numam-dpdk/drivers/event/octeontx/ssovf_worker.h
Harman Kalra d430b921a4 event/octeontx: fix SSO fast path
Segmentation fault is observed as soon as any  application
with ethdev event is launched as ev->mbuf was not set properly.

Fixing sub event type violation as in OCTEONTX event device
sub_event_type is used to store the ethernet port identifier
when work is received from OCTEONTX ethernet device. This violates
the event device spec as sub_event_type should be 0 in the initial
receive stage. Setting sub_event_type to 0 after copying the port id
in single workslot mode.

Fixes: 44a2cebbd4 ("crypto/octeontx: add crypto adapter data path")
Cc: stable@dpdk.org

Signed-off-by: Harman Kalra <hkalra@marvell.com>
Signed-off-by: Pavan Nikhilesh <pbhagavatula@marvell.com>
2022-06-09 17:49:55 +02:00

278 lines
7.0 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2017 Cavium, Inc
*/
#include <arpa/inet.h>
#ifndef _SSOVF_WORKER_H_
#define _SSOVF_WORKER_H_
#include <rte_common.h>
#include <rte_branch_prediction.h>
#include <octeontx_mbox.h>
#include "ssovf_evdev.h"
#include "octeontx_rxtx.h"
#include "otx_cryptodev_ops.h"
/* Alignment */
#define OCCTX_ALIGN 128
/* Fastpath lookup */
#define OCCTX_FASTPATH_LOOKUP_MEM "octeontx_fastpath_lookup_mem"
/* WQE's ERRCODE + ERRLEV (11 bits) */
#define ERRCODE_ERRLEN_WIDTH 11
#define ERR_ARRAY_SZ ((BIT(ERRCODE_ERRLEN_WIDTH)) *\
sizeof(uint32_t))
#define LOOKUP_ARRAY_SZ (ERR_ARRAY_SZ)
#define OCCTX_EC_IP4_NOT 0x41
#define OCCTX_EC_IP4_CSUM 0x42
#define OCCTX_EC_L4_CSUM 0x62
enum OCCTX_ERRLEV_E {
OCCTX_ERRLEV_RE = 0,
OCCTX_ERRLEV_LA = 1,
OCCTX_ERRLEV_LB = 2,
OCCTX_ERRLEV_LC = 3,
OCCTX_ERRLEV_LD = 4,
OCCTX_ERRLEV_LE = 5,
OCCTX_ERRLEV_LF = 6,
OCCTX_ERRLEV_LG = 7,
};
enum {
SSO_SYNC_ORDERED,
SSO_SYNC_ATOMIC,
SSO_SYNC_UNTAGGED,
SSO_SYNC_EMPTY
};
/* SSO Operations */
static __rte_always_inline uint32_t
ssovf_octeontx_rx_olflags_get(const void * const lookup_mem, const uint64_t in)
{
const uint32_t * const ol_flags = (const uint32_t *)lookup_mem;
return ol_flags[(in & 0x7ff)];
}
static __rte_always_inline void
ssovf_octeontx_wqe_xtract_mseg(octtx_wqe_t *wqe,
struct rte_mbuf *mbuf)
{
octtx_pki_buflink_t *buflink;
rte_iova_t *iova_list;
uint8_t nb_segs;
uint64_t bytes_left = wqe->s.w1.len - wqe->s.w5.size;
nb_segs = wqe->s.w0.bufs;
buflink = (octtx_pki_buflink_t *)((uintptr_t)wqe->s.w3.addr -
sizeof(octtx_pki_buflink_t));
while (--nb_segs) {
iova_list = (rte_iova_t *)(uintptr_t)(buflink->w1.s.addr);
mbuf->next = (struct rte_mbuf *)(rte_iova_t *)(iova_list - 2)
