loc->wqe_free -= wqe_n;
/*
* Packet data are completely inlined,
* free the packet immediately.
*/
rte_pktmbuf_free_seg(loc->mbuf);
} else if (!MLX5_TXOFF_CONFIG(EMPW) &&
txq->inlen_mode) {
/*
* If minimal inlining is requested the eMPW
* feature should be disabled due to data is
* inlined into Ethernet Segment, which can
* not contain inlined data for eMPW due to
* segment shared for all packets.
*/
struct mlx5_wqe_dseg *restrict dseg;
unsigned int ds;
uint8_t *dptr;
/*
* The inline-mode settings require
* to inline the specified amount of
* data bytes to the Ethernet Segment.
* We should check the free space in
* WQE ring buffer to inline partially.
*/
assert(txq->inlen_send >= txq->inlen_mode);
assert(inlen > txq->inlen_mode);
assert(txq->inlen_mode >=
MLX5_ESEG_MIN_INLINE_SIZE);
/*
* Check whether there are enough free WQEBBs:
* - Control Segment
* - Ethernet Segment
* - First Segment of inlined Ethernet data
* - ... data continued ...
* - Finishing Data Segment of pointer type
*/
ds = (MLX5_WQE_CSEG_SIZE +
MLX5_WQE_ESEG_SIZE +
MLX5_WQE_DSEG_SIZE +
txq->inlen_mode -
MLX5_ESEG_MIN_INLINE_SIZE +
MLX5_WQE_DSEG_SIZE +
MLX5_WSEG_SIZE - 1) / MLX5_WSEG_SIZE;
if (loc->wqe_free < ((ds + 3) / 4))
return MLX5_TXCMP_CODE_EXIT;
/*
* Build the ordinary SEND WQE:
* - Control Segment
* - Ethernet Segment, inline inlen_mode bytes
* - Data Segment of pointer type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, ds,
MLX5_OPCODE_SEND, olx);
dseg = mlx5_tx_eseg_data(txq, loc, wqe, vlan,
txq->inlen_mode,
0, olx);
dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
txq->inlen_mode - vlan;
inlen -= txq->inlen_mode;
mlx5_tx_dseg_ptr(txq, loc, dseg,
dptr, inlen, olx);
/*
* WQE is built, update the loop parameters
* and got to the next packet.
*/
txq->wqe_ci += (ds + 3) / 4;
loc->wqe_free -= (ds + 3) / 4;
/* We have to store mbuf in elts.*/
assert(MLX5_TXOFF_CONFIG(INLINE));
txq->elts[txq->elts_head++ & txq->elts_m] =
loc->mbuf;
--loc->elts_free;
} else {
uint8_t *dptr;
unsigned int dlen;
/*
* Partially inlined packet data WQE, we have
* some space in title WQEBB, we can fill it
* with some packet data. It takes one WQEBB,
* it is available, no extra space check:
* - Control Segment, SEND opcode
* - Ethernet Segment, no VLAN insertion
* - MLX5_ESEG_MIN_INLINE_SIZE bytes of Data
* - Data Segment, pointer type
*
* We also get here if VLAN insertion is not
* supported by HW, the inline is enabled.
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 4,
MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_dmin(txq, loc, wqe, vlan, olx);
dptr = rte_pktmbuf_mtod(loc->mbuf, uint8_t *) +
MLX5_ESEG_MIN_INLINE_SIZE - vlan;
/*
* The length check is performed above, by
* comparing with txq->inlen_send. We should
* not get overflow here.
*/
assert(inlen > MLX5_ESEG_MIN_INLINE_SIZE);
dlen = inlen - MLX5_ESEG_MIN_INLINE_SIZE;
mlx5_tx_dseg_ptr(txq, loc, &wqe->dseg[1],
dptr, dlen, olx);
++txq->wqe_ci;
--loc->wqe_free;
/* We have to store mbuf in elts.*/
assert(MLX5_TXOFF_CONFIG(INLINE));
txq->elts[txq->elts_head++ & txq->elts_m] =
loc->mbuf;
--loc->elts_free;
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += vlan +
rte_pktmbuf_data_len(loc->mbuf);
#endif
} else {
/*
* No inline at all, it means the CPU cycles saving
* is prioritized at configuration, we should not
* copy any packet data to WQE.
