numam-dpdk/lib/librte_table/rte_table_hash_func.h
Kevin Laatz ea7be0a038 lib/librte_table: add hash function headers
This commit adds rte_table_hash_func.h and rte_table_hash_func_arm64.h to
librte_table. This reduces code duplication by removing duplicate header
files within two folders and consolidating them into a single one. This
also adds a scalar implementation of the x86_64 intrinsic for crc32 as a
generic fallback.

Signed-off-by: Cristian Dumitrescu <cristian.dumitrescu@intel.com>
Signed-off-by: Kevin Laatz <kevin.laatz@intel.com>
Acked-by: Gavin Hu <gavin.hu@arm.com>
Acked-by: Jerin Jacob <jerin.jacob@caviumnetworks.com>
2018-10-12 17:58:53 +02:00

246 lines
4.8 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2018 Intel Corporation
*/
#ifndef __INCLUDE_RTE_TABLE_HASH_FUNC_H__
#define __INCLUDE_RTE_TABLE_HASH_FUNC_H__
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <rte_compat.h>
#include <rte_common.h>
static inline uint64_t __rte_experimental
rte_crc32_u64_generic(uint64_t crc, uint64_t value)
{
int i;
crc = (crc & 0xFFFFFFFFLLU) ^ value;
for (i = 63; i >= 0; i--) {
uint64_t mask;
mask = -(crc & 1LLU);
crc = (crc >> 1LLU) ^ (0x82F63B78LLU & mask);
}
return crc;
}
#if defined(RTE_ARCH_X86_64)
#include <x86intrin.h>
static inline uint64_t
rte_crc32_u64(uint64_t crc, uint64_t v)
{
return _mm_crc32_u64(crc, v);
}
#elif defined(RTE_ARCH_ARM64)
#include "rte_table_hash_func_arm64.h"
#else
static inline uint64_t
rte_crc32_u64(uint64_t crc, uint64_t v)
{
return rte_crc32_u64_generic(crc, v);
}
#endif
static inline uint64_t __rte_experimental
rte_table_hash_crc_key8(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t crc0;
crc0 = rte_crc32_u64(seed, k[0] & m[0]);
return crc0;
}
static inline uint64_t __rte_experimental
rte_table_hash_crc_key16(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, crc0, crc1;
k0 = k[0] & m[0];
crc0 = rte_crc32_u64(k0, seed);
crc1 = rte_crc32_u64(k0 >> 32, k[1] & m[1]);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t __rte_experimental
rte_table_hash_crc_key24(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, crc0, crc1;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
crc0 = rte_crc32_u64(k0, seed);
crc1 = rte_crc32_u64(k0 >> 32, k[1] & m[1]);
crc0 = rte_crc32_u64(crc0, k2);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t __rte_experimental
rte_table_hash_crc_key32(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, crc0, crc1, crc2, crc3;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
crc0 = rte_crc32_u64(k0, seed);
crc1 = rte_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = rte_crc32_u64(k2, k[3] & m[3]);
crc3 = k2 >> 32;
crc0 = rte_crc32_u64(crc0, crc1);
crc1 = rte_crc32_u64(crc2, crc3);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t __rte_experimental
rte_table_hash_crc_key40(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, crc0, crc1, crc2, crc3;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
crc0 = rte_crc32_u64(k0, seed);
crc1 = rte_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = rte_crc32_u64(k2, k[3] & m[3]);
crc3 = rte_crc32_u64(k2 >> 32, k[4] & m[4]);
crc0 = rte_crc32_u64(crc0, crc1);
crc1 = rte_crc32_u64(crc2, crc3);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t __rte_experimental
rte_table_hash_crc_key48(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, k5, crc0, crc1, crc2, crc3;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
k5 = k[5] & m[5];
crc0 = rte_crc32_u64(k0, seed);
crc1 = rte_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = rte_crc32_u64(k2, k[3] & m[3]);
crc3 = rte_crc32_u64(k2 >> 32, k[4] & m[4]);
crc0 = rte_crc32_u64(crc0, (crc1 << 32) ^ crc2);
crc1 = rte_crc32_u64(crc3, k5);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t __rte_experimental
rte_table_hash_crc_key56(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, k5, crc0, crc1, crc2, crc3, crc4, crc5;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
k5 = k[5] & m[5];
crc0 = rte_crc32_u64(k0, seed);
crc1 = rte_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = rte_crc32_u64(k2, k[3] & m[3]);
crc3 = rte_crc32_u64(k2 >> 32, k[4] & m[4]);
crc4 = rte_crc32_u64(k5, k[6] & m[6]);
crc5 = k5 >> 32;
crc0 = rte_crc32_u64(crc0, (crc1 << 32) ^ crc2);
crc1 = rte_crc32_u64(crc3, (crc4 << 32) ^ crc5);
crc0 ^= crc1;
return crc0;
}
static inline uint64_t __rte_experimental
rte_table_hash_crc_key64(void *key, void *mask, __rte_unused uint32_t key_size,
uint64_t seed)
{
uint64_t *k = key;
uint64_t *m = mask;
uint64_t k0, k2, k5, crc0, crc1, crc2, crc3, crc4, crc5;
k0 = k[0] & m[0];
k2 = k[2] & m[2];
k5 = k[5] & m[5];
crc0 = rte_crc32_u64(k0, seed);
crc1 = rte_crc32_u64(k0 >> 32, k[1] & m[1]);
crc2 = rte_crc32_u64(k2, k[3] & m[3]);
crc3 = rte_crc32_u64(k2 >> 32, k[4] & m[4]);
crc4 = rte_crc32_u64(k5, k[6] & m[6]);
crc5 = rte_crc32_u64(k5 >> 32, k[7] & m[7]);
crc0 = rte_crc32_u64(crc0, (crc1 << 32) ^ crc2);
crc1 = rte_crc32_u64(crc3, (crc4 << 32) ^ crc5);
crc0 ^= crc1;
return crc0;
}
#ifdef __cplusplus
}
#endif
#endif