- (OCTTX_PACKET_LATER_SKIP / 128);
mbuf = mbuf->next;
mbuf->data_off = sizeof(octtx_pki_buflink_t);
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
if (nb_segs == 1)
mbuf->data_len = bytes_left;
else
mbuf->data_len = buflink->w0.s.size;
bytes_left = bytes_left - buflink->w0.s.size;
buflink = (octtx_pki_buflink_t *)(rte_iova_t *)(iova_list - 2);
}
}
static __rte_always_inline struct rte_mbuf *
ssovf_octeontx_wqe_to_pkt(uint64_t work, uint16_t port_info,
const uint16_t flag, const void *lookup_mem)
{
struct rte_mbuf *mbuf;
octtx_wqe_t *wqe = (octtx_wqe_t *)(uintptr_t)work;
/* Get mbuf from wqe */
mbuf = (struct rte_mbuf *)((uintptr_t)wqe - OCTTX_PACKET_WQE_SKIP);
rte_prefetch_non_temporal(mbuf);
mbuf->packet_type =
ptype_table[wqe->s.w2.lcty][wqe->s.w2.lety][wqe->s.w2.lfty];
mbuf->data_off = RTE_PTR_DIFF(wqe->s.w3.addr, mbuf->buf_addr);
mbuf->ol_flags = 0;
mbuf->pkt_len = wqe->s.w1.len;
if (!!(flag & OCCTX_RX_OFFLOAD_CSUM_F))
mbuf->ol_flags = ssovf_octeontx_rx_olflags_get(lookup_mem,
wqe->w[2]);
if (!!(flag & OCCTX_RX_MULTI_SEG_F)) {
mbuf->nb_segs = wqe->s.w0.bufs;
mbuf->data_len = wqe->s.w5.size;
ssovf_octeontx_wqe_xtract_mseg(wqe, mbuf);
} else {
mbuf->nb_segs = 1;
mbuf->data_len = mbuf->pkt_len;
}
if (!!(flag & OCCTX_RX_VLAN_FLTR_F)) {
if (likely(wqe->s.w2.vv)) {
mbuf->ol_flags |= RTE_MBUF_F_RX_VLAN;
mbuf->vlan_tci =
ntohs(*((uint16_t *)((char *)mbuf->buf_addr +
mbuf->data_off + wqe->s.w4.vlptr + 2)));
}
}
mbuf->port = rte_octeontx_pchan_map[port_info >> 4][port_info & 0xF];
rte_mbuf_refcnt_set(mbuf, 1);
return mbuf;
}
static __rte_always_inline void
ssovf_octeontx_wqe_free(uint64_t work)
{
octtx_wqe_t *wqe = (octtx_wqe_t *)(uintptr_t)work;
uint8_t nb_segs = wqe->s.w0.bufs;
octtx_pki_buflink_t *buflink;
struct rte_mbuf *mbuf, *head;
rte_iova_t *iova_list;
mbuf = (struct rte_mbuf *)((uintptr_t)wqe - OCTTX_PACKET_WQE_SKIP);
buflink = (octtx_pki_buflink_t *)((uintptr_t)wqe->s.w3.addr -
sizeof(octtx_pki_buflink_t));
head = mbuf;
while (--nb_segs) {
iova_list = (rte_iova_t *)(uintptr_t)(buflink->w1.s.addr);
mbuf = (struct rte_mbuf *)(rte_iova_t *)(iova_list - 2)
- (OCTTX_PACKET_LATER_SKIP / 128);
mbuf->next = NULL;
rte_pktmbuf_free(mbuf);
buflink = (octtx_pki_buflink_t *)(rte_iova_t *)(iova_list - 2);
}
rte_pktmbuf_free(head);
}
static __rte_always_inline uint16_t
ssows_get_work(struct ssows *ws, struct rte_event *ev, const uint16_t flag)
{
uint64_t get_work0, get_work1;
uint64_t sched_type_queue;
ssovf_load_pair(get_work0, get_work1, ws->getwork);
sched_type_queue = (get_work0 >> 32) & 0xfff;
ws->cur_tt = sched_type_queue & 0x3;
