numam-dpdk/drivers/net/cnxk/cn10k_rx.h
Nithin Dabilpuram 0ed7107373 net/cnxk: remove duplicate mempool debug checks
Remove duplicate mempool debug checks for mbufs received.

Fixes: 592642c494 ("net/cnxk: align prefetches to CN10K cache model")
Cc: stable@dpdk.org

Signed-off-by: Nithin Dabilpuram <ndabilpuram@marvell.com>
2022-10-18 12:59:55 +02:00

2067 lines
70 KiB
C

/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2021 Marvell.
*/
#ifndef __CN10K_RX_H__
#define __CN10K_RX_H__
#include <rte_ether.h>
#include <rte_vect.h>
#include <cnxk_ethdev.h>
#define NIX_RX_OFFLOAD_NONE (0)
#define NIX_RX_OFFLOAD_RSS_F BIT(0)
#define NIX_RX_OFFLOAD_PTYPE_F BIT(1)
#define NIX_RX_OFFLOAD_CHECKSUM_F BIT(2)
#define NIX_RX_OFFLOAD_MARK_UPDATE_F BIT(3)
#define NIX_RX_OFFLOAD_TSTAMP_F BIT(4)
#define NIX_RX_OFFLOAD_VLAN_STRIP_F BIT(5)
#define NIX_RX_OFFLOAD_SECURITY_F BIT(6)
#define NIX_RX_OFFLOAD_MAX (NIX_RX_OFFLOAD_SECURITY_F << 1)
/* Flags to control cqe_to_mbuf conversion function.
* Defining it from backwards to denote its been
* not used as offload flags to pick function
*/
#define NIX_RX_REAS_F BIT(12)
#define NIX_RX_VWQE_F BIT(13)
#define NIX_RX_MULTI_SEG_F BIT(14)
#define CPT_RX_WQE_F BIT(15)
#define CNXK_NIX_CQ_ENTRY_SZ 128
#define NIX_DESCS_PER_LOOP 4
#define CQE_CAST(x) ((struct nix_cqe_hdr_s *)(x))
#define CQE_SZ(x) ((x) * CNXK_NIX_CQ_ENTRY_SZ)
#define CQE_PTR_OFF(b, i, o, f) \
(((f) & NIX_RX_VWQE_F) ? \
(uint64_t *)(((uintptr_t)((uint64_t *)(b))[i]) + (o)) : \
(uint64_t *)(((uintptr_t)(b)) + CQE_SZ(i) + (o)))
#define CQE_PTR_DIFF(b, i, o, f) \
(((f) & NIX_RX_VWQE_F) ? \
(uint64_t *)(((uintptr_t)((uint64_t *)(b))[i]) - (o)) : \
(uint64_t *)(((uintptr_t)(b)) + CQE_SZ(i) - (o)))
#define NIX_RX_SEC_UCC_CONST \
((RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1) << 8 | \
((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1) \
<< 24 | \
((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1) \
<< 32 | \
((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1) \
<< 40 | \
((RTE_MBUF_F_RX_IP_CKSUM_GOOD | RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1) \
<< 48 | \
(RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1) << 56)
#ifdef RTE_LIBRTE_MEMPOOL_DEBUG
static inline void
nix_mbuf_validate_next(struct rte_mbuf *m)
{
if (m->nb_segs == 1 && m->next) {
rte_panic("mbuf->next[%p] valid when mbuf->nb_segs is %d",
m->next, m->nb_segs);
}
}
#else
static inline void
nix_mbuf_validate_next(struct rte_mbuf *m)
{
RTE_SET_USED(m);
}
#endif
#define NIX_RX_SEC_REASSEMBLY_F \
(NIX_RX_REAS_F | NIX_RX_OFFLOAD_SECURITY_F)
static inline rte_eth_ip_reassembly_dynfield_t *
cnxk_ip_reassembly_dynfield(struct rte_mbuf *mbuf,
int ip_reassembly_dynfield_offset)
{
return RTE_MBUF_DYNFIELD(mbuf, ip_reassembly_dynfield_offset,
rte_eth_ip_reassembly_dynfield_t *);
}
union mbuf_initializer {
struct {
