David Hunt 711f43ba56 examples/vm_power: make branch ratio configurable
For different workloads and poll loops, the theshold
may be different for when you want to scale up and down.

This patch allows changing of the default branch ratio
by using the -b command line argument (or --branch-ratio=)

Signed-off-by: David Hunt <david.hunt@intel.com>
Acked-by: Radu Nicolau <radu.nicolau@intel.com>
2018-07-21 00:00:43 +02:00

315 lines
6.2 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <inttypes.h>
#include <sys/un.h>
#include <fcntl.h>
#include <unistd.h>
#include <dirent.h>
#include <errno.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <rte_log.h>
#include <rte_power.h>
#include <rte_spinlock.h>
#include "channel_manager.h"
#include "power_manager.h"
#include "oob_monitor.h"
#define POWER_SCALE_CORE(DIRECTION, core_num , ret) do { \
if (core_num >= ci.core_count) \
return -1; \
if (!(ci.cd[core_num].global_enabled_cpus)) \
return -1; \
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl); \
ret = rte_power_freq_##DIRECTION(core_num); \
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl); \
} while (0)
#define POWER_SCALE_MASK(DIRECTION, core_mask, ret) do { \
int i; \
for (i = 0; core_mask; core_mask &= ~(1 << i++)) { \
if ((core_mask >> i) & 1) { \
if (!(ci.cd[i].global_enabled_cpus)) \
continue; \
rte_spinlock_lock(&global_core_freq_info[i].power_sl); \
if (rte_power_freq_##DIRECTION(i) != 1) \
ret = -1; \
rte_spinlock_unlock(&global_core_freq_info[i].power_sl); \
} \
} \
} while (0)
struct freq_info {
rte_spinlock_t power_sl;
uint32_t freqs[RTE_MAX_LCORE_FREQS];
unsigned num_freqs;
} __rte_cache_aligned;
static struct freq_info global_core_freq_info[POWER_MGR_MAX_CPUS];
struct core_info ci;
#define SYSFS_CPU_PATH "/sys/devices/system/cpu/cpu%u/topology/core_id"
struct core_info *
get_core_info(void)
{
return &ci;
}
int
core_info_init(void)
{
struct core_info *ci;
int i;
ci = get_core_info();
ci->core_count = get_nprocs_conf();
ci->branch_ratio_threshold = BRANCH_RATIO_THRESHOLD;
ci->cd = malloc(ci->core_count * sizeof(struct core_details));
if (!ci->cd) {
RTE_LOG(ERR, POWER_MANAGER, "Failed to allocate memory for core info.");
return -1;
}
for (i = 0; i < ci->core_count; i++) {
ci->cd[i].global_enabled_cpus = 1;
ci->cd[i].oob_enabled = 0;
ci->cd[i].msr_fd = 0;
}
printf("%d cores in system\n", ci->core_count);
return 0;
}
int
power_manager_init(void)
{
unsigned int i, num_cpus = 0, num_freqs = 0;
int ret = 0;
struct core_info *ci;
rte_power_set_env(PM_ENV_ACPI_CPUFREQ);
ci = get_core_info();
if (!ci) {
RTE_LOG(ERR, POWER_MANAGER,
"Failed to get core info!\n");
return -1;
}
for (i = 0; i < ci->core_count; i++) {
if (ci->cd[i].global_enabled_cpus) {
if (rte_power_init(i) < 0)
RTE_LOG(ERR, POWER_MANAGER,
"Unable to initialize power manager "
"for core %u\n", i);
num_cpus++;
num_freqs = rte_power_freqs(i,
global_core_freq_info[i].freqs,
RTE_MAX_LCORE_FREQS);
if (num_freqs == 0) {
RTE_LOG(ERR, POWER_MANAGER,
"Unable to get frequency list for core %u\n",
i);
ci->cd[i].oob_enabled = 0;
ret = -1;
}
global_core_freq_info[i].num_freqs = num_freqs;
rte_spinlock_init(&global_core_freq_info[i].power_sl);
}
if (ci->cd[i].oob_enabled)
add_core_to_monitor(i);
}
RTE_LOG(INFO, POWER_MANAGER, "Managing %u cores out of %u available host cores\n",
num_cpus, ci->core_count);
return ret;
}
uint32_t
power_manager_get_current_frequency(unsigned core_num)
{
uint32_t freq, index;
if (core_num >= POWER_MGR_MAX_CPUS) {
RTE_LOG(ERR, POWER_MANAGER, "Core(%u) is out of range 0...%d\n",
core_num, POWER_MGR_MAX_CPUS-1);
return -1;
}
if (!(ci.cd[core_num].global_enabled_cpus))
return 0;
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
index = rte_power_get_freq(core_num);
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
if (index >= POWER_MGR_MAX_CPUS)
freq = 0;
else
freq = global_core_freq_info[core_num].freqs[index];
return freq;
}
int
power_manager_exit(void)
{
unsigned int i;
int ret = 0;
struct core_info *ci;
ci = get_core_info();
if (!ci) {
RTE_LOG(ERR, POWER_MANAGER,
"Failed to get core info!\n");
return -1;
}
for (i = 0; i < ci->core_count; i++) {
if (ci->cd[i].global_enabled_cpus) {
if (rte_power_exit(i) < 0) {
RTE_LOG(ERR, POWER_MANAGER, "Unable to shutdown power manager "
"for core %u\n", i);
ret = -1;
}
ci->cd[i].global_enabled_cpus = 0;
}
remove_core_from_monitor(i);
}
return ret;
}
int
power_manager_scale_mask_up(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(up, core_mask, ret);
return ret;
}
int
power_manager_scale_mask_down(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(down, core_mask, ret);
return ret;
}
int
power_manager_scale_mask_min(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(min, core_mask, ret);
return ret;
}
int
power_manager_scale_mask_max(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(max, core_mask, ret);
return ret;
}
int
power_manager_enable_turbo_mask(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(enable_turbo, core_mask, ret);
return ret;
}
int
power_manager_disable_turbo_mask(uint64_t core_mask)
{
int ret = 0;
POWER_SCALE_MASK(disable_turbo, core_mask, ret);
return ret;
}
int
power_manager_scale_core_up(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(up, core_num, ret);
return ret;
}
int
power_manager_scale_core_down(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(down, core_num, ret);
return ret;
}
int
power_manager_scale_core_min(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(min, core_num, ret);
return ret;
}
int
power_manager_scale_core_max(unsigned core_num)
{
int ret = 0;
POWER_SCALE_CORE(max, core_num, ret);
return ret;
}
int
power_manager_enable_turbo_core(unsigned int core_num)
{
int ret = 0;
POWER_SCALE_CORE(enable_turbo, core_num, ret);
return ret;
}
int
power_manager_disable_turbo_core(unsigned int core_num)
{
int ret = 0;
POWER_SCALE_CORE(disable_turbo, core_num, ret);
return ret;
}
int
power_manager_scale_core_med(unsigned int core_num)
{
int ret = 0;
struct core_info *ci;
ci = get_core_info();
if (core_num >= POWER_MGR_MAX_CPUS)
return -1;
if (!(ci->cd[core_num].global_enabled_cpus))
return -1;
rte_spinlock_lock(&global_core_freq_info[core_num].power_sl);
ret = rte_power_set_freq(core_num,
global_core_freq_info[core_num].num_freqs / 2);
rte_spinlock_unlock(&global_core_freq_info[core_num].power_sl);
return ret;
}