ws->cur_grp = sched_type_queue >> 2;
sched_type_queue = sched_type_queue << 38;
ev->event = sched_type_queue | (get_work0 & 0xffffffff);
if (get_work1) {
if (ev->event_type == RTE_EVENT_TYPE_ETHDEV) {
uint16_t port = (ev->event >> 20) & 0x7F;
ev->sub_event_type = 0;
ev->mbuf = ssovf_octeontx_wqe_to_pkt(
get_work1, port, flag, ws->lookup_mem);
} else if (ev->event_type == RTE_EVENT_TYPE_CRYPTODEV) {
get_work1 = otx_crypto_adapter_dequeue(get_work1);
ev->u64 = get_work1;
} else {
if (unlikely((get_work0 & 0xFFFFFFFF) == 0xFFFFFFFF)) {
ssovf_octeontx_wqe_free(get_work1);
return 0;
}
ev->u64 = get_work1;
}
}
return !!get_work1;
}
static __rte_always_inline void
ssows_add_work(struct ssows *ws, const uint64_t event_ptr, const uint32_t tag,
const uint8_t new_tt, const uint8_t grp)
{
uint64_t add_work0;
add_work0 = tag | ((uint64_t)(new_tt) << 32);
ssovf_store_pair(add_work0, event_ptr, ws->grps[grp]);
}
static __rte_always_inline void
ssows_swtag_full(struct ssows *ws, const uint64_t event_ptr, const uint32_t tag,
const uint8_t new_tt, const uint8_t grp)
{
uint64_t swtag_full0;
swtag_full0 = tag | ((uint64_t)(new_tt & 0x3) << 32) |
((uint64_t)grp << 34);
ssovf_store_pair(swtag_full0, event_ptr, (ws->base +
SSOW_VHWS_OP_SWTAG_FULL0));
}
static __rte_always_inline void
ssows_swtag_desched(struct ssows *ws, uint32_t tag, uint8_t new_tt, uint8_t grp)
{
uint64_t val;
val = tag | ((uint64_t)(new_tt & 0x3) << 32) | ((uint64_t)grp << 34);
ssovf_write64(val, ws->base + SSOW_VHWS_OP_SWTAG_DESCHED);
}
static __rte_always_inline void
ssows_swtag_norm(struct ssows *ws, uint32_t tag, uint8_t new_tt)
{
uint64_t val;
val = tag | ((uint64_t)(new_tt & 0x3) << 32);
ssovf_write64(val, ws->base + SSOW_VHWS_OP_SWTAG_NORM);
}
static __rte_always_inline void
ssows_swtag_untag(struct ssows *ws)
{
ssovf_write64(0, ws->base + SSOW_VHWS_OP_SWTAG_UNTAG);
ws->cur_tt = SSO_SYNC_UNTAGGED;
}
static __rte_always_inline void
ssows_upd_wqp(struct ssows *ws, uint8_t grp, uint64_t event_ptr)
{
ssovf_store_pair((uint64_t)grp << 34, event_ptr, (ws->base +
SSOW_VHWS_OP_UPD_WQP_GRP0));
}
static __rte_always_inline void
ssows_desched(struct ssows *ws)
{
ssovf_write64(0, ws->base + SSOW_VHWS_OP_DESCHED);
}
static __rte_always_inline void
ssows_swtag_wait(struct ssows *ws)
{
/* Wait for the SWTAG/SWTAG_FULL operation */
while (ssovf_read64(ws->base + SSOW_VHWS_SWTP))
;
}
static __rte_always_inline void
ssows_head_wait(struct ssows *ws)
{
while (!(ssovf_read64(ws->base + SSOW_VHWS_TAG) & (1ULL << 35)))
;
}
#endif /* _SSOVF_WORKER_H_ */