*
* SEND WQE, one WQEBB:
* - Control Segment, SEND opcode
* - Ethernet Segment, optional VLAN, no inline
* - Data Segment, pointer type
*/
wqe = txq->wqes + (txq->wqe_ci & txq->wqe_m);
loc->wqe_last = wqe;
mlx5_tx_cseg_init(txq, loc, wqe, 3,
MLX5_OPCODE_SEND, olx);
mlx5_tx_eseg_none(txq, loc, wqe, olx);
mlx5_tx_dseg_ptr
(txq, loc, &wqe->dseg[0],
rte_pktmbuf_mtod(loc->mbuf, uint8_t *),
rte_pktmbuf_data_len(loc->mbuf), olx);
++txq->wqe_ci;
--loc->wqe_free;
/*
* We should not store mbuf pointer in elts
* if no inlining is configured, this is done
* by calling routine in a batch copy.
*/
assert(!MLX5_TXOFF_CONFIG(INLINE));
--loc->elts_free;
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Update sent data bytes counter. */
txq->stats.obytes += rte_pktmbuf_data_len(loc->mbuf);
if (MLX5_TXOFF_CONFIG(VLAN) &&
loc->mbuf->ol_flags & PKT_TX_VLAN_PKT)
txq->stats.obytes +=
sizeof(struct rte_vlan_hdr);
#endif
}
++loc->pkts_sent;
--pkts_n;
/* Request CQE generation if limits are reached. */
mlx5_tx_request_completion(txq, loc, olx);
if (unlikely(!pkts_n || !loc->elts_free || !loc->wqe_free))
return MLX5_TXCMP_CODE_EXIT;
loc->mbuf = *pkts++;
if (pkts_n > 1)
rte_prefetch0(*pkts);
ret = mlx5_tx_able_to_empw(txq, loc, olx, true);
if (unlikely(ret != MLX5_TXCMP_CODE_SINGLE))
return ret;
}
assert(false);
}
static __rte_always_inline enum mlx5_txcmp_code
mlx5_tx_burst_single(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
unsigned int pkts_n,
struct mlx5_txq_local *restrict loc,
unsigned int olx)
{
enum mlx5_txcmp_code ret;
ret = mlx5_tx_able_to_empw(txq, loc, olx, false);
if (ret == MLX5_TXCMP_CODE_SINGLE)
goto ordinary_send;
assert(ret == MLX5_TXCMP_CODE_EMPW);
for (;;) {
/* Optimize for inline/no inline eMPW send. */
ret = (MLX5_TXOFF_CONFIG(INLINE)) ?
mlx5_tx_burst_empw_inline
(txq, pkts, pkts_n, loc, olx) :
mlx5_tx_burst_empw_simple
(txq, pkts, pkts_n, loc, olx);
if (ret != MLX5_TXCMP_CODE_SINGLE)
return ret;
/* The resources to send one packet should remain. */
assert(loc->elts_free && loc->wqe_free);
ordinary_send:
ret = mlx5_tx_burst_single_send(txq, pkts, pkts_n, loc, olx);
assert(ret != MLX5_TXCMP_CODE_SINGLE);
if (ret != MLX5_TXCMP_CODE_EMPW)
return ret;
/* The resources to send one packet should remain. */
assert(loc->elts_free && loc->wqe_free);
}
}
/**
* DPDK Tx callback template. This is configured template
* used to generate routines optimized for specified offload setup.
* One of this generated functions is chosen at SQ configuration
* time.
*
* @param txq
* Generic pointer to TX queue structure.
* @param[in] pkts
* Packets to transmit.
* @param pkts_n
* Number of packets in array.
* @param olx
* Configured offloads mask, presents the bits of MLX5_TXOFF_CONFIG_xxx
* values. Should be static to take compile time static configuration
* advantages.
*
* @return
* Number of packets successfully transmitted (<= pkts_n).