uint16_t data_off;
uint16_t refcnt;
uint16_t nb_segs;
uint16_t port;
} fields;
uint64_t value;
};
static __rte_always_inline uint64_t
nix_clear_data_off(uint64_t oldval)
{
union mbuf_initializer mbuf_init = {.value = oldval};
mbuf_init.fields.data_off = 0;
return mbuf_init.value;
}
static __rte_always_inline struct rte_mbuf *
nix_get_mbuf_from_cqe(void *cq, const uint64_t data_off)
{
rte_iova_t buff;
/* Skip CQE, NIX_RX_PARSE_S and SG HDR(9 DWORDs) and peek buff addr */
buff = *((rte_iova_t *)((uint64_t *)cq + 9));
return (struct rte_mbuf *)(buff - data_off);
}
static __rte_always_inline void
nix_sec_flush_meta_burst(uint16_t lmt_id, uint64_t data, uint16_t lnum,
uintptr_t aura_handle)
{
uint64_t pa;
/* Prepare PA and Data */
pa = roc_npa_aura_handle_to_base(aura_handle) + NPA_LF_AURA_BATCH_FREE0;
pa |= ((data & 0x7) << 4);
data >>= 3;
data <<= 19;
data |= (uint64_t)lmt_id;
data |= (uint64_t)(lnum - 1) << 12;
roc_lmt_submit_steorl(data, pa);
}
static __rte_always_inline void
nix_sec_flush_meta(uintptr_t laddr, uint16_t lmt_id, uint8_t loff,
uintptr_t aura_handle)
{
uint64_t pa;
/* laddr is pointing to first pointer */
laddr -= 8;
/* Trigger free either on lmtline full or different aura handle */
pa = roc_npa_aura_handle_to_base(aura_handle) + NPA_LF_AURA_BATCH_FREE0;
/* Update aura handle */
*(uint64_t *)laddr = (((uint64_t)(loff & 0x1) << 32) |
roc_npa_aura_handle_to_aura(aura_handle));
pa |= ((uint64_t)(loff >> 1) << 4);
roc_lmt_submit_steorl(lmt_id, pa);
}
static struct rte_mbuf *
nix_sec_attach_frags(const struct cpt_parse_hdr_s *hdr,
struct cn10k_inb_priv_data *inb_priv,
const uint64_t mbuf_init)
{
struct rte_mbuf *head, *mbuf, *mbuf_prev;
uint32_t offset = hdr->w2.fi_offset;
union nix_rx_parse_u *frag_rx;
struct cpt_frag_info_s *finfo;
uint64_t *frag_ptr = NULL;
uint64_t ol_flags;
uint16_t frag_size;
uint16_t rlen;
uint64_t *wqe;
int off;
off = inb_priv->reass_dynfield_off;
ol_flags = BIT_ULL(inb_priv->reass_dynflag_bit);
ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
/* offset of 0 implies 256B, otherwise it implies offset*8B */
offset = (((offset - 1) & 0x1f) + 1) * 8;
finfo = RTE_PTR_ADD(hdr, offset);
/* Frag-0: */
wqe = (uint64_t *)(rte_be_to_cpu_64(hdr->wqe_ptr));
rlen = ((*(wqe + 10)) >> 16) & 0xFFFF;
frag_rx = (union nix_rx_parse_u *)(wqe + 1);
frag_size = rlen + frag_rx->lcptr - frag_rx->laptr;
frag_rx->pkt_lenm1 = frag_size - 1;
mbuf = (struct rte_mbuf *)((uintptr_t)wqe - sizeof(struct rte_mbuf));
*(uint64_t *)(&mbuf->rearm_data) = mbuf_init;
mbuf->data_len = frag_size;
mbuf->pkt_len = frag_size;
mbuf->ol_flags = ol_flags;
mbuf->next = NULL;
head = mbuf;
mbuf_prev = mbuf;
/* Update dynamic field with userdata */
*rte_security_dynfield(mbuf) = (uint64_t)inb_priv->userdata;
cnxk_ip_reassembly_dynfield(head, off)->nb_frags = hdr->w0.num_frags - 1;
cnxk_ip_reassembly_dynfield(head, off)->next_frag = NULL;
