numam-dpdk/lib/distributor/rte_distributor_single.c
Bruce Richardson 9699b09803 distributor: fix potential overflow
Coverity flags the fact that the tag values used in distributor are
32-bit, which means that when we use bit-manipulation to convert a tag
match/no-match to a bit in an array, we need to typecast to a 64-bit
type before shifting past 32 bits.

Coverity issue: 375808
Fixes: 08ccf3faa6 ("distributor: new packet distributor library")
Cc: stable@dpdk.org

Signed-off-by: Bruce Richardson <bruce.richardson@intel.com>
Acked-by: David Hunt <david.hunt@intel.com>
2022-02-27 19:06:59 +01:00

417 lines
12 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(c) 2010-2014 Intel Corporation
*/
#include <stdio.h>
#include <sys/queue.h>
#include <rte_mbuf.h>
#include <rte_memzone.h>
#include <rte_errno.h>
#include <rte_string_fns.h>
#include <rte_eal_memconfig.h>
#include <rte_pause.h>
#include <rte_tailq.h>
#include "rte_distributor_single.h"
#include "distributor_private.h"
TAILQ_HEAD(rte_distributor_list, rte_distributor_single);
static struct rte_tailq_elem rte_distributor_tailq = {
.name = "RTE_DISTRIBUTOR",
};
EAL_REGISTER_TAILQ(rte_distributor_tailq)
/**** APIs called by workers ****/
void
rte_distributor_request_pkt_single(struct rte_distributor_single *d,
unsigned worker_id, struct rte_mbuf *oldpkt)
{
union rte_distributor_buffer_single *buf = &d->bufs[worker_id];
int64_t req = (((int64_t)(uintptr_t)oldpkt) << RTE_DISTRIB_FLAG_BITS)
| RTE_DISTRIB_GET_BUF;
RTE_WAIT_UNTIL_MASKED(&buf->bufptr64, RTE_DISTRIB_FLAGS_MASK,
==, 0, __ATOMIC_RELAXED);
/* Sync with distributor on GET_BUF flag. */
__atomic_store_n(&(buf->bufptr64), req, __ATOMIC_RELEASE);
}
struct rte_mbuf *
rte_distributor_poll_pkt_single(struct rte_distributor_single *d,
unsigned worker_id)
{
union rte_distributor_buffer_single *buf = &d->bufs[worker_id];
/* Sync with distributor. Acquire bufptr64. */
if (__atomic_load_n(&buf->bufptr64, __ATOMIC_ACQUIRE)
& RTE_DISTRIB_GET_BUF)
return NULL;
/* since bufptr64 is signed, this should be an arithmetic shift */
int64_t ret = buf->bufptr64 >> RTE_DISTRIB_FLAG_BITS;
return (struct rte_mbuf *)((uintptr_t)ret);
}
struct rte_mbuf *
rte_distributor_get_pkt_single(struct rte_distributor_single *d,
unsigned worker_id, struct rte_mbuf *oldpkt)
{
struct rte_mbuf *ret;
rte_distributor_request_pkt_single(d, worker_id, oldpkt);
while ((ret = rte_distributor_poll_pkt_single(d, worker_id)) == NULL)
rte_pause();
return ret;
}
int
rte_distributor_return_pkt_single(struct rte_distributor_single *d,
unsigned worker_id, struct rte_mbuf *oldpkt)
{
union rte_distributor_buffer_single *buf = &d->bufs[worker_id];
uint64_t req = (((int64_t)(uintptr_t)oldpkt) << RTE_DISTRIB_FLAG_BITS)
| RTE_DISTRIB_RETURN_BUF;
RTE_WAIT_UNTIL_MASKED(&buf->bufptr64, RTE_DISTRIB_FLAGS_MASK,
==, 0, __ATOMIC_RELAXED);
/* Sync with distributor on RETURN_BUF flag. */
__atomic_store_n(&(buf->bufptr64), req, __ATOMIC_RELEASE);
return 0;
}
/**** APIs called on distributor core ***/
/* as name suggests, adds a packet to the backlog for a particular worker */
static int
add_to_backlog(struct rte_distributor_backlog *bl, int64_t item)
{
if (bl->count == RTE_DISTRIB_BACKLOG_SIZE)
return -1;
bl->pkts[(bl->start + bl->count++) & (RTE_DISTRIB_BACKLOG_MASK)]
= item;
return 0;
}
/* takes the next packet for a worker off the backlog */
static int64_t
backlog_pop(struct rte_distributor_backlog *bl)
{
bl->count--;
return bl->pkts[bl->start++ & RTE_DISTRIB_BACKLOG_MASK];
}
/* stores a packet returned from a worker inside the returns array */
static inline void
store_return(uintptr_t oldbuf, struct rte_distributor_single *d,
unsigned *ret_start, unsigned *ret_count)
{
/* store returns in a circular buffer - code is branch-free */
d->returns.mbufs[(*ret_start + *ret_count) & RTE_DISTRIB_RETURNS_MASK]
= (void *)oldbuf;
*ret_start += (*ret_count == RTE_DISTRIB_RETURNS_MASK) & !!(oldbuf);
*ret_count += (*ret_count != RTE_DISTRIB_RETURNS_MASK) & !!(oldbuf);
}
static inline void
handle_worker_shutdown(struct rte_distributor_single *d, unsigned int wkr)
{
d->in_flight_tags[wkr] = 0;
d->in_flight_bitmask &= ~(1UL << wkr);
/* Sync with worker. Release bufptr64. */
__atomic_store_n(&(d->bufs[wkr].bufptr64), 0, __ATOMIC_RELEASE);
if (unlikely(d->backlog[wkr].count != 0)) {
/* On return of a packet, we need to move the
* queued packets for this core elsewhere.
