numam-dpdk/examples/l2fwd-crypto/main.c
Hemant Agrawal 800386e6b7 examples/l2fwd-crypto: call start function
The usual device sequence is configure, queue setup and start.
Crypto device should be started before use.

Signed-off-by: Akhil Goyal <akhil.goyal@nxp.com>
Signed-off-by: Hemant Agrawal <hemant.agrawal@nxp.com>
Signed-off-by: Thomas Monjalon <thomas.monjalon@6wind.com>
Acked-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
2016-07-22 12:39:53 +02:00

2093 lines
56 KiB
C

/*-
* BSD LICENSE
*
* Copyright(c) 2015-2016 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/queue.h>
#include <netinet/in.h>
#include <setjmp.h>
#include <stdarg.h>
#include <ctype.h>
#include <errno.h>
#include <getopt.h>
#include <fcntl.h>
#include <unistd.h>
#include <rte_atomic.h>
#include <rte_branch_prediction.h>
#include <rte_common.h>
#include <rte_cryptodev.h>
#include <rte_cycles.h>
#include <rte_debug.h>
#include <rte_eal.h>
#include <rte_ether.h>
#include <rte_ethdev.h>
#include <rte_interrupts.h>
#include <rte_ip.h>
#include <rte_launch.h>
#include <rte_lcore.h>
#include <rte_log.h>
#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_memcpy.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_memzone.h>
#include <rte_pci.h>
#include <rte_per_lcore.h>
#include <rte_prefetch.h>
#include <rte_random.h>
#include <rte_ring.h>
#include <rte_hexdump.h>
enum cdev_type {
CDEV_TYPE_ANY,
CDEV_TYPE_HW,
CDEV_TYPE_SW
};
#define RTE_LOGTYPE_L2FWD RTE_LOGTYPE_USER1
#define NB_MBUF 8192
#define MAX_STR_LEN 32
#define MAX_KEY_SIZE 128
#define MAX_PKT_BURST 32
#define BURST_TX_DRAIN_US 100 /* TX drain every ~100us */
/*
* Configurable number of RX/TX ring descriptors
*/
#define RTE_TEST_RX_DESC_DEFAULT 128
#define RTE_TEST_TX_DESC_DEFAULT 512
static uint16_t nb_rxd = RTE_TEST_RX_DESC_DEFAULT;
static uint16_t nb_txd = RTE_TEST_TX_DESC_DEFAULT;
/* ethernet addresses of ports */
static struct ether_addr l2fwd_ports_eth_addr[RTE_MAX_ETHPORTS];
/* mask of enabled ports */
static uint64_t l2fwd_enabled_port_mask;
static uint64_t l2fwd_enabled_crypto_mask;
/* list of enabled ports */
static uint32_t l2fwd_dst_ports[RTE_MAX_ETHPORTS];
struct pkt_buffer {
unsigned len;
struct rte_mbuf *buffer[MAX_PKT_BURST];
};
struct op_buffer {
unsigned len;
struct rte_crypto_op *buffer[MAX_PKT_BURST];
};
#define MAX_RX_QUEUE_PER_LCORE 16
#define MAX_TX_QUEUE_PER_PORT 16
enum l2fwd_crypto_xform_chain {
L2FWD_CRYPTO_CIPHER_HASH,
L2FWD_CRYPTO_HASH_CIPHER,
L2FWD_CRYPTO_CIPHER_ONLY,
L2FWD_CRYPTO_HASH_ONLY
};
struct l2fwd_key {
uint8_t *data;
uint32_t length;
phys_addr_t phys_addr;
};
char supported_auth_algo[RTE_CRYPTO_AUTH_LIST_END][MAX_STR_LEN];
char supported_cipher_algo[RTE_CRYPTO_CIPHER_LIST_END][MAX_STR_LEN];
/** l2fwd crypto application command line options */
struct l2fwd_crypto_options {
unsigned portmask;
unsigned nb_ports_per_lcore;
unsigned refresh_period;
unsigned single_lcore:1;
enum cdev_type type;
unsigned sessionless:1;
enum l2fwd_crypto_xform_chain xform_chain;
struct rte_crypto_sym_xform cipher_xform;
unsigned ckey_param;
int ckey_random_size;
struct l2fwd_key iv;
unsigned iv_param;
int iv_random_size;
struct rte_crypto_sym_xform auth_xform;
uint8_t akey_param;
int akey_random_size;
struct l2fwd_key aad;
unsigned aad_param;
int aad_random_size;
int digest_size;
uint16_t block_size;
char string_type[MAX_STR_LEN];
};
/** l2fwd crypto lcore params */
struct l2fwd_crypto_params {
uint8_t dev_id;
uint8_t qp_id;
unsigned digest_length;
unsigned block_size;
struct l2fwd_key iv;
struct l2fwd_key aad;
struct rte_cryptodev_sym_session *session;
uint8_t do_cipher;
uint8_t do_hash;
uint8_t hash_verify;
enum rte_crypto_cipher_algorithm cipher_algo;
enum rte_crypto_auth_algorithm auth_algo;
};
/** lcore configuration */
struct lcore_queue_conf {
unsigned nb_rx_ports;
unsigned rx_port_list[MAX_RX_QUEUE_PER_LCORE];
unsigned nb_crypto_devs;
unsigned cryptodev_list[MAX_RX_QUEUE_PER_LCORE];
struct op_buffer op_buf[RTE_MAX_ETHPORTS];
struct pkt_buffer pkt_buf[RTE_MAX_ETHPORTS];
} __rte_cache_aligned;
struct lcore_queue_conf lcore_queue_conf[RTE_MAX_LCORE];
static const struct rte_eth_conf port_conf = {
.rxmode = {
.mq_mode = ETH_MQ_RX_NONE,
.max_rx_pkt_len = ETHER_MAX_LEN,
.split_hdr_size = 0,
.header_split = 0, /**< Header Split disabled */
.hw_ip_checksum = 0, /**< IP checksum offload disabled */
.hw_vlan_filter = 0, /**< VLAN filtering disabled */
.jumbo_frame = 0, /**< Jumbo Frame Support disabled */
.hw_strip_crc = 0, /**< CRC stripped by hardware */
},
.txmode = {
.mq_mode = ETH_MQ_TX_NONE,
},
};
struct rte_mempool *l2fwd_pktmbuf_pool;
struct rte_mempool *l2fwd_crypto_op_pool;
/* Per-port statistics struct */
struct l2fwd_port_statistics {
uint64_t tx;
uint64_t rx;
uint64_t crypto_enqueued;
uint64_t crypto_dequeued;
uint64_t dropped;
} __rte_cache_aligned;
struct l2fwd_crypto_statistics {
uint64_t enqueued;
uint64_t dequeued;
uint64_t errors;
} __rte_cache_aligned;
struct l2fwd_port_statistics port_statistics[RTE_MAX_ETHPORTS];
struct l2fwd_crypto_statistics crypto_statistics[RTE_CRYPTO_MAX_DEVS];
/* A tsc-based timer responsible for triggering statistics printout */
#define TIMER_MILLISECOND 2000000ULL /* around 1ms at 2 Ghz */
#define MAX_TIMER_PERIOD 86400UL /* 1 day max */
/* default period is 10 seconds */
static int64_t timer_period = 10 * TIMER_MILLISECOND * 1000;
/* Print out statistics on packets dropped */
static void
print_stats(void)
{
uint64_t total_packets_dropped, total_packets_tx, total_packets_rx;
uint64_t total_packets_enqueued, total_packets_dequeued,
total_packets_errors;
unsigned portid;
uint64_t cdevid;
total_packets_dropped = 0;
total_packets_tx = 0;
total_packets_rx = 0;
total_packets_enqueued = 0;
total_packets_dequeued = 0;
total_packets_errors = 0;
const char clr[] = { 27, '[', '2', 'J', '\0' };
const char topLeft[] = { 27, '[', '1', ';', '1', 'H', '\0' };
/* Clear screen and move to top left */
printf("%s%s", clr, topLeft);
printf("\nPort statistics ====================================");
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
/* skip disabled ports */
if ((l2fwd_enabled_port_mask & (1 << portid)) == 0)
continue;
printf("\nStatistics for port %u ------------------------------"
"\nPackets sent: %32"PRIu64