/* Frag-1: */
if (hdr->w0.num_frags > 1) {
wqe = (uint64_t *)(rte_be_to_cpu_64(hdr->frag1_wqe_ptr));
rlen = ((*(wqe + 10)) >> 16) & 0xFFFF;
frag_rx = (union nix_rx_parse_u *)(wqe + 1);
frag_size = rlen + frag_rx->lcptr - frag_rx->laptr;
frag_rx->pkt_lenm1 = frag_size - 1;
mbuf = (struct rte_mbuf *)((uintptr_t)wqe -
sizeof(struct rte_mbuf));
*(uint64_t *)(&mbuf->rearm_data) = mbuf_init;
mbuf->data_len = frag_size;
mbuf->pkt_len = frag_size;
mbuf->ol_flags = ol_flags;
mbuf->next = NULL;
/* Update dynamic field with userdata */
*rte_security_dynfield(mbuf) = (uint64_t)inb_priv->userdata;
cnxk_ip_reassembly_dynfield(mbuf, off)->nb_frags =
hdr->w0.num_frags - 2;
cnxk_ip_reassembly_dynfield(mbuf, off)->next_frag = NULL;
cnxk_ip_reassembly_dynfield(mbuf_prev, off)->next_frag = mbuf;
mbuf_prev = mbuf;
}
/* Frag-2: */
if (hdr->w0.num_frags > 2) {
frag_ptr = (uint64_t *)(finfo + 1);
wqe = (uint64_t *)(rte_be_to_cpu_64(*frag_ptr));
rlen = ((*(wqe + 10)) >> 16) & 0xFFFF;
frag_rx = (union nix_rx_parse_u *)(wqe + 1);
frag_size = rlen + frag_rx->lcptr - frag_rx->laptr;
frag_rx->pkt_lenm1 = frag_size - 1;
mbuf = (struct rte_mbuf *)((uintptr_t)wqe -
sizeof(struct rte_mbuf));
*(uint64_t *)(&mbuf->rearm_data) = mbuf_init;
mbuf->data_len = frag_size;
mbuf->pkt_len = frag_size;
mbuf->ol_flags = ol_flags;
mbuf->next = NULL;
/* Update dynamic field with userdata */
*rte_security_dynfield(mbuf) = (uint64_t)inb_priv->userdata;
cnxk_ip_reassembly_dynfield(mbuf, off)->nb_frags =
hdr->w0.num_frags - 3;
cnxk_ip_reassembly_dynfield(mbuf, off)->next_frag = NULL;
cnxk_ip_reassembly_dynfield(mbuf_prev, off)->next_frag = mbuf;
mbuf_prev = mbuf;
}
/* Frag-3: */
if (hdr->w0.num_frags > 3) {
wqe = (uint64_t *)(rte_be_to_cpu_64(*(frag_ptr + 1)));
rlen = ((*(wqe + 10)) >> 16) & 0xFFFF;
frag_rx = (union nix_rx_parse_u *)(wqe + 1);
frag_size = rlen + frag_rx->lcptr - frag_rx->laptr;
frag_rx->pkt_lenm1 = frag_size - 1;
mbuf = (struct rte_mbuf *)((uintptr_t)wqe -
sizeof(struct rte_mbuf));
*(uint64_t *)(&mbuf->rearm_data) = mbuf_init;
mbuf->data_len = frag_size;
mbuf->pkt_len = frag_size;
mbuf->ol_flags = ol_flags;
mbuf->next = NULL;
/* Update dynamic field with userdata */
*rte_security_dynfield(mbuf) = (uint64_t)inb_priv->userdata;
cnxk_ip_reassembly_dynfield(mbuf, off)->nb_frags =
hdr->w0.num_frags - 4;
cnxk_ip_reassembly_dynfield(mbuf, off)->next_frag = NULL;
cnxk_ip_reassembly_dynfield(mbuf_prev, off)->next_frag = mbuf;
}
return head;
}
static struct rte_mbuf *
nix_sec_reassemble_frags(const struct cpt_parse_hdr_s *hdr, uint64_t cq_w1,
uint64_t cq_w5, uint64_t mbuf_init)
{
uint32_t fragx_sum, pkt_hdr_len, l3_hdr_size;
uint32_t offset = hdr->w2.fi_offset;
union nix_rx_parse_u *inner_rx;
uint16_t rlen, data_off, b_off;
union nix_rx_parse_u *frag_rx;
struct cpt_frag_info_s *finfo;
struct rte_mbuf *head, *mbuf;
uint64_t *frag_ptr = NULL;