* Easiest solution is to set things up for
* a recursive call. That will cause those
* packets to be queued up for the next free
* core, i.e. it will return as soon as a
* core becomes free to accept the first
* packet, as subsequent ones will be added to
* the backlog for that core.
*/
struct rte_mbuf *pkts[RTE_DISTRIB_BACKLOG_SIZE];
unsigned i;
struct rte_distributor_backlog *bl = &d->backlog[wkr];
for (i = 0; i < bl->count; i++) {
unsigned idx = (bl->start + i) &
RTE_DISTRIB_BACKLOG_MASK;
pkts[i] = (void *)((uintptr_t)(bl->pkts[idx] >>
RTE_DISTRIB_FLAG_BITS));
}
/* recursive call.
* Note that the tags were set before first level call
* to rte_distributor_process.
*/
rte_distributor_process_single(d, pkts, i);
bl->count = bl->start = 0;
}
}
/* this function is called when process() fn is called without any new
* packets. It goes through all the workers and clears any returned packets
* to do a partial flush.
*/
static int
process_returns(struct rte_distributor_single *d)
{
unsigned wkr;
unsigned flushed = 0;
unsigned ret_start = d->returns.start,
ret_count = d->returns.count;
for (wkr = 0; wkr < d->num_workers; wkr++) {
uintptr_t oldbuf = 0;
/* Sync with worker. Acquire bufptr64. */
const int64_t data = __atomic_load_n(&(d->bufs[wkr].bufptr64),
__ATOMIC_ACQUIRE);
if (data & RTE_DISTRIB_GET_BUF) {
flushed++;
if (d->backlog[wkr].count)
/* Sync with worker. Release bufptr64. */
__atomic_store_n(&(d->bufs[wkr].bufptr64),
backlog_pop(&d->backlog[wkr]),
__ATOMIC_RELEASE);
else {
/* Sync with worker on GET_BUF flag. */
__atomic_store_n(&(d->bufs[wkr].bufptr64),
RTE_DISTRIB_GET_BUF,
__ATOMIC_RELEASE);
d->in_flight_tags[wkr] = 0;
d->in_flight_bitmask &= ~(1UL << wkr);
}
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
} else if (data & RTE_DISTRIB_RETURN_BUF) {
handle_worker_shutdown(d, wkr);
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
}
store_return(oldbuf, d, &ret_start, &ret_count);
}
d->returns.start = ret_start;
d->returns.count = ret_count;
return flushed;
}
/* process a set of packets to distribute them to workers */
int
rte_distributor_process_single(struct rte_distributor_single *d,
struct rte_mbuf **mbufs, unsigned num_mbufs)
{
unsigned next_idx = 0;
unsigned wkr = 0;
struct rte_mbuf *next_mb = NULL;
int64_t next_value = 0;
uint32_t new_tag = 0;
unsigned ret_start = d->returns.start,
ret_count = d->returns.count;
if (unlikely(num_mbufs == 0))
return process_returns(d);
while (next_idx < num_mbufs || next_mb != NULL) {
uintptr_t oldbuf = 0;
/* Sync with worker. Acquire bufptr64. */
int64_t data = __atomic_load_n(&(d->bufs[wkr].bufptr64),
__ATOMIC_ACQUIRE);
if (!next_mb) {
next_mb = mbufs[next_idx++];
next_value = (((int64_t)(uintptr_t)next_mb)
<< RTE_DISTRIB_FLAG_BITS);
/*
* User is advocated to set tag value for each
* mbuf before calling rte_distributor_process.
* User defined tags are used to identify flows,
* or sessions.
*/
new_tag = next_mb->hash.usr;
/*
* Note that if RTE_DISTRIB_MAX_WORKERS is larger than 64
* then the size of match has to be expanded.