"\nPackets received: %28"PRIu64
"\nPackets dropped: %29"PRIu64,
portid,
port_statistics[portid].tx,
port_statistics[portid].rx,
port_statistics[portid].dropped);
total_packets_dropped += port_statistics[portid].dropped;
total_packets_tx += port_statistics[portid].tx;
total_packets_rx += port_statistics[portid].rx;
}
printf("\nCrypto statistics ==================================");
for (cdevid = 0; cdevid < RTE_CRYPTO_MAX_DEVS; cdevid++) {
/* skip disabled ports */
if ((l2fwd_enabled_crypto_mask & (1lu << cdevid)) == 0)
continue;
printf("\nStatistics for cryptodev %"PRIu64
" -------------------------"
"\nPackets enqueued: %28"PRIu64
"\nPackets dequeued: %28"PRIu64
"\nPackets errors: %30"PRIu64,
cdevid,
crypto_statistics[cdevid].enqueued,
crypto_statistics[cdevid].dequeued,
crypto_statistics[cdevid].errors);
total_packets_enqueued += crypto_statistics[cdevid].enqueued;
total_packets_dequeued += crypto_statistics[cdevid].dequeued;
total_packets_errors += crypto_statistics[cdevid].errors;
}
printf("\nAggregate statistics ==============================="
"\nTotal packets received: %22"PRIu64
"\nTotal packets enqueued: %22"PRIu64
"\nTotal packets dequeued: %22"PRIu64
"\nTotal packets sent: %26"PRIu64
"\nTotal packets dropped: %23"PRIu64
"\nTotal packets crypto errors: %17"PRIu64,
total_packets_rx,
total_packets_enqueued,
total_packets_dequeued,
total_packets_tx,
total_packets_dropped,
total_packets_errors);
printf("\n====================================================\n");
}
static void
fill_supported_algorithm_tables(void)
{
unsigned i;
for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++)
strcpy(supported_auth_algo[i], "NOT_SUPPORTED");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_GCM], "AES_GCM");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_MD5_HMAC], "MD5_HMAC");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_NULL], "NULL");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_AES_XCBC_MAC],
"AES_XCBC_MAC");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA1_HMAC], "SHA1_HMAC");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA224_HMAC], "SHA224_HMAC");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA256_HMAC], "SHA256_HMAC");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA384_HMAC], "SHA384_HMAC");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SHA512_HMAC], "SHA512_HMAC");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_SNOW3G_UIA2], "SNOW3G_UIA2");
strcpy(supported_auth_algo[RTE_CRYPTO_AUTH_KASUMI_F9], "KASUMI_F9");
for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++)
strcpy(supported_cipher_algo[i], "NOT_SUPPORTED");
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CBC], "AES_CBC");
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_CTR], "AES_CTR");
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_AES_GCM], "AES_GCM");
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_NULL], "NULL");
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_SNOW3G_UEA2], "SNOW3G_UEA2");
strcpy(supported_cipher_algo[RTE_CRYPTO_CIPHER_KASUMI_F8], "KASUMI_F8");
}
static int
l2fwd_crypto_send_burst(struct lcore_queue_conf *qconf, unsigned n,
struct l2fwd_crypto_params *cparams)
{
struct rte_crypto_op **op_buffer;
unsigned ret;
op_buffer = (struct rte_crypto_op **)
qconf->op_buf[cparams->dev_id].buffer;
ret = rte_cryptodev_enqueue_burst(cparams->dev_id,
cparams->qp_id, op_buffer, (uint16_t) n);
crypto_statistics[cparams->dev_id].enqueued += ret;
if (unlikely(ret < n)) {
crypto_statistics[cparams->dev_id].errors += (n - ret);
do {
rte_pktmbuf_free(op_buffer[ret]->sym->m_src);
rte_crypto_op_free(op_buffer[ret]);
} while (++ret < n);
}
return 0;
}
static int
l2fwd_crypto_enqueue(struct rte_crypto_op *op,
struct l2fwd_crypto_params *cparams)
{
unsigned lcore_id, len;
struct lcore_queue_conf *qconf;
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
len = qconf->op_buf[cparams->dev_id].len;
qconf->op_buf[cparams->dev_id].buffer[len] = op;
len++;
/* enough ops to be sent */
if (len == MAX_PKT_BURST) {
l2fwd_crypto_send_burst(qconf, MAX_PKT_BURST, cparams);
len = 0;
}
qconf->op_buf[cparams->dev_id].len = len;
return 0;
}
static int
l2fwd_simple_crypto_enqueue(struct rte_mbuf *m,
struct rte_crypto_op *op,
struct l2fwd_crypto_params *cparams)
{
struct ether_hdr *eth_hdr;
struct ipv4_hdr *ip_hdr;
unsigned ipdata_offset, pad_len, data_len;
char *padding;
eth_hdr = rte_pktmbuf_mtod(m, struct ether_hdr *);
if (eth_hdr->ether_type != rte_cpu_to_be_16(ETHER_TYPE_IPv4))
return -1;
ipdata_offset = sizeof(struct ether_hdr);
ip_hdr = (struct ipv4_hdr *)(rte_pktmbuf_mtod(m, char *) +
ipdata_offset);
ipdata_offset += (ip_hdr->version_ihl & IPV4_HDR_IHL_MASK)
* IPV4_IHL_MULTIPLIER;
/* Zero pad data to be crypto'd so it is block aligned */
data_len = rte_pktmbuf_data_len(m) - ipdata_offset;
pad_len = data_len % cparams->block_size ? cparams->block_size -
(data_len % cparams->block_size) : 0;
if (pad_len) {
padding = rte_pktmbuf_append(m, pad_len);
if (unlikely(!padding))
return -1;
data_len += pad_len;
memset(padding, 0, pad_len);
}
/* Set crypto operation data parameters */
rte_crypto_op_attach_sym_session(op, cparams->session);
if (cparams->do_hash) {
if (!cparams->hash_verify) {
/* Append space for digest to end of packet */
op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
cparams->digest_length);
} else {
op->sym->auth.digest.data = (uint8_t *)rte_pktmbuf_append(m,
cparams->digest_length);
}
op->sym->auth.digest.phys_addr = rte_pktmbuf_mtophys_offset(m,
rte_pktmbuf_pkt_len(m) - cparams->digest_length);
op->sym->auth.digest.length = cparams->digest_length;
/* For SNOW3G/KASUMI algorithms, offset/length must be in bits */
if (cparams->auth_algo == RTE_CRYPTO_AUTH_SNOW3G_UIA2 ||
cparams->auth_algo == RTE_CRYPTO_AUTH_KASUMI_F9) {
op->sym->auth.data.offset = ipdata_offset << 3;
op->sym->auth.data.length = data_len << 3;
} else {
op->sym->auth.data.offset = ipdata_offset;
op->sym->auth.data.length = data_len;
}
if (cparams->aad.length) {
op->sym->auth.aad.data = cparams->aad.data;
op->sym->auth.aad.phys_addr = cparams->aad.phys_addr;
op->sym->auth.aad.length = cparams->aad.length;
}
}
if (cparams->do_cipher) {
op->sym->cipher.iv.data = cparams->iv.data;