rte_iova_t *inner_iova;
uint16_t frag_size;
uint64_t *wqe;
/* Base data offset */
b_off = mbuf_init & 0xFFFFUL;
mbuf_init &= ~0xFFFFUL;
/* offset of 0 implies 256B, otherwise it implies offset*8B */
offset = (((offset - 1) & 0x1f) + 1) * 8;
finfo = RTE_PTR_ADD(hdr, offset);
/* Frag-0: */
wqe = (uint64_t *)rte_be_to_cpu_64(hdr->wqe_ptr);
inner_rx = (union nix_rx_parse_u *)(wqe + 1);
inner_iova = (rte_iova_t *)*(wqe + 9);
/* Update only the upper 28-bits from meta pkt parse info */
*((uint64_t *)inner_rx) = ((*((uint64_t *)inner_rx) & ((1ULL << 36) - 1)) |
(cq_w1 & ~((1ULL << 36) - 1)));
rlen = ((*(wqe + 10)) >> 16) & 0xFFFF;
frag_size = rlen + ((cq_w5 >> 16) & 0xFF) - (cq_w5 & 0xFF);
fragx_sum = rte_be_to_cpu_16(finfo->w1.frag_size0);
pkt_hdr_len = frag_size - fragx_sum;
mbuf = (struct rte_mbuf *)((uintptr_t)wqe - sizeof(struct rte_mbuf));
*(uint64_t *)(&mbuf->rearm_data) = mbuf_init | b_off;
mbuf->data_len = frag_size;
head = mbuf;
if (inner_rx->lctype == NPC_LT_LC_IP) {
struct rte_ipv4_hdr *hdr = (struct rte_ipv4_hdr *)
RTE_PTR_ADD(inner_iova, inner_rx->lcptr);
l3_hdr_size = (hdr->version_ihl & 0xf) << 2;
} else {
struct rte_ipv6_hdr *hdr = (struct rte_ipv6_hdr *)
RTE_PTR_ADD(inner_iova, inner_rx->lcptr);
size_t ext_len = sizeof(struct rte_ipv6_hdr);
uint8_t *nxt_hdr = (uint8_t *)hdr;
int nh = hdr->proto;
l3_hdr_size = 0;
while (nh != -EINVAL) {
nxt_hdr += ext_len;
l3_hdr_size += ext_len;
nh = rte_ipv6_get_next_ext(nxt_hdr, nh, &ext_len);
}
}
/* Frag-1: */
wqe = (uint64_t *)(rte_be_to_cpu_64(hdr->frag1_wqe_ptr));
frag_size = rte_be_to_cpu_16(finfo->w1.frag_size1);
frag_rx = (union nix_rx_parse_u *)(wqe + 1);
mbuf->next = (struct rte_mbuf *)((uintptr_t)wqe - sizeof(struct rte_mbuf));
mbuf = mbuf->next;
data_off = b_off + frag_rx->lcptr + l3_hdr_size;
*(uint64_t *)(&mbuf->rearm_data) = mbuf_init | data_off;
mbuf->data_len = frag_size;
fragx_sum += frag_size;
/* Mark frag as get */
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
/* Frag-2: */
if (hdr->w0.num_frags > 2) {
frag_ptr = (uint64_t *)(finfo + 1);
wqe = (uint64_t *)(rte_be_to_cpu_64(*frag_ptr));
frag_size = rte_be_to_cpu_16(finfo->w1.frag_size2);
frag_rx = (union nix_rx_parse_u *)(wqe + 1);
mbuf->next = (struct rte_mbuf *)((uintptr_t)wqe - sizeof(struct rte_mbuf));
mbuf = mbuf->next;
data_off = b_off + frag_rx->lcptr + l3_hdr_size;
*(uint64_t *)(&mbuf->rearm_data) = mbuf_init | data_off;
mbuf->data_len = frag_size;
fragx_sum += frag_size;
/* Mark frag as get */
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
}
/* Frag-3: */
if (hdr->w0.num_frags > 3) {
wqe = (uint64_t *)(rte_be_to_cpu_64(*(frag_ptr + 1)));
frag_size = rte_be_to_cpu_16(finfo->w1.frag_size3);
frag_rx = (union nix_rx_parse_u *)(wqe + 1);
mbuf->next = (struct rte_mbuf *)((uintptr_t)wqe - sizeof(struct rte_mbuf));
mbuf = mbuf->next;