*/
static __rte_always_inline uint16_t
mlx5_tx_burst_tmpl(struct mlx5_txq_data *restrict txq,
struct rte_mbuf **restrict pkts,
uint16_t pkts_n,
unsigned int olx)
{
struct mlx5_txq_local loc;
enum mlx5_txcmp_code ret;
unsigned int part;
assert(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
assert(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
/*
* Check if there are some CQEs, if any:
* - process an encountered errors
* - process the completed WQEs
* - free related mbufs
* - doorbell the NIC about processed CQEs
*/
if (unlikely(!pkts_n))
return 0;
rte_prefetch0(*pkts);
mlx5_tx_handle_completion(txq, olx);
/*
* Calculate the number of available resources - elts and WQEs.
* There are two possible different scenarios:
* - no data inlining into WQEs, one WQEBB may contains upto
* four packets, in this case elts become scarce resource
* - data inlining into WQEs, one packet may require multiple
* WQEBBs, the WQEs become the limiting factor.
*/
assert(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
loc.elts_free = txq->elts_s -
(uint16_t)(txq->elts_head - txq->elts_tail);
assert(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
loc.wqe_free = txq->wqe_s -
(uint16_t)(txq->wqe_ci - txq->wqe_pi);
if (unlikely(!loc.elts_free || !loc.wqe_free))
return 0;
loc.pkts_sent = 0;
loc.pkts_copy = 0;
loc.wqe_last = NULL;
for (;;) {
/*
* Fetch the packet from array. Usually this is
* the first packet in series of multi/single
* segment packets.
*/
loc.mbuf = *(pkts + loc.pkts_sent);
/* Dedicated branch for multi-segment packets. */
if (MLX5_TXOFF_CONFIG(MULTI) &&
unlikely(NB_SEGS(loc.mbuf) > 1)) {
/*
* Multi-segment packet encountered.
* Hardware is able to process it only
* with SEND/TSO opcodes, one packet
* per WQE, do it in dedicated routine.
*/
enter_send_multi:
assert(loc.pkts_sent >= loc.pkts_copy);
part = loc.pkts_sent - loc.pkts_copy;
if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
/*
* There are some single-segment mbufs not
* stored in elts. The mbufs must be in the
* same order as WQEs, so we must copy the
* mbufs to elts here, before the coming
* multi-segment packet mbufs is appended.
*/
mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy,
part, olx);
loc.pkts_copy = loc.pkts_sent;
}
assert(pkts_n > loc.pkts_sent);
ret = mlx5_tx_burst_mseg(txq, pkts, pkts_n, &loc, olx);
if (!MLX5_TXOFF_CONFIG(INLINE))
loc.pkts_copy = loc.pkts_sent;
/*
* These returned code checks are supposed
* to be optimized out due to routine inlining.
*/
if (ret == MLX5_TXCMP_CODE_EXIT) {
/*
* The routine returns this code when
* all packets are sent or there is no
* enough resources to complete request.
*/
break;
}
if (ret == MLX5_TXCMP_CODE_ERROR) {
/*
* The routine returns this code when
* some error in the incoming packets
* format occurred.
*/
txq->stats.oerrors++;
break;
}
if (ret == MLX5_TXCMP_CODE_SINGLE) {
/*
* The single-segment packet was encountered
* in the array, try to send it with the
* best optimized way, possible engaging eMPW.
*/
goto enter_send_single;
}
if (MLX5_TXOFF_CONFIG(TSO) &&
ret == MLX5_TXCMP_CODE_TSO) {
/*
* The single-segment TSO packet was
* encountered in the array.
*/
goto enter_send_tso;
}
/* We must not get here. Something is going wrong. */
assert(false);
txq->stats.oerrors++;
break;
}
/* Dedicated branch for single-segment TSO packets. */
if (MLX5_TXOFF_CONFIG(TSO) &&
unlikely(loc.mbuf->ol_flags & PKT_TX_TCP_SEG)) {
/*
* TSO might require special way for inlining
* (dedicated parameters) and is sent with
* MLX5_OPCODE_TSO opcode only, provide this
* in dedicated branch.
*/
enter_send_tso:
assert(NB_SEGS(loc.mbuf) == 1);
assert(pkts_n > loc.pkts_sent);
ret = mlx5_tx_burst_tso(txq, pkts, pkts_n, &loc, olx);
/*
* These returned code checks are supposed
* to be optimized out due to routine inlining.