op->sym->cipher.iv.phys_addr = cparams->iv.phys_addr;
op->sym->cipher.iv.length = cparams->iv.length;
/* For SNOW3G algorithms, offset/length must be in bits */
if (cparams->cipher_algo == RTE_CRYPTO_CIPHER_SNOW3G_UEA2 ||
cparams->cipher_algo == RTE_CRYPTO_CIPHER_KASUMI_F8) {
op->sym->cipher.data.offset = ipdata_offset << 3;
if (cparams->do_hash && cparams->hash_verify)
/* Do not cipher the hash tag */
op->sym->cipher.data.length = (data_len -
cparams->digest_length) << 3;
else
op->sym->cipher.data.length = data_len << 3;
} else {
op->sym->cipher.data.offset = ipdata_offset;
if (cparams->do_hash && cparams->hash_verify)
/* Do not cipher the hash tag */
op->sym->cipher.data.length = data_len -
cparams->digest_length;
else
op->sym->cipher.data.length = data_len;
}
}
op->sym->m_src = m;
return l2fwd_crypto_enqueue(op, cparams);
}
/* Send the burst of packets on an output interface */
static int
l2fwd_send_burst(struct lcore_queue_conf *qconf, unsigned n,
uint8_t port)
{
struct rte_mbuf **pkt_buffer;
unsigned ret;
pkt_buffer = (struct rte_mbuf **)qconf->pkt_buf[port].buffer;
ret = rte_eth_tx_burst(port, 0, pkt_buffer, (uint16_t)n);
port_statistics[port].tx += ret;
if (unlikely(ret < n)) {
port_statistics[port].dropped += (n - ret);
do {
rte_pktmbuf_free(pkt_buffer[ret]);
} while (++ret < n);
}
return 0;
}
/* Enqueue packets for TX and prepare them to be sent */
static int
l2fwd_send_packet(struct rte_mbuf *m, uint8_t port)
{
unsigned lcore_id, len;
struct lcore_queue_conf *qconf;
lcore_id = rte_lcore_id();
qconf = &lcore_queue_conf[lcore_id];
len = qconf->pkt_buf[port].len;
qconf->pkt_buf[port].buffer[len] = m;
len++;
/* enough pkts to be sent */
if (unlikely(len == MAX_PKT_BURST)) {
l2fwd_send_burst(qconf, MAX_PKT_BURST, port);
len = 0;
}
qconf->pkt_buf[port].len = len;
return 0;
}
static void
l2fwd_simple_forward(struct rte_mbuf *m, unsigned portid)
{
struct ether_hdr *eth;
void *tmp;
unsigned dst_port;
dst_port = l2fwd_dst_ports[portid];
eth = rte_pktmbuf_mtod(m, struct ether_hdr *);
/* 02:00:00:00:00:xx */
tmp = &eth->d_addr.addr_bytes[0];
*((uint64_t *)tmp) = 0x000000000002 + ((uint64_t)dst_port << 40);
/* src addr */
ether_addr_copy(&l2fwd_ports_eth_addr[dst_port], &eth->s_addr);
l2fwd_send_packet(m, (uint8_t) dst_port);
}
/** Generate random key */
static void
generate_random_key(uint8_t *key, unsigned length)
{
int fd;
int ret;
fd = open("/dev/urandom", O_RDONLY);
if (fd < 0)
rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
ret = read(fd, key, length);
close(fd);
if (ret != (signed)length)
rte_exit(EXIT_FAILURE, "Failed to generate random key\n");
}
static struct rte_cryptodev_sym_session *
initialize_crypto_session(struct l2fwd_crypto_options *options,
uint8_t cdev_id)
{
struct rte_crypto_sym_xform *first_xform;
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH) {
first_xform = &options->cipher_xform;
first_xform->next = &options->auth_xform;
} else if (options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER) {
first_xform = &options->auth_xform;
first_xform->next = &options->cipher_xform;
} else if (options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
first_xform = &options->cipher_xform;
} else {
first_xform = &options->auth_xform;
}
/* Setup Cipher Parameters */
return rte_cryptodev_sym_session_create(cdev_id, first_xform);
}
static void
l2fwd_crypto_options_print(struct l2fwd_crypto_options *options);
/* main processing loop */
static void
l2fwd_main_loop(struct l2fwd_crypto_options *options)
{
struct rte_mbuf *m, *pkts_burst[MAX_PKT_BURST];
struct rte_crypto_op *ops_burst[MAX_PKT_BURST];
unsigned lcore_id = rte_lcore_id();
uint64_t prev_tsc = 0, diff_tsc, cur_tsc, timer_tsc = 0;
unsigned i, j, portid, nb_rx, len;
struct lcore_queue_conf *qconf = &lcore_queue_conf[lcore_id];
const uint64_t drain_tsc = (rte_get_tsc_hz() + US_PER_S - 1) /
US_PER_S * BURST_TX_DRAIN_US;
struct l2fwd_crypto_params *cparams;
struct l2fwd_crypto_params port_cparams[qconf->nb_crypto_devs];
if (qconf->nb_rx_ports == 0) {
RTE_LOG(INFO, L2FWD, "lcore %u has nothing to do\n", lcore_id);
return;
}
RTE_LOG(INFO, L2FWD, "entering main loop on lcore %u\n", lcore_id);
for (i = 0; i < qconf->nb_rx_ports; i++) {
portid = qconf->rx_port_list[i];
RTE_LOG(INFO, L2FWD, " -- lcoreid=%u portid=%u\n", lcore_id,
portid);
}
for (i = 0; i < qconf->nb_crypto_devs; i++) {
port_cparams[i].do_cipher = 0;
port_cparams[i].do_hash = 0;
switch (options->xform_chain) {
case L2FWD_CRYPTO_CIPHER_HASH:
case L2FWD_CRYPTO_HASH_CIPHER:
port_cparams[i].do_cipher = 1;
port_cparams[i].do_hash = 1;
break;
case L2FWD_CRYPTO_HASH_ONLY:
port_cparams[i].do_hash = 1;
break;
case L2FWD_CRYPTO_CIPHER_ONLY:
port_cparams[i].do_cipher = 1;
break;
}
port_cparams[i].dev_id = qconf->cryptodev_list[i];
port_cparams[i].qp_id = 0;
port_cparams[i].block_size = options->block_size;
if (port_cparams[i].do_hash) {
port_cparams[i].digest_length =
options->auth_xform.auth.digest_length;
if (options->auth_xform.auth.add_auth_data_length) {
port_cparams[i].aad.data = options->aad.data;
port_cparams[i].aad.length =
options->auth_xform.auth.add_auth_data_length;
port_cparams[i].aad.phys_addr = options->aad.phys_addr;
if (!options->aad_param)
generate_random_key(port_cparams[i].aad.data,
port_cparams[i].aad.length);
}
if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_VERIFY)
port_cparams[i].hash_verify = 1;
else
port_cparams[i].hash_verify = 0;
port_cparams[i].auth_algo = options->auth_xform.auth.algo;
}
if (port_cparams[i].do_cipher) {
port_cparams[i].iv.data = options->iv.data;
port_cparams[i].iv.length = options->iv.length;
port_cparams[i].iv.phys_addr = options->iv.phys_addr;
if (!options->iv_param)
generate_random_key(port_cparams[i].iv.data,
port_cparams[i].iv.length);
port_cparams[i].cipher_algo = options->cipher_xform.cipher.algo;
}
port_cparams[i].session = initialize_crypto_session(options,
port_cparams[i].dev_id);
if (port_cparams[i].session == NULL)
return;
RTE_LOG(INFO, L2FWD, " -- lcoreid=%u cryptoid=%u\n", lcore_id,
port_cparams[i].dev_id);
}
l2fwd_crypto_options_print(options);
/*
* Initialize previous tsc timestamp before the loop,
* to avoid showing the port statistics immediately,
* so user can see the crypto information.