data_off = b_off + frag_rx->lcptr + l3_hdr_size;
*(uint64_t *)(&mbuf->rearm_data) = mbuf_init | data_off;
mbuf->data_len = frag_size;
fragx_sum += frag_size;
/* Mark frag as get */
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
}
if (inner_rx->lctype == NPC_LT_LC_IP) {
struct rte_ipv4_hdr *hdr = (struct rte_ipv4_hdr *)
RTE_PTR_ADD(inner_iova, inner_rx->lcptr);
hdr->fragment_offset = 0;
hdr->total_length = rte_cpu_to_be_16(fragx_sum + l3_hdr_size);
hdr->hdr_checksum = 0;
hdr->hdr_checksum = rte_ipv4_cksum(hdr);
inner_rx->pkt_lenm1 = pkt_hdr_len + fragx_sum - 1;
} else {
/* Remove the frag header by moving header 8 bytes forward */
struct rte_ipv6_hdr *hdr = (struct rte_ipv6_hdr *)
RTE_PTR_ADD(inner_iova, inner_rx->lcptr);
hdr->payload_len = rte_cpu_to_be_16(fragx_sum + l3_hdr_size -
8 - sizeof(struct rte_ipv6_hdr));
rte_memcpy(rte_pktmbuf_mtod_offset(head, void *, 8),
rte_pktmbuf_mtod(head, void *),
inner_rx->lcptr + sizeof(struct rte_ipv6_hdr));
inner_rx->pkt_lenm1 = pkt_hdr_len + fragx_sum - 8 - 1;
head->data_len -= 8;
head->data_off += 8;
}
mbuf->next = NULL;
head->pkt_len = inner_rx->pkt_lenm1 + 1;
head->nb_segs = hdr->w0.num_frags;
return head;
}
static __rte_always_inline struct rte_mbuf *
nix_sec_meta_to_mbuf_sc(uint64_t cq_w1, uint64_t cq_w5, const uint64_t sa_base,
uintptr_t laddr, uint8_t *loff, struct rte_mbuf *mbuf,
uint16_t data_off, const uint16_t flags,
const uint64_t mbuf_init)
{
const void *__p = (void *)((uintptr_t)mbuf + (uint16_t)data_off);
const struct cpt_parse_hdr_s *hdr = (const struct cpt_parse_hdr_s *)__p;
struct cn10k_inb_priv_data *inb_priv;
struct rte_mbuf *inner = NULL;
uint32_t sa_idx;
uint16_t ucc;
uint32_t len;
uintptr_t ip;
void *inb_sa;
uint64_t w0;
if ((flags & NIX_RX_REAS_F) && (cq_w1 & BIT(11))) {
/* Get SPI from CPT_PARSE_S's cookie(already swapped) */
w0 = hdr->w0.u64;
sa_idx = w0 >> 32;
inb_sa = roc_nix_inl_ot_ipsec_inb_sa(sa_base, sa_idx);
inb_priv = roc_nix_inl_ot_ipsec_inb_sa_sw_rsvd(inb_sa);
if (!hdr->w0.num_frags) {
/* No Reassembly or inbound error */
inner = (struct rte_mbuf *)
(rte_be_to_cpu_64(hdr->wqe_ptr) -
sizeof(struct rte_mbuf));
/* Update dynamic field with userdata */
*rte_security_dynfield(inner) =
(uint64_t)inb_priv->userdata;
/* Get ucc from cpt parse header */
ucc = hdr->w3.hw_ccode;
/* Calculate inner packet length as
* IP total len + l2 len
*/
ip = (uintptr_t)hdr + ((cq_w5 >> 16) & 0xFF);
ip += ((cq_w1 >> 40) & 0x6);
len = rte_be_to_cpu_16(*(uint16_t *)ip);
len += ((cq_w5 >> 16) & 0xFF) - (cq_w5 & 0xFF);
len += (cq_w1 & BIT(42)) ? 40 : 0;
inner->pkt_len = len;
inner->data_len = len;
*(uint64_t *)(&inner->rearm_data) = mbuf_init;
inner->ol_flags = ((ucc == CPT_COMP_WARN) ?
RTE_MBUF_F_RX_SEC_OFFLOAD :
(RTE_MBUF_F_RX_SEC_OFFLOAD |
RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED));
ucc = hdr->w3.uc_ccode;
inner->ol_flags |= ((ucc & 0xF0) == 0xF0) ?