*/
if (ret == MLX5_TXCMP_CODE_EXIT)
break;
if (ret == MLX5_TXCMP_CODE_ERROR) {
txq->stats.oerrors++;
break;
}
if (ret == MLX5_TXCMP_CODE_SINGLE)
goto enter_send_single;
if (MLX5_TXOFF_CONFIG(MULTI) &&
ret == MLX5_TXCMP_CODE_MULTI) {
/*
* The multi-segment packet was
* encountered in the array.
*/
goto enter_send_multi;
}
/* We must not get here. Something is going wrong. */
assert(false);
txq->stats.oerrors++;
break;
}
/*
* The dedicated branch for the single-segment packets
* without TSO. Often these ones can be sent using
* MLX5_OPCODE_EMPW with multiple packets in one WQE.
* The routine builds the WQEs till it encounters
* the TSO or multi-segment packet (in case if these
* offloads are requested at SQ configuration time).
*/
enter_send_single:
assert(pkts_n > loc.pkts_sent);
ret = mlx5_tx_burst_single(txq, pkts, pkts_n, &loc, olx);
/*
* These returned code checks are supposed
* to be optimized out due to routine inlining.
*/
if (ret == MLX5_TXCMP_CODE_EXIT)
break;
if (ret == MLX5_TXCMP_CODE_ERROR) {
txq->stats.oerrors++;
break;
}
if (MLX5_TXOFF_CONFIG(MULTI) &&
ret == MLX5_TXCMP_CODE_MULTI) {
/*
* The multi-segment packet was
* encountered in the array.
*/
goto enter_send_multi;
}
if (MLX5_TXOFF_CONFIG(TSO) &&
ret == MLX5_TXCMP_CODE_TSO) {
/*
* The single-segment TSO packet was
* encountered in the array.
*/
goto enter_send_tso;
}
/* We must not get here. Something is going wrong. */
assert(false);
txq->stats.oerrors++;
break;
}
/*
* Main Tx loop is completed, do the rest:
* - set completion request if thresholds are reached
* - doorbell the hardware
* - copy the rest of mbufs to elts (if any)
*/
assert(MLX5_TXOFF_CONFIG(INLINE) || loc.pkts_sent >= loc.pkts_copy);
/* Take a shortcut if nothing is sent. */
if (unlikely(loc.pkts_sent == 0))
return 0;
/*
* Ring QP doorbell immediately after WQE building completion
* to improve latencies. The pure software related data treatment
* can be completed after doorbell. Tx CQEs for this SQ are
* processed in this thread only by the polling.
*/
mlx5_tx_dbrec_cond_wmb(txq, loc.wqe_last, 0);
/* Not all of the mbufs may be stored into elts yet. */
part = MLX5_TXOFF_CONFIG(INLINE) ? 0 : loc.pkts_sent -
(MLX5_TXOFF_CONFIG(MULTI) ? loc.pkts_copy : 0);
if (!MLX5_TXOFF_CONFIG(INLINE) && part) {
/*
* There are some single-segment mbufs not stored in elts.
* It can be only if the last packet was single-segment.
* The copying is gathered into one place due to it is
* a good opportunity to optimize that with SIMD.
* Unfortunately if inlining is enabled the gaps in
* pointer array may happen due to early freeing of the
* inlined mbufs.
*/
mlx5_tx_copy_elts(txq, pkts + loc.pkts_copy, part, olx);
}
#ifdef MLX5_PMD_SOFT_COUNTERS
/* Increment sent packets counter. */
txq->stats.opackets += loc.pkts_sent;
#endif
assert(txq->elts_s >= (uint16_t)(txq->elts_head - txq->elts_tail));
assert(txq->wqe_s >= (uint16_t)(txq->wqe_ci - txq->wqe_pi));
return loc.pkts_sent;
}
/* Generate routines with Enhanced Multi-Packet Write support. */
MLX5_TXOFF_DECL(full_empw,
MLX5_TXOFF_CONFIG_FULL | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(none_empw,
MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(md_empw,
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mt_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mtsc_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mti_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mtv_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(mtiv_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(sc_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(sci_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(scv_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(sciv_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(i_empw,
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(v_empw,
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_DECL(iv_empw,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
/* Generate routines without Enhanced Multi-Packet Write support. */
MLX5_TXOFF_DECL(full,
MLX5_TXOFF_CONFIG_FULL)
MLX5_TXOFF_DECL(none,
MLX5_TXOFF_CONFIG_NONE)
MLX5_TXOFF_DECL(md,
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mt,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mtsc,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mti,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mtv,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(mtiv,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(sc,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(sci,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(scv,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(sciv,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(i,
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(v,
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_DECL(iv,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
/*
* Array of declared and compiled Tx burst function and corresponding
* supported offloads set. The array is used to select the Tx burst
* function for specified offloads set at Tx queue configuration time.