*/
prev_tsc = rte_rdtsc();
while (1) {
cur_tsc = rte_rdtsc();
/*
* Crypto device/TX burst queue drain
*/
diff_tsc = cur_tsc - prev_tsc;
if (unlikely(diff_tsc > drain_tsc)) {
/* Enqueue all crypto ops remaining in buffers */
for (i = 0; i < qconf->nb_crypto_devs; i++) {
cparams = &port_cparams[i];
len = qconf->op_buf[cparams->dev_id].len;
l2fwd_crypto_send_burst(qconf, len, cparams);
qconf->op_buf[cparams->dev_id].len = 0;
}
/* Transmit all packets remaining in buffers */
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++) {
if (qconf->pkt_buf[portid].len == 0)
continue;
l2fwd_send_burst(&lcore_queue_conf[lcore_id],
qconf->pkt_buf[portid].len,
(uint8_t) portid);
qconf->pkt_buf[portid].len = 0;
}
/* if timer is enabled */
if (timer_period > 0) {
/* advance the timer */
timer_tsc += diff_tsc;
/* if timer has reached its timeout */
if (unlikely(timer_tsc >=
(uint64_t)timer_period)) {
/* do this only on master core */
if (lcore_id == rte_get_master_lcore()
&& options->refresh_period) {
print_stats();
timer_tsc = 0;
}
}
}
prev_tsc = cur_tsc;
}
/*
* Read packet from RX queues
*/
for (i = 0; i < qconf->nb_rx_ports; i++) {
portid = qconf->rx_port_list[i];
cparams = &port_cparams[i];
nb_rx = rte_eth_rx_burst((uint8_t) portid, 0,
pkts_burst, MAX_PKT_BURST);
port_statistics[portid].rx += nb_rx;
if (nb_rx) {
/*
* If we can't allocate a crypto_ops, then drop
* the rest of the burst and dequeue and
* process the packets to free offload structs
*/
if (rte_crypto_op_bulk_alloc(
l2fwd_crypto_op_pool,
RTE_CRYPTO_OP_TYPE_SYMMETRIC,
ops_burst, nb_rx) !=
nb_rx) {
for (j = 0; j < nb_rx; j++)
rte_pktmbuf_free(pkts_burst[i]);
nb_rx = 0;
}
/* Enqueue packets from Crypto device*/
for (j = 0; j < nb_rx; j++) {
m = pkts_burst[j];
l2fwd_simple_crypto_enqueue(m,
ops_burst[j], cparams);
}
}
/* Dequeue packets from Crypto device */
do {
nb_rx = rte_cryptodev_dequeue_burst(
cparams->dev_id, cparams->qp_id,
ops_burst, MAX_PKT_BURST);
crypto_statistics[cparams->dev_id].dequeued +=
nb_rx;
/* Forward crypto'd packets */
for (j = 0; j < nb_rx; j++) {
m = ops_burst[j]->sym->m_src;
rte_crypto_op_free(ops_burst[j]);
l2fwd_simple_forward(m, portid);
}
} while (nb_rx == MAX_PKT_BURST);
}
}
}
static int
l2fwd_launch_one_lcore(void *arg)
{
l2fwd_main_loop((struct l2fwd_crypto_options *)arg);
return 0;
}
/* Display command line arguments usage */
static void
l2fwd_crypto_usage(const char *prgname)
{
printf("%s [EAL options] --\n"
" -p PORTMASK: hexadecimal bitmask of ports to configure\n"
" -q NQ: number of queue (=ports) per lcore (default is 1)\n"
" -s manage all ports from single lcore\n"
" -T PERIOD: statistics will be refreshed each PERIOD seconds"
" (0 to disable, 10 default, 86400 maximum)\n"
" --cdev_type HW / SW / ANY\n"
" --chain HASH_CIPHER / CIPHER_HASH\n"
" --cipher_algo ALGO\n"
" --cipher_op ENCRYPT / DECRYPT\n"
" --cipher_key KEY (bytes separated with \":\")\n"
" --cipher_key_random_size SIZE: size of cipher key when generated randomly\n"
" --iv IV (bytes separated with \":\")\n"
" --iv_random_size SIZE: size of IV when generated randomly\n"
" --auth_algo ALGO\n"
" --auth_op GENERATE / VERIFY\n"
" --auth_key KEY (bytes separated with \":\")\n"
" --auth_key_random_size SIZE: size of auth key when generated randomly\n"
" --aad AAD (bytes separated with \":\")\n"
" --aad_random_size SIZE: size of AAD when generated randomly\n"
" --digest_size SIZE: size of digest to be generated/verified\n"
" --sessionless\n",
prgname);
}
/** Parse crypto device type command line argument */
static int
parse_cryptodev_type(enum cdev_type *type, char *optarg)
{
if (strcmp("HW", optarg) == 0) {
*type = CDEV_TYPE_HW;
return 0;
} else if (strcmp("SW", optarg) == 0) {
*type = CDEV_TYPE_SW;
return 0;
} else if (strcmp("ANY", optarg) == 0) {
*type = CDEV_TYPE_ANY;
return 0;
}
return -1;
}
/** Parse crypto chain xform command line argument */
static int
parse_crypto_opt_chain(struct l2fwd_crypto_options *options, char *optarg)
{
if (strcmp("CIPHER_HASH", optarg) == 0) {
options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
return 0;
} else if (strcmp("HASH_CIPHER", optarg) == 0) {
options->xform_chain = L2FWD_CRYPTO_HASH_CIPHER;
return 0;
} else if (strcmp("CIPHER_ONLY", optarg) == 0) {
options->xform_chain = L2FWD_CRYPTO_CIPHER_ONLY;
return 0;
} else if (strcmp("HASH_ONLY", optarg) == 0) {
options->xform_chain = L2FWD_CRYPTO_HASH_ONLY;
return 0;
}
return -1;
}
/** Parse crypto cipher algo option command line argument */
static int
parse_cipher_algo(enum rte_crypto_cipher_algorithm *algo, char *optarg)
{
unsigned i;
for (i = 0; i < RTE_CRYPTO_CIPHER_LIST_END; i++) {
if (!strcmp(supported_cipher_algo[i], optarg)) {
*algo = (enum rte_crypto_cipher_algorithm)i;
return 0;
}
}
printf("Cipher algorithm not supported!\n");
return -1;
}
/** Parse crypto cipher operation command line argument */
static int
parse_cipher_op(enum rte_crypto_cipher_operation *op, char *optarg)
{
if (strcmp("ENCRYPT", optarg) == 0) {
*op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
return 0;
} else if (strcmp("DECRYPT", optarg) == 0) {
*op = RTE_CRYPTO_CIPHER_OP_DECRYPT;
return 0;
}
printf("Cipher operation not supported!\n");
return -1;
}
/** Parse crypto key command line argument */
static int
parse_key(uint8_t *data, char *input_arg)
{
unsigned byte_count;
char *token;
for (byte_count = 0, token = strtok(input_arg, ":");
(byte_count < MAX_KEY_SIZE) && (token != NULL);
token = strtok(NULL, ":")) {
int number = (int)strtol(token, NULL, 16);
if (errno == EINVAL || errno == ERANGE || number > 0xFF)
return -1;
data[byte_count++] = (uint8_t)number;
}
return byte_count;
}
/** Parse size param*/
static int
parse_size(int *size, const char *q_arg)
{
char *end = NULL;
unsigned long n;
/* parse hexadecimal string */
n = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
n = 0;
if (n == 0) {
printf("invalid size\n");
return -1;
}
*size = n;
return 0;
}
/** Parse crypto cipher operation command line argument */
static int
parse_auth_algo(enum rte_crypto_auth_algorithm *algo, char *optarg)
{
unsigned i;
for (i = 0; i < RTE_CRYPTO_AUTH_LIST_END; i++) {
if (!strcmp(supported_auth_algo[i], optarg)) {
*algo = (enum rte_crypto_auth_algorithm)i;
return 0;
}
}
printf("Authentication algorithm specified not supported!\n");
return -1;
}
static int
parse_auth_op(enum rte_crypto_auth_operation *op, char *optarg)
{
if (strcmp("VERIFY", optarg) == 0) {
*op = RTE_CRYPTO_AUTH_OP_VERIFY;
return 0;
} else if (strcmp("GENERATE", optarg) == 0) {
*op = RTE_CRYPTO_AUTH_OP_GENERATE;
return 0;
}
printf("Authentication operation specified not supported!\n");
return -1;
}
/** Parse long options */
static int
l2fwd_crypto_parse_args_long_options(struct l2fwd_crypto_options *options,
struct option *lgopts, int option_index)
{
int retval;
if (strcmp(lgopts[option_index].name, "cdev_type") == 0) {
retval = parse_cryptodev_type(&options->type, optarg);