((NIX_RX_SEC_UCC_CONST >> ((ucc & 0xF) << 3))
& 0xFF) << 1 : 0;
} else if (!(hdr->w0.err_sum) && !(hdr->w0.reas_sts)) {
/* Reassembly success */
inner = nix_sec_reassemble_frags(hdr, cq_w1, cq_w5,
mbuf_init);
/* Update dynamic field with userdata */
*rte_security_dynfield(inner) =
(uint64_t)inb_priv->userdata;
/* Assume success */
inner->ol_flags = RTE_MBUF_F_RX_SEC_OFFLOAD;
} else {
/* Reassembly failure */
inner = nix_sec_attach_frags(hdr, inb_priv, mbuf_init);
}
/* Store meta in lmtline to free
* Assume all meta's from same aura.
*/
*(uint64_t *)(laddr + (*loff << 3)) = (uint64_t)mbuf;
*loff = *loff + 1;
/* Mark meta mbuf as put */
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 0);
/* Mark inner mbuf as get */
RTE_MEMPOOL_CHECK_COOKIES(inner->pool, (void **)&inner, 1, 1);
return inner;
} else if (cq_w1 & BIT(11)) {
inner = (struct rte_mbuf *)(rte_be_to_cpu_64(hdr->wqe_ptr) -
sizeof(struct rte_mbuf));
/* Get SPI from CPT_PARSE_S's cookie(already swapped) */
w0 = hdr->w0.u64;
sa_idx = w0 >> 32;
inb_sa = roc_nix_inl_ot_ipsec_inb_sa(sa_base, sa_idx);
inb_priv = roc_nix_inl_ot_ipsec_inb_sa_sw_rsvd(inb_sa);
/* Update dynamic field with userdata */
*rte_security_dynfield(inner) = (uint64_t)inb_priv->userdata;
/* Get ucc from cpt parse header */
ucc = hdr->w3.hw_ccode;
/* Calculate inner packet length as IP total len + l2 len */
ip = (uintptr_t)hdr + ((cq_w5 >> 16) & 0xFF);
ip += ((cq_w1 >> 40) & 0x6);
len = rte_be_to_cpu_16(*(uint16_t *)ip);
len += ((cq_w5 >> 16) & 0xFF) - (cq_w5 & 0xFF);
len += (cq_w1 & BIT(42)) ? 40 : 0;
inner->pkt_len = len;
inner->data_len = len;
*(uint64_t *)(&inner->rearm_data) = mbuf_init;
inner->ol_flags = ((ucc == CPT_COMP_WARN) ?
RTE_MBUF_F_RX_SEC_OFFLOAD :
(RTE_MBUF_F_RX_SEC_OFFLOAD |
RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED));
ucc = hdr->w3.uc_ccode;
inner->ol_flags |= ((ucc & 0xF0) == 0xF0) ?
((NIX_RX_SEC_UCC_CONST >> ((ucc & 0xF) << 3))
& 0xFF) << 1 : 0;
/* Store meta in lmtline to free
* Assume all meta's from same aura.