*/
const struct {
eth_tx_burst_t func;
unsigned int olx;
} txoff_func[] = {
MLX5_TXOFF_INFO(full_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(none_empw,
MLX5_TXOFF_CONFIG_NONE | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(md_empw,
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mt_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mtsc_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mti_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mtv_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(mtiv_empw,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(sc_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(sci_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(scv_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(sciv_empw,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(i_empw,
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(v_empw,
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(iv_empw,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA | MLX5_TXOFF_CONFIG_EMPW)
MLX5_TXOFF_INFO(full,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(none,
MLX5_TXOFF_CONFIG_NONE)
MLX5_TXOFF_INFO(md,
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mt,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mtsc,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mti,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mtv,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(mtiv,
MLX5_TXOFF_CONFIG_MULTI | MLX5_TXOFF_CONFIG_TSO |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(sc,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(sci,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(scv,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(sciv,
MLX5_TXOFF_CONFIG_SWP | MLX5_TXOFF_CONFIG_CSUM |
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(i,
MLX5_TXOFF_CONFIG_INLINE |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(v,
MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
MLX5_TXOFF_INFO(iv,
MLX5_TXOFF_CONFIG_INLINE | MLX5_TXOFF_CONFIG_VLAN |
MLX5_TXOFF_CONFIG_METADATA)
};
/**
* Configure the Tx function to use. The routine checks configured
* Tx offloads for the device and selects appropriate Tx burst
* routine. There are multiple Tx burst routines compiled from
* the same template in the most optimal way for the dedicated
* Tx offloads set.
*
* @param dev
* Pointer to private data structure.
*
* @return
* Pointer to selected Tx burst function.
*/
eth_tx_burst_t
mlx5_select_tx_function(struct rte_eth_dev *dev)
{
struct mlx5_priv *priv = dev->data->dev_private;
struct mlx5_dev_config *config = &priv->config;
uint64_t tx_offloads = dev->data->dev_conf.txmode.offloads;
unsigned int diff = 0, olx = 0, i, m;
static_assert(MLX5_WQE_SIZE_MAX / MLX5_WSEG_SIZE <=
MLX5_DSEG_MAX, "invalid WQE max size");
static_assert(MLX5_WQE_CSEG_SIZE == MLX5_WSEG_SIZE,
"invalid WQE Control Segment size");
static_assert(MLX5_WQE_ESEG_SIZE == MLX5_WSEG_SIZE,
"invalid WQE Ethernet Segment size");
static_assert(MLX5_WQE_DSEG_SIZE == MLX5_WSEG_SIZE,
"invalid WQE Data Segment size");
static_assert(MLX5_WQE_SIZE == 4 * MLX5_WSEG_SIZE,
"invalid WQE size");
assert(priv);
if (tx_offloads & DEV_TX_OFFLOAD_MULTI_SEGS) {
/* We should support Multi-Segment Packets. */
olx |= MLX5_TXOFF_CONFIG_MULTI;
}
if (tx_offloads & (DEV_TX_OFFLOAD_TCP_TSO |
DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
DEV_TX_OFFLOAD_GRE_TNL_TSO |
DEV_TX_OFFLOAD_IP_TNL_TSO |
DEV_TX_OFFLOAD_UDP_TNL_TSO)) {
/* We should support TCP Send Offload. */
olx |= MLX5_TXOFF_CONFIG_TSO;
}
if (tx_offloads & (DEV_TX_OFFLOAD_IP_TNL_TSO |
DEV_TX_OFFLOAD_UDP_TNL_TSO |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) {
/* We should support Software Parser for Tunnels. */
olx |= MLX5_TXOFF_CONFIG_SWP;
}
if (tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
DEV_TX_OFFLOAD_UDP_CKSUM |
DEV_TX_OFFLOAD_TCP_CKSUM |
DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)) {
/* We should support IP/TCP/UDP Checksums. */
olx |= MLX5_TXOFF_CONFIG_CSUM;
}
if (tx_offloads & DEV_TX_OFFLOAD_VLAN_INSERT) {
/* We should support VLAN insertion. */
olx |= MLX5_TXOFF_CONFIG_VLAN;
}
if (priv->txqs_n && (*priv->txqs)[0]) {
struct mlx5_txq_data *txd = (*priv->txqs)[0];
if (txd->inlen_send) {
/*
* Check the data inline requirements. Data inline
* is enabled on per device basis, we can check
* the first Tx queue only.