if (retval == 0)
snprintf(options->string_type, MAX_STR_LEN,
"%s", optarg);
return retval;
}
else if (strcmp(lgopts[option_index].name, "chain") == 0)
return parse_crypto_opt_chain(options, optarg);
/* Cipher options */
else if (strcmp(lgopts[option_index].name, "cipher_algo") == 0)
return parse_cipher_algo(&options->cipher_xform.cipher.algo,
optarg);
else if (strcmp(lgopts[option_index].name, "cipher_op") == 0)
return parse_cipher_op(&options->cipher_xform.cipher.op,
optarg);
else if (strcmp(lgopts[option_index].name, "cipher_key") == 0) {
options->ckey_param = 1;
options->cipher_xform.cipher.key.length =
parse_key(options->cipher_xform.cipher.key.data, optarg);
if (options->cipher_xform.cipher.key.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "cipher_key_random_size") == 0)
return parse_size(&options->ckey_random_size, optarg);
else if (strcmp(lgopts[option_index].name, "iv") == 0) {
options->iv_param = 1;
options->iv.length =
parse_key(options->iv.data, optarg);
if (options->iv.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "iv_random_size") == 0)
return parse_size(&options->iv_random_size, optarg);
/* Authentication options */
else if (strcmp(lgopts[option_index].name, "auth_algo") == 0) {
return parse_auth_algo(&options->auth_xform.auth.algo,
optarg);
}
else if (strcmp(lgopts[option_index].name, "auth_op") == 0)
return parse_auth_op(&options->auth_xform.auth.op,
optarg);
else if (strcmp(lgopts[option_index].name, "auth_key") == 0) {
options->akey_param = 1;
options->auth_xform.auth.key.length =
parse_key(options->auth_xform.auth.key.data, optarg);
if (options->auth_xform.auth.key.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "auth_key_random_size") == 0) {
return parse_size(&options->akey_random_size, optarg);
}
else if (strcmp(lgopts[option_index].name, "aad") == 0) {
options->aad_param = 1;
options->aad.length =
parse_key(options->aad.data, optarg);
if (options->aad.length > 0)
return 0;
else
return -1;
}
else if (strcmp(lgopts[option_index].name, "aad_random_size") == 0) {
return parse_size(&options->aad_random_size, optarg);
}
else if (strcmp(lgopts[option_index].name, "digest_size") == 0) {
return parse_size(&options->digest_size, optarg);
}
else if (strcmp(lgopts[option_index].name, "sessionless") == 0) {
options->sessionless = 1;
return 0;
}
return -1;
}
/** Parse port mask */
static int
l2fwd_crypto_parse_portmask(struct l2fwd_crypto_options *options,
const char *q_arg)
{
char *end = NULL;
unsigned long pm;
/* parse hexadecimal string */
pm = strtoul(q_arg, &end, 16);
if ((pm == '\0') || (end == NULL) || (*end != '\0'))
pm = 0;
options->portmask = pm;
if (options->portmask == 0) {
printf("invalid portmask specified\n");
return -1;
}
return pm;
}
/** Parse number of queues */
static int
l2fwd_crypto_parse_nqueue(struct l2fwd_crypto_options *options,
const char *q_arg)
{
char *end = NULL;
unsigned long n;
/* parse hexadecimal string */
n = strtoul(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
n = 0;
else if (n >= MAX_RX_QUEUE_PER_LCORE)
n = 0;
options->nb_ports_per_lcore = n;
if (options->nb_ports_per_lcore == 0) {
printf("invalid number of ports selected\n");
return -1;
}
return 0;
}
/** Parse timer period */
static int
l2fwd_crypto_parse_timer_period(struct l2fwd_crypto_options *options,
const char *q_arg)
{
char *end = NULL;
unsigned long n;
/* parse number string */
n = (unsigned)strtol(q_arg, &end, 10);
if ((q_arg[0] == '\0') || (end == NULL) || (*end != '\0'))
n = 0;
if (n >= MAX_TIMER_PERIOD) {
printf("Warning refresh period specified %lu is greater than "
"max value %lu! using max value",
n, MAX_TIMER_PERIOD);
n = MAX_TIMER_PERIOD;
}
options->refresh_period = n * 1000 * TIMER_MILLISECOND;
return 0;
}
/** Generate default options for application */
static void
l2fwd_crypto_default_options(struct l2fwd_crypto_options *options)
{
options->portmask = 0xffffffff;
options->nb_ports_per_lcore = 1;
options->refresh_period = 10000;
options->single_lcore = 0;
options->sessionless = 0;
options->xform_chain = L2FWD_CRYPTO_CIPHER_HASH;
/* Cipher Data */
options->cipher_xform.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
options->cipher_xform.next = NULL;
options->ckey_param = 0;
options->ckey_random_size = -1;
options->cipher_xform.cipher.key.length = 0;
options->iv_param = 0;
options->iv_random_size = -1;
options->iv.length = 0;
options->cipher_xform.cipher.algo = RTE_CRYPTO_CIPHER_AES_CBC;
options->cipher_xform.cipher.op = RTE_CRYPTO_CIPHER_OP_ENCRYPT;
/* Authentication Data */
options->auth_xform.type = RTE_CRYPTO_SYM_XFORM_AUTH;
options->auth_xform.next = NULL;
options->akey_param = 0;
options->akey_random_size = -1;
options->auth_xform.auth.key.length = 0;
options->aad_param = 0;
options->aad_random_size = -1;
options->aad.length = 0;
options->digest_size = -1;
options->auth_xform.auth.algo = RTE_CRYPTO_AUTH_SHA1_HMAC;
options->auth_xform.auth.op = RTE_CRYPTO_AUTH_OP_GENERATE;
options->type = CDEV_TYPE_ANY;
}
static void
display_cipher_info(struct l2fwd_crypto_options *options)
{
printf("\n---- Cipher information ---\n");
printf("Algorithm: %s\n",
supported_cipher_algo[options->cipher_xform.cipher.algo]);
rte_hexdump(stdout, "Cipher key:",
options->cipher_xform.cipher.key.data,
options->cipher_xform.cipher.key.length);
rte_hexdump(stdout, "IV:", options->iv.data, options->iv.length);
}
static void
display_auth_info(struct l2fwd_crypto_options *options)
{
printf("\n---- Authentication information ---\n");
printf("Algorithm: %s\n",
supported_auth_algo[options->auth_xform.auth.algo]);
rte_hexdump(stdout, "Auth key:",
options->auth_xform.auth.key.data,
options->auth_xform.auth.key.length);
rte_hexdump(stdout, "AAD:", options->aad.data, options->aad.length);
}
static void
l2fwd_crypto_options_print(struct l2fwd_crypto_options *options)
{
char string_cipher_op[MAX_STR_LEN];
char string_auth_op[MAX_STR_LEN];
if (options->cipher_xform.cipher.op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
strcpy(string_cipher_op, "Encrypt");
else
strcpy(string_cipher_op, "Decrypt");
if (options->auth_xform.auth.op == RTE_CRYPTO_AUTH_OP_GENERATE)
strcpy(string_auth_op, "Auth generate");
else
strcpy(string_auth_op, "Auth verify");
printf("Options:-\nn");
printf("portmask: %x\n", options->portmask);
printf("ports per lcore: %u\n", options->nb_ports_per_lcore);
printf("refresh period : %u\n", options->refresh_period);
printf("single lcore mode: %s\n",
options->single_lcore ? "enabled" : "disabled");
printf("stats_printing: %s\n",
options->refresh_period == 0 ? "disabled" : "enabled");
printf("sessionless crypto: %s\n",
options->sessionless ? "enabled" : "disabled");
if (options->ckey_param && (options->ckey_random_size != -1))
printf("Cipher key already parsed, ignoring size of random key\n");
if (options->akey_param && (options->akey_random_size != -1))
printf("Auth key already parsed, ignoring size of random key\n");