*/
*(uint64_t *)(laddr + (*loff << 3)) = (uint64_t)mbuf;
*loff = *loff + 1;
/* Mark meta mbuf as put */
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 0);
/* Mark inner mbuf as get */
RTE_MEMPOOL_CHECK_COOKIES(inner->pool, (void **)&inner, 1, 1);
return inner;
}
return mbuf;
}
#if defined(RTE_ARCH_ARM64)
static __rte_always_inline void
nix_sec_meta_to_mbuf(uint64_t cq_w1, uint64_t cq_w5, uintptr_t inb_sa,
uintptr_t cpth, struct rte_mbuf *inner,
uint8x16_t *rx_desc_field1, uint64_t *ol_flags,
const uint16_t flags, uint64x2_t *rearm)
{
const struct cpt_parse_hdr_s *hdr =
(const struct cpt_parse_hdr_s *)cpth;
uint64_t mbuf_init = vgetq_lane_u64(*rearm, 0);
struct cn10k_inb_priv_data *inb_priv;
/* Clear checksum flags */
*ol_flags &= ~(RTE_MBUF_F_RX_L4_CKSUM_MASK |
RTE_MBUF_F_RX_IP_CKSUM_MASK);
/* Get SPI from CPT_PARSE_S's cookie(already swapped) */
inb_priv = roc_nix_inl_ot_ipsec_inb_sa_sw_rsvd((void *)inb_sa);
/* Update dynamic field with userdata */
*rte_security_dynfield(inner) = (uint64_t)inb_priv->userdata;
/* Mark inner mbuf as get */
RTE_MEMPOOL_CHECK_COOKIES(inner->pool, (void **)&inner, 1, 1);
if (flags & NIX_RX_REAS_F && hdr->w0.num_frags) {
if (!(hdr->w0.err_sum) && !(hdr->w0.reas_sts)) {
/* Reassembly success */
nix_sec_reassemble_frags(hdr, cq_w1, cq_w5, mbuf_init);
/* Assume success */
*ol_flags |= RTE_MBUF_F_RX_SEC_OFFLOAD;
/* Update pkt_len and data_len */
*rx_desc_field1 = vsetq_lane_u16(inner->pkt_len,
*rx_desc_field1, 2);
*rx_desc_field1 = vsetq_lane_u16(inner->data_len,
*rx_desc_field1, 4);
/* Data offset might be updated */
mbuf_init = *(uint64_t *)(&inner->rearm_data);
*rearm = vsetq_lane_u64(mbuf_init, *rearm, 0);
} else {
/* Reassembly failure */
nix_sec_attach_frags(hdr, inb_priv, mbuf_init);
*ol_flags |= inner->ol_flags;
/* Update pkt_len and data_len */
*rx_desc_field1 = vsetq_lane_u16(inner->pkt_len,
*rx_desc_field1, 2);
*rx_desc_field1 = vsetq_lane_u16(inner->data_len,
*rx_desc_field1, 4);
}
}
}
#endif
static __rte_always_inline uint32_t
nix_ptype_get(const void *const lookup_mem, const uint64_t in)
{
const uint16_t *const ptype = lookup_mem;
const uint16_t lh_lg_lf = (in & 0xFFF0000000000000) >> 52;
const uint16_t tu_l2 = ptype[(in & 0x000FFFF000000000) >> 36];
const uint16_t il4_tu = ptype[PTYPE_NON_TUNNEL_ARRAY_SZ + lh_lg_lf];
return (il4_tu << PTYPE_NON_TUNNEL_WIDTH) | tu_l2;
}
static __rte_always_inline uint32_t
nix_rx_olflags_get(const void *const lookup_mem, const uint64_t in)
{
const uint32_t *const ol_flags =
(const uint32_t *)((const uint8_t *)lookup_mem +
PTYPE_ARRAY_SZ);
return ol_flags[(in & 0xfff00000) >> 20];
}
static inline uint64_t
nix_update_match_id(const uint16_t match_id, uint64_t ol_flags,
struct rte_mbuf *mbuf)
{
/* There is no separate bit to check match_id
* is valid or not? and no flag to identify it is an
* RTE_FLOW_ACTION_TYPE_FLAG vs RTE_FLOW_ACTION_TYPE_MARK
* action. The former case addressed through 0 being invalid
* value and inc/dec match_id pair when MARK is activated.
* The later case addressed through defining
* CNXK_FLOW_MARK_DEFAULT as value for
* RTE_FLOW_ACTION_TYPE_MARK.
* This would translate to not use
* CNXK_FLOW_ACTION_FLAG_DEFAULT - 1 and
* CNXK_FLOW_ACTION_FLAG_DEFAULT for match_id.