*
* If device does not support VLAN insertion in WQE
* and some queues are requested to perform VLAN
* insertion offload than inline must be enabled.
*/
olx |= MLX5_TXOFF_CONFIG_INLINE;
}
}
if (config->mps == MLX5_MPW_ENHANCED &&
config->txq_inline_min <= 0) {
/*
* The NIC supports Enhanced Multi-Packet Write.
* We do not support legacy MPW due to its
* hardware related problems, so we just ignore
* legacy MLX5_MPW settings. There should be no
* minimal required inline data.
*/
olx |= MLX5_TXOFF_CONFIG_EMPW;
}
if (tx_offloads & DEV_TX_OFFLOAD_MATCH_METADATA) {
/* We should support Flow metadata. */
olx |= MLX5_TXOFF_CONFIG_METADATA;
}
/*
* Scan the routines table to find the minimal
* satisfying routine with requested offloads.
*/
m = RTE_DIM(txoff_func);
for (i = 0; i < RTE_DIM(txoff_func); i++) {
unsigned int tmp;
tmp = txoff_func[i].olx;
if (tmp == olx) {
/* Meets requested offloads exactly.*/
m = i;
break;
}
if ((tmp & olx) != olx) {
/* Does not meet requested offloads at all. */
continue;
}
if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_EMPW)
/* Do not enable eMPW if not configured. */
continue;
if ((olx ^ tmp) & MLX5_TXOFF_CONFIG_INLINE)
/* Do not enable inlining if not configured. */
continue;
/*
* Some routine meets the requirements.
* Check whether it has minimal amount
* of not requested offloads.
*/
tmp = __builtin_popcountl(tmp & ~olx);
if (m >= RTE_DIM(txoff_func) || tmp < diff) {
/* First or better match, save and continue. */
m = i;
diff = tmp;
continue;
}
if (tmp == diff) {
tmp = txoff_func[i].olx ^ txoff_func[m].olx;
if (__builtin_ffsl(txoff_func[i].olx & ~tmp) <
__builtin_ffsl(txoff_func[m].olx & ~tmp)) {
/* Lighter not requested offload. */
m = i;
}
}
}
if (m >= RTE_DIM(txoff_func)) {
DRV_LOG(DEBUG, "port %u has no selected Tx function"
" for requested offloads %04X",
dev->data->port_id, olx);
return NULL;
}
DRV_LOG(DEBUG, "port %u has selected Tx function"
" supporting offloads %04X/%04X",
dev->data->port_id, olx, txoff_func[m].olx);
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_MULTI)
DRV_LOG(DEBUG, "\tMULTI (multi segment)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_TSO)
DRV_LOG(DEBUG, "\tTSO (TCP send offload)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_SWP)
DRV_LOG(DEBUG, "\tSWP (software parser)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_CSUM)
DRV_LOG(DEBUG, "\tCSUM (checksum offload)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_INLINE)
DRV_LOG(DEBUG, "\tINLIN (inline data)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_VLAN)
DRV_LOG(DEBUG, "\tVLANI (VLAN insertion)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_METADATA)
DRV_LOG(DEBUG, "\tMETAD (tx Flow metadata)");
if (txoff_func[m].olx & MLX5_TXOFF_CONFIG_EMPW)
DRV_LOG(DEBUG, "\tEMPW (Enhanced MPW)");
return txoff_func[m].func;
}