if (options->iv_param && (options->iv_random_size != -1))
printf("IV already parsed, ignoring size of random IV\n");
if (options->aad_param && (options->aad_random_size != -1))
printf("AAD already parsed, ignoring size of random AAD\n");
printf("\nCrypto chain: ");
switch (options->xform_chain) {
case L2FWD_CRYPTO_CIPHER_HASH:
printf("Input --> %s --> %s --> Output\n",
string_cipher_op, string_auth_op);
display_cipher_info(options);
display_auth_info(options);
break;
case L2FWD_CRYPTO_HASH_CIPHER:
printf("Input --> %s --> %s --> Output\n",
string_auth_op, string_cipher_op);
display_cipher_info(options);
display_auth_info(options);
break;
case L2FWD_CRYPTO_HASH_ONLY:
printf("Input --> %s --> Output\n", string_auth_op);
display_auth_info(options);
break;
case L2FWD_CRYPTO_CIPHER_ONLY:
printf("Input --> %s --> Output\n", string_cipher_op);
display_cipher_info(options);
break;
}
}
/* Parse the argument given in the command line of the application */
static int
l2fwd_crypto_parse_args(struct l2fwd_crypto_options *options,
int argc, char **argv)
{
int opt, retval, option_index;
char **argvopt = argv, *prgname = argv[0];
static struct option lgopts[] = {
{ "sessionless", no_argument, 0, 0 },
{ "cdev_type", required_argument, 0, 0 },
{ "chain", required_argument, 0, 0 },
{ "cipher_algo", required_argument, 0, 0 },
{ "cipher_op", required_argument, 0, 0 },
{ "cipher_key", required_argument, 0, 0 },
{ "cipher_key_random_size", required_argument, 0, 0 },
{ "auth_algo", required_argument, 0, 0 },
{ "auth_op", required_argument, 0, 0 },
{ "auth_key", required_argument, 0, 0 },
{ "auth_key_random_size", required_argument, 0, 0 },
{ "iv", required_argument, 0, 0 },
{ "iv_random_size", required_argument, 0, 0 },
{ "aad", required_argument, 0, 0 },
{ "aad_random_size", required_argument, 0, 0 },
{ "digest_size", required_argument, 0, 0 },
{ "sessionless", no_argument, 0, 0 },
{ NULL, 0, 0, 0 }
};
l2fwd_crypto_default_options(options);
while ((opt = getopt_long(argc, argvopt, "p:q:st:", lgopts,
&option_index)) != EOF) {
switch (opt) {
/* long options */
case 0:
retval = l2fwd_crypto_parse_args_long_options(options,
lgopts, option_index);
if (retval < 0) {
l2fwd_crypto_usage(prgname);
return -1;
}
break;
/* portmask */
case 'p':
retval = l2fwd_crypto_parse_portmask(options, optarg);
if (retval < 0) {
l2fwd_crypto_usage(prgname);
return -1;
}
break;
/* nqueue */
case 'q':
retval = l2fwd_crypto_parse_nqueue(options, optarg);
if (retval < 0) {
l2fwd_crypto_usage(prgname);
return -1;
}
break;
/* single */
case 's':
options->single_lcore = 1;
break;
/* timer period */
case 'T':
retval = l2fwd_crypto_parse_timer_period(options,
optarg);
if (retval < 0) {
l2fwd_crypto_usage(prgname);
return -1;
}
break;
default:
l2fwd_crypto_usage(prgname);
return -1;
}
}
if (optind >= 0)
argv[optind-1] = prgname;
retval = optind-1;
optind = 0; /* reset getopt lib */
return retval;
}
/* Check the link status of all ports in up to 9s, and print them finally */
static void
check_all_ports_link_status(uint8_t port_num, uint32_t port_mask)
{
#define CHECK_INTERVAL 100 /* 100ms */
#define MAX_CHECK_TIME 90 /* 9s (90 * 100ms) in total */
uint8_t portid, count, all_ports_up, print_flag = 0;
struct rte_eth_link link;
printf("\nChecking link status");
fflush(stdout);
for (count = 0; count <= MAX_CHECK_TIME; count++) {
all_ports_up = 1;
for (portid = 0; portid < port_num; portid++) {
if ((port_mask & (1 << portid)) == 0)
continue;
memset(&link, 0, sizeof(link));
rte_eth_link_get_nowait(portid, &link);
/* print link status if flag set */
if (print_flag == 1) {
if (link.link_status)
printf("Port %d Link Up - speed %u "
"Mbps - %s\n", (uint8_t)portid,
(unsigned)link.link_speed,
(link.link_duplex == ETH_LINK_FULL_DUPLEX) ?
("full-duplex") : ("half-duplex\n"));
else
printf("Port %d Link Down\n",
(uint8_t)portid);
continue;
}
/* clear all_ports_up flag if any link down */
if (link.link_status == ETH_LINK_DOWN) {
all_ports_up = 0;
break;
}
}
/* after finally printing all link status, get out */
if (print_flag == 1)
break;
if (all_ports_up == 0) {
printf(".");
fflush(stdout);
rte_delay_ms(CHECK_INTERVAL);
}
/* set the print_flag if all ports up or timeout */
if (all_ports_up == 1 || count == (MAX_CHECK_TIME - 1)) {
print_flag = 1;
printf("done\n");
}
}
}
/* Check if device has to be HW/SW or any */
static int
check_type(struct l2fwd_crypto_options *options, struct rte_cryptodev_info *dev_info)
{
if (options->type == CDEV_TYPE_HW &&
(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
return 0;
if (options->type == CDEV_TYPE_SW &&
!(dev_info->feature_flags & RTE_CRYPTODEV_FF_HW_ACCELERATED))
return 0;
if (options->type == CDEV_TYPE_ANY)
return 0;
return -1;
}
static inline int
check_supported_size(uint16_t length, uint16_t min, uint16_t max,
uint16_t increment)
{
uint16_t supp_size;
/* Single value */
if (increment == 0) {
if (length == min)
return 0;
else
return -1;
}
/* Range of values */
for (supp_size = min; supp_size <= max; supp_size += increment) {
if (length == supp_size)
return 0;
}
return -1;
}
static int
initialize_cryptodevs(struct l2fwd_crypto_options *options, unsigned nb_ports,
uint8_t *enabled_cdevs)
{
unsigned i, cdev_id, cdev_count, enabled_cdev_count = 0;
const struct rte_cryptodev_capabilities *cap;
enum rte_crypto_auth_algorithm cap_auth_algo;
enum rte_crypto_auth_algorithm opt_auth_algo;
enum rte_crypto_cipher_algorithm cap_cipher_algo;
enum rte_crypto_cipher_algorithm opt_cipher_algo;
int retval;
cdev_count = rte_cryptodev_count();
if (cdev_count == 0) {
printf("No crypto devices available\n");
return -1;
}
for (cdev_id = 0; cdev_id < cdev_count && enabled_cdev_count < nb_ports;
cdev_id++) {
struct rte_cryptodev_qp_conf qp_conf;
struct rte_cryptodev_info dev_info;
struct rte_cryptodev_config conf = {
.nb_queue_pairs = 1,
.socket_id = SOCKET_ID_ANY,
.session_mp = {
.nb_objs = 2048,
.cache_size = 64
}
};
rte_cryptodev_info_get(cdev_id, &dev_info);
/* Set cipher parameters */
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
options->xform_chain == L2FWD_CRYPTO_CIPHER_ONLY) {
/* Check if device supports cipher algo */
i = 0;
opt_cipher_algo = options->cipher_xform.cipher.algo;
cap = &dev_info.capabilities[i];
while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
cap_cipher_algo = cap->sym.cipher.algo;
if (cap->sym.xform_type ==
RTE_CRYPTO_SYM_XFORM_CIPHER) {
if (cap_cipher_algo == opt_cipher_algo) {
if (check_type(options, &dev_info) == 0)
break;
}
}
cap = &dev_info.capabilities[++i];
}
if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
printf("Algorithm %s not supported by cryptodev %u"
" or device not of preferred type (%s)\n",
supported_cipher_algo[opt_cipher_algo],
cdev_id,
options->string_type);
continue;
}
options->block_size = cap->sym.cipher.block_size;
/*
* Check if length of provided IV is supported
* by the algorithm chosen.