* i.e valid mark_id's are from
* 0 to CNXK_FLOW_ACTION_FLAG_DEFAULT - 2
*/
if (likely(match_id)) {
ol_flags |= RTE_MBUF_F_RX_FDIR;
if (match_id != CNXK_FLOW_ACTION_FLAG_DEFAULT) {
ol_flags |= RTE_MBUF_F_RX_FDIR_ID;
mbuf->hash.fdir.hi = match_id - 1;
}
}
return ol_flags;
}
static __rte_always_inline void
nix_cqe_xtract_mseg(const union nix_rx_parse_u *rx, struct rte_mbuf *mbuf,
uint64_t rearm, const uint16_t flags)
{
const rte_iova_t *iova_list;
uint16_t later_skip = 0;
struct rte_mbuf *head;
const rte_iova_t *eol;
uint8_t nb_segs;
uint64_t cq_w1;
int64_t len;
uint64_t sg;
cq_w1 = *(const uint64_t *)rx;
/* Use inner rx parse for meta pkts sg list */
if (cq_w1 & BIT(11) && flags & NIX_RX_OFFLOAD_SECURITY_F) {
const uint64_t *wqe = (const uint64_t *)(mbuf + 1);
rx = (const union nix_rx_parse_u *)(wqe + 1);
}
sg = *(const uint64_t *)(rx + 1);
nb_segs = (sg >> 48) & 0x3;
if (nb_segs == 1)
return;
/* For security we have already updated right pkt_len */
if (cq_w1 & BIT(11) && flags & NIX_RX_OFFLOAD_SECURITY_F)
len = mbuf->pkt_len;
else
len = rx->pkt_lenm1 + 1;
mbuf->pkt_len = len - (flags & NIX_RX_OFFLOAD_TSTAMP_F ? CNXK_NIX_TIMESYNC_RX_OFFSET : 0);
mbuf->data_len =
(sg & 0xFFFF) - (flags & NIX_RX_OFFLOAD_TSTAMP_F ? CNXK_NIX_TIMESYNC_RX_OFFSET : 0);
len -= mbuf->data_len;
mbuf->nb_segs = nb_segs;
sg = sg >> 16;
eol = ((const rte_iova_t *)(rx + 1) + ((rx->desc_sizem1 + 1) << 1));
/* Skip SG_S and first IOVA*/
iova_list = ((const rte_iova_t *)(rx + 1)) + 2;
nb_segs--;
rearm = rearm & ~0xFFFF;
later_skip = (uintptr_t)mbuf->buf_addr - (uintptr_t)mbuf;
head = mbuf;
while (nb_segs) {
mbuf->next = (struct rte_mbuf *)(*iova_list - later_skip);
mbuf = mbuf->next;
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
mbuf->data_len = sg & 0xFFFF;
len -= sg & 0XFFFF;
sg = sg >> 16;
*(uint64_t *)(&mbuf->rearm_data) = rearm;
nb_segs--;
iova_list++;
if (!nb_segs && (iova_list + 1 < eol)) {
sg = *(const uint64_t *)(iova_list);
nb_segs = (sg >> 48) & 0x3;
head->nb_segs += nb_segs;
iova_list = (const rte_iova_t *)(iova_list + 1);
}
}
/* Adjust last mbuf data length with negative offset for security pkts if needed */
if (cq_w1 & BIT(11) && flags & NIX_RX_OFFLOAD_SECURITY_F && len < 0)
mbuf->data_len += len;
}
static __rte_always_inline void
cn10k_nix_cqe_to_mbuf(const struct nix_cqe_hdr_s *cq, const uint32_t tag,
struct rte_mbuf *mbuf, const void *lookup_mem,
const uint64_t val, const uint16_t flag)
{
const union nix_rx_parse_u *rx =
(const union nix_rx_parse_u *)((const uint64_t *)cq + 1);
const uint64_t w1 = *(const uint64_t *)rx;
uint16_t len = rx->pkt_lenm1 + 1;
uint64_t ol_flags = 0;
if (flag & NIX_RX_OFFLOAD_PTYPE_F)
mbuf->packet_type = nix_ptype_get(lookup_mem, w1);
else
mbuf->packet_type = 0;
if (flag & NIX_RX_OFFLOAD_RSS_F) {
mbuf->hash.rss = tag;
ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
}
/* Skip rx ol flags extraction for Security packets */
if ((!(flag & NIX_RX_SEC_REASSEMBLY_F) || !(w1 & BIT(11))) &&
flag & NIX_RX_OFFLOAD_CHECKSUM_F)
ol_flags |= nix_rx_olflags_get(lookup_mem, w1);
if (flag & NIX_RX_OFFLOAD_VLAN_STRIP_F) {
if (rx->vtag0_gone) {
ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
mbuf->vlan_tci = rx->vtag0_tci;
}
if (rx->vtag1_gone) {
ol_flags |= RTE_MBUF_F_RX_QINQ | RTE_MBUF_F_RX_QINQ_STRIPPED;
mbuf->vlan_tci_outer = rx->vtag1_tci;
}
}
if (flag & NIX_RX