*/
uint64_t match = 0;
unsigned i;
/*
* to scan for a match use "xor" and "not" to get a 0/1
* value, then use shifting to merge to single "match"
* variable, where a one-bit indicates a match for the
* worker given by the bit-position
*/
for (i = 0; i < d->num_workers; i++)
match |= ((uint64_t)!(d->in_flight_tags[i] ^ new_tag) << i);
/* Only turned-on bits are considered as match */
match &= d->in_flight_bitmask;
if (match) {
next_mb = NULL;
unsigned worker = __builtin_ctzl(match);
if (add_to_backlog(&d->backlog[worker],
next_value) < 0)
next_idx--;
}
}
if ((data & RTE_DISTRIB_GET_BUF) &&
(d->backlog[wkr].count || next_mb)) {
if (d->backlog[wkr].count)
/* Sync with worker. Release bufptr64. */
__atomic_store_n(&(d->bufs[wkr].bufptr64),
backlog_pop(&d->backlog[wkr]),
__ATOMIC_RELEASE);
else {
/* Sync with worker. Release bufptr64. */
__atomic_store_n(&(d->bufs[wkr].bufptr64),
next_value,
__ATOMIC_RELEASE);
d->in_flight_tags[wkr] = new_tag;
d->in_flight_bitmask |= (1UL << wkr);
next_mb = NULL;
}
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
} else if (data & RTE_DISTRIB_RETURN_BUF) {
handle_worker_shutdown(d, wkr);
oldbuf = data >> RTE_DISTRIB_FLAG_BITS;
}
/* store returns in a circular buffer */
store_return(oldbuf, d, &ret_start, &ret_count);
if (++wkr == d->num_workers)
wkr = 0;
}
/* to finish, check all workers for backlog and schedule work for them
* if they are ready */
for (wkr = 0; wkr < d->num_workers; wkr++)
if (d->backlog[wkr].count &&
/* Sync with worker. Acquire bufptr64. */
(__atomic_load_n(&(d->bufs[wkr].bufptr64),
__ATOMIC_ACQUIRE) & RTE_DISTRIB_GET_BUF)) {
int64_t oldbuf = d->bufs[wkr].bufptr64 >>
RTE_DISTRIB_FLAG_BITS;
store_return(oldbuf, d, &ret_start, &ret_count);
/* Sync with worker. Release bufptr64. */
__atomic_store_n(&(d->bufs[wkr].bufptr64),
backlog_pop(&d->backlog[wkr]),
__ATOMIC_RELEASE);
}
d->returns.start = ret_start;
d->returns.count = ret_count;
return num_mbufs;
}
/* return to the caller, packets returned from workers */
int
rte_distributor_returned_pkts_single(struct rte_distributor_single *d,
struct rte_mbuf **mbufs, unsigned max_mbufs)
{
struct rte_distributor_returned_pkts *returns = &d->returns;
unsigned retval = (max_mbufs < returns->count) ?
max_mbufs : returns->count;
unsigned i;
for (i = 0; i < retval; i++) {
unsigned idx = (returns->start + i) & RTE_DISTRIB_RETURNS_MASK;
mbufs[i] = returns->mbufs[idx];
}
returns->start += i;
returns->count -= i;
return retval;
}
/* return the number of packets in-flight in a distributor, i.e. packets
* being worked on or queued up in a backlog.
*/
static inline unsigned
total_outstanding(const struct rte_distributor_single *d)
{
unsigned wkr, total_outstanding;
total_outstanding = __builtin_popcountl(d->in_flight_bitmask);
for (wkr = 0; wkr < d->num_workers; wkr++)
total_outstanding += d->backlog[wkr].count;
return total_outstanding;
}
/* flush the distributor, so that there are no outstanding packets in flight or
* queued up. */
int
rte_distributor_flush_single(struct rte_distributor_single *d)
{
const unsigned flushed = total_outstanding(d);
while (total_outstanding(d) > 0)
rte_distributor_process_single(d, NULL, 0);
return flushed;
}
/* clears the internal returns array in the distributor */
void
rte_distributor_clear_returns_single(struct rte_distributor_single *d)
{
d->returns.start = d->returns.count = 0;
#ifndef __OPTIMIZE__
memset(d->returns.mbufs, 0, sizeof(d->returns.mbufs));
#endif
}
/* creates a distributor instance */
struct rte_distributor_single *
rte_distributor_create_single(const char *name,
unsigned socket_id,
unsigned num_workers)
{
struct rte_distributor_single *d;
struct rte_distributor_list *distributor_list;
char mz_name[RTE_MEMZONE_NAMESIZE];
const struct rte_memzone *mz;
/* compilation-time checks */
RTE_BUILD_BUG_ON((sizeof(*d) & RTE_CACHE_LINE_MASK) != 0);
RTE_BUILD_BUG_ON((RTE_DISTRIB_MAX_WORKERS & 7) != 0);
RTE_BUILD_BUG_ON(RTE_DISTRIB_MAX_WORKERS >
sizeof(d->in_flight_bitmask) * CHAR_BIT);
if (name == NULL || num_workers >= RTE_DISTRIB_MAX_WORKERS) {
rte_errno = EINVAL;
return NULL;
}
snprintf(mz_name, sizeof(mz_name), RTE_DISTRIB_PREFIX"%s", name);
mz = rte_memzone_reserve(mz_name, sizeof(*d), socket_id, NO_FLAGS);
if (mz == NULL) {
rte_errno = ENOMEM;
return NULL;
}
d = mz->addr;
strlcpy(d->name, name, sizeof(d->name));
d->num_workers = num_workers;
distributor_list = RTE_TAILQ_CAST(rte_distributor_tailq.head,
rte_distributor_list);
rte_mcfg_tailq_write_lock();
TAILQ_INSERT_TAIL(distributor_list, d, next);
rte_mcfg_tailq_write_unlock();
return d;
}