*/
if (options->iv_param) {
if (check_supported_size(options->iv.length,
cap->sym.cipher.iv_size.min,
cap->sym.cipher.iv_size.max,
cap->sym.cipher.iv_size.increment)
!= 0) {
printf("Unsupported IV length\n");
return -1;
}
/*
* Check if length of IV to be randomly generated
* is supported by the algorithm chosen.
*/
} else if (options->iv_random_size != -1) {
if (check_supported_size(options->iv_random_size,
cap->sym.cipher.iv_size.min,
cap->sym.cipher.iv_size.max,
cap->sym.cipher.iv_size.increment)
!= 0) {
printf("Unsupported IV length\n");
return -1;
}
options->iv.length = options->iv_random_size;
/* No size provided, use minimum size. */
} else
options->iv.length = cap->sym.cipher.iv_size.min;
/*
* Check if length of provided cipher key is supported
* by the algorithm chosen.
*/
if (options->ckey_param) {
if (check_supported_size(
options->cipher_xform.cipher.key.length,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)
!= 0) {
printf("Unsupported cipher key length\n");
return -1;
}
/*
* Check if length of the cipher key to be randomly generated
* is supported by the algorithm chosen.
*/
} else if (options->ckey_random_size != -1) {
if (check_supported_size(options->ckey_random_size,
cap->sym.cipher.key_size.min,
cap->sym.cipher.key_size.max,
cap->sym.cipher.key_size.increment)
!= 0) {
printf("Unsupported cipher key length\n");
return -1;
}
options->cipher_xform.cipher.key.length =
options->ckey_random_size;
/* No size provided, use minimum size. */
} else
options->cipher_xform.cipher.key.length =
cap->sym.cipher.key_size.min;
if (!options->ckey_param)
generate_random_key(
options->cipher_xform.cipher.key.data,
options->cipher_xform.cipher.key.length);
}
/* Set auth parameters */
if (options->xform_chain == L2FWD_CRYPTO_CIPHER_HASH ||
options->xform_chain == L2FWD_CRYPTO_HASH_CIPHER ||
options->xform_chain == L2FWD_CRYPTO_HASH_ONLY) {
/* Check if device supports auth algo */
i = 0;
opt_auth_algo = options->auth_xform.auth.algo;
cap = &dev_info.capabilities[i];
while (cap->op != RTE_CRYPTO_OP_TYPE_UNDEFINED) {
cap_auth_algo = cap->sym.auth.algo;
if ((cap->sym.xform_type == RTE_CRYPTO_SYM_XFORM_AUTH) &&
(cap_auth_algo == opt_auth_algo) &&
(check_type(options, &dev_info) == 0)) {
break;
}
cap = &dev_info.capabilities[++i];
}
if (cap->op == RTE_CRYPTO_OP_TYPE_UNDEFINED) {
printf("Algorithm %s not supported by cryptodev %u"
" or device not of preferred type (%s)\n",
supported_auth_algo[opt_auth_algo],
cdev_id,
options->string_type);
continue;
}
options->block_size = cap->sym.auth.block_size;
/*
* Check if length of provided AAD is supported
* by the algorithm chosen.
*/
if (options->aad_param) {
if (check_supported_size(options->aad.length,
cap->sym.auth.aad_size.min,
cap->sym.auth.aad_size.max,
cap->sym.auth.aad_size.increment)
!= 0) {
printf("Unsupported AAD length\n");
return -1;
}
/*
* Check if length of AAD to be randomly generated
* is supported by the algorithm chosen.
*/
} else if (options->aad_random_size != -1) {
if (check_supported_size(options->aad_random_size,
cap->sym.auth.aad_size.min,
cap->sym.auth.aad_size.max,
cap->sym.auth.aad_size.increment)
!= 0) {
printf("Unsupported AAD length\n");
return -1;
}
options->aad.length = options->aad_random_size;
/* No size provided, use minimum size. */
} else
options->aad.length = cap->sym.auth.aad_size.min;
options->auth_xform.auth.add_auth_data_length =
options->aad.length;
/*
* Check if length of provided auth key is supported
* by the algorithm chosen.
*/
if (options->akey_param) {
if (check_supported_size(
options->auth_xform.auth.key.length,
cap->sym.auth.key_size.min,
cap->sym.auth.key_size.max,
cap->sym.auth.key_size.increment)
!= 0) {
printf("Unsupported auth key length\n");
return -1;
}
/*
* Check if length of the auth key to be randomly generated
* is supported by the algorithm chosen.
*/
} else if (options->akey_random_size != -1) {
if (check_supported_size(options->akey_random_size,
cap->sym.auth.key_size.min,
cap->sym.auth.key_size.max,
cap->sym.auth.key_size.increment)
!= 0) {
printf("Unsupported auth key length\n");
return -1;
}
options->auth_xform.auth.key.length =
options->akey_random_size;
/* No size provided, use minimum size. */
} else
options->auth_xform.auth.key.length =
cap->sym.auth.key_size.min;
if (!options->akey_param)
generate_random_key(
options->auth_xform.auth.key.data,
options->auth_xform.auth.key.length);
/* Check if digest size is supported by the algorithm. */
if (options->digest_size != -1) {
if (check_supported_size(options->digest_size,
cap->sym.auth.digest_size.min,
cap->sym.auth.digest_size.max,
cap->sym.auth.digest_size.increment)
!= 0) {
printf("Unsupported digest length\n");
return -1;
}
options->auth_xform.auth.digest_length =
options->digest_size;
/* No size provided, use minimum size. */
} else
options->auth_xform.auth.digest_length =
cap->sym.auth.digest_size.min;
}
retval = rte_cryptodev_configure(cdev_id, &conf);
if (retval < 0) {
printf("Failed to configure cryptodev %u", cdev_id);
return -1;
}
qp_conf.nb_descriptors = 2048;
retval = rte_cryptodev_queue_pair_setup(cdev_id, 0, &qp_conf,
SOCKET_ID_ANY);
if (retval < 0) {
printf("Failed to setup queue pair %u on cryptodev %u",
0, cdev_id);
return -1;
}
retval = rte_cryptodev_start(cdev_id);
if (retval < 0) {
printf("Failed to start device %u: error %d\n",
cdev_id, retval);
return -1;
}
l2fwd_enabled_crypto_mask |= (1 << cdev_id);
enabled_cdevs[cdev_id] = 1;
enabled_cdev_count++;
}
return enabled_cdev_count;
}
static int
initialize_ports(struct l2fwd_crypto_options *options)
{
uint8_t last_portid, portid;
unsigned enabled_portcount = 0;
unsigned nb_ports = rte_eth_dev_count();
if (nb_ports == 0) {
printf("No Ethernet ports - bye\n");
return -1;
}
/* Reset l2fwd_dst_ports */
for (portid = 0; portid < RTE_MAX_ETHPORTS; portid++)
l2fwd_dst_ports[portid] = 0;
for (last_portid = 0, portid = 0; portid < nb_ports; portid++) {
int retval;
/* Skip ports that are not enabled */
if ((options->portmask & (1 << portid)) == 0)
continue;
/* init port */
printf("Initializing port %u... ", (unsigned) portid);
fflush(stdout);
retval = rte_eth_dev_configure(portid, 1, 1, &port_conf);
if (retval < 0) {
printf("Cannot configure device: err=%d, port=%u\n",
retval, (unsigned) portid);
return -1;
}
/* init one RX queue */
fflush(stdout);
retval = rte_eth_rx_queue_setup(portid, 0, nb_rxd,
rte_eth_dev_socket_id(portid),
NULL, l2fwd_pktmbuf_pool);
if (retval < 0) {
printf("rte_eth_rx_queue_setup:err=%d, port=%u\n",
retval, (unsigned) portid);
return -1;
}
/* init one TX queue on each port */
fflush(stdout);
retval = rte_eth_tx_queue_setup(portid, 0, nb_txd,
rte_eth_dev_socket_id(portid),
NULL);
if (retval < 0) {
printf("rte_eth_tx_queue_setup:err=%d, port=%u\n",
retval, (unsigned) portid);
return -1;
}
/* Start device */
retval = rte_eth_dev_start(portid);
if (retval < 0) {
printf("rte_eth_dev_start:err=%d, port=%u\n",
retval, (unsigned) portid);
return -1;
}
rte_eth_promiscuous_enable(portid);
rte_eth_macaddr_get(portid, &l2fwd_ports_eth_addr[portid]);
printf("Port %u, MAC address: %02X:%02X:%02X:%02X:%02X:%02X\n\n",
(unsigned) portid,
l2fwd_ports_eth_addr[portid].addr_bytes[0],
l2fwd_ports_eth_addr[portid].addr_bytes[1],
l2fwd_ports_eth_addr[portid].addr_bytes[2],
l2fwd_ports_eth_addr[portid].addr_bytes[3],
l2fwd_ports_eth_addr[portid].addr_bytes[4],
l2fwd_ports_eth_addr[portid].addr_bytes[5]);
/* initialize port stats */
memset(&port_statistics, 0, sizeof(port_statistics));
/* Setup port forwarding table */
if (enabled_portcount % 2) {
l2fwd_dst_ports[portid] = last_portid;
l2fwd_dst_ports[last_portid] = portid;
} else {
last_portid = portid;
}
l2fwd_enabled_port_mask |= (1 << portid);
enabled_portcount++;
}
if (enabled_portcount == 1) {
l2fwd_dst_ports[last_portid] = last_portid;
} else if (enabled_portcount % 2) {
printf("odd number of ports in portmask- bye\n");
return -1;
}
check_all_ports_link_status(nb_ports, l2fwd_enabled_port_mask);
return enabled_portcount;
}
static void
reserve_key_memory(struct l2fwd_crypto_options *options)
{
options->cipher_xform.cipher.key.data = rte_malloc("crypto key",
MAX_KEY_SIZE, 0);
if (options->cipher_xform.cipher.key.data == NULL)
rte_exit(EXIT_FAILURE, "Failed to allocate memory for cipher key");
options->auth_xform.auth.key.data = rte_malloc("auth key",
MAX_KEY_SIZE, 0);
if (options->auth_xform.auth.key.data == NULL)
rte_exit(EXIT_FAILURE, "Failed to allocate memory for auth key");
options->iv.data = rte_malloc("iv", MAX_KEY_SIZE, 0);
if (options->iv.data == NULL)
rte_exit(EXIT_FAILURE, "Failed to allocate memory for IV");
options->iv.phys_addr = rte_malloc_virt2phy(options->iv.data);
options->aad.data = rte_malloc("aad", MAX_KEY_SIZE, 0);
if (options->aad.data == NULL)
rte_exit(EXIT_FAILURE, "Failed to allocate memory for AAD");
options->aad.phys_addr = rte_malloc_virt2phy(options->aad.data);
}
int
main(int argc, char **argv)
{
struct lcore_queue_conf *qconf;
struct l2fwd_crypto_options options;
uint8_t nb_ports, nb_cryptodevs, portid, cdev_id;
unsigned lcore_id, rx_lcore_id;
int ret, enabled_cdevcount, enabled_portcount;
uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = {0};
/* init EAL */
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid EAL arguments\n");
argc -= ret;
argv += ret;
/* reserve memory for Cipher/Auth key and IV */
reserve_key_memory(&options);
/* fill out the supported algorithm tables */
fill_supported_algorithm_tables();
/* parse application arguments (after the EAL ones) */
ret = l2fwd_crypto_parse_args(&options, argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Invalid L2FWD-CRYPTO arguments\n");
/* create the mbuf pool */
l2fwd_pktmbuf_pool = rte_pktmbuf_pool_create("mbuf_pool", NB_MBUF, 512,
sizeof(struct rte_crypto_op),
RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (l2fwd_pktmbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\n");
/* create crypto op pool */
l2fwd_crypto_op_pool = rte_crypto_op_pool_create("crypto_op_pool",
RTE_CRYPTO_OP_TYPE_SYMMETRIC, NB_MBUF, 128, 0,
rte_socket_id());
if (l2fwd_crypto_op_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create crypto op pool\n");
/* Enable Ethernet ports */
enabled_portcount = initialize_ports(&options);
if (enabled_portcount < 1)
rte_exit(EXIT_FAILURE, "Failed to initial Ethernet ports\n");
nb_ports = rte_eth_dev_count();
/* Initialize the port/queue configuration of each logical core */
for (rx_lcore_id = 0, qconf = NULL, portid = 0;
portid < nb_ports; portid++) {
/* skip ports that are not enabled */
if ((options.portmask & (1 << portid)) == 0)
continue;
if (options.single_lcore && qconf == NULL) {
while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE,
"Not enough cores\n");
}
} else if (!options.single_lcore) {
/* get the lcore_id for this port */
while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
lcore_queue_conf[rx_lcore_id].nb_rx_ports ==
options.nb_ports_per_lcore) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE,
"Not enough cores\n");
}
}
/* Assigned a new logical core in the loop above. */
if (qconf != &lcore_queue_conf[rx_lcore_id])
qconf = &lcore_queue_conf[rx_lcore_id];
qconf->rx_port_list[qconf->nb_rx_ports] = portid;
qconf->nb_rx_ports++;
printf("Lcore %u: RX port %u\n", rx_lcore_id, (unsigned)portid);
}
/* Enable Crypto devices */
enabled_cdevcount = initialize_cryptodevs(&options, enabled_portcount,
enabled_cdevs);
if (enabled_cdevcount < 0)
rte_exit(EXIT_FAILURE, "Failed to initialize crypto devices\n");
if (enabled_cdevcount < enabled_portcount)
rte_exit(EXIT_FAILURE, "Number of capable crypto devices (%d) "
"has to be more or equal to number of ports (%d)\n",
enabled_cdevcount, enabled_portcount);
nb_cryptodevs = rte_cryptodev_count();
/* Initialize the port/cryptodev configuration of each logical core */
for (rx_lcore_id = 0, qconf = NULL, cdev_id = 0;
cdev_id < nb_cryptodevs && enabled_cdevcount;
cdev_id++) {
/* Crypto op not supported by crypto device */
if (!enabled_cdevs[cdev_id])
continue;
if (options.single_lcore && qconf == NULL) {
while (rte_lcore_is_enabled(rx_lcore_id) == 0) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE,
"Not enough cores\n");
}
} else if (!options.single_lcore) {
/* get the lcore_id for this port */
while (rte_lcore_is_enabled(rx_lcore_id) == 0 ||
lcore_queue_conf[rx_lcore_id].nb_crypto_devs ==
options.nb_ports_per_lcore) {
rx_lcore_id++;
if (rx_lcore_id >= RTE_MAX_LCORE)
rte_exit(EXIT_FAILURE,
"Not enough cores\n");
}
}
/* Assigned a new logical core in the loop above. */
if (qconf != &lcore_queue_conf[rx_lcore_id])
qconf = &lcore_queue_conf[rx_lcore_id];
qconf->cryptodev_list[qconf->nb_crypto_devs] = cdev_id;
qconf->nb_crypto_devs++;
enabled_cdevcount--;
printf("Lcore %u: cryptodev %u\n", rx_lcore_id,
(unsigned)cdev_id);
}
/* launch per-lcore init on every lcore */
rte_eal_mp_remote_launch(l2fwd_launch_one_lcore, (void *)&options,
CALL_MASTER);
RTE_LCORE_FOREACH_SLAVE(lcore_id) {
if (rte_eal_wait_lcore(lcore_id) < 0)
return -1;
}
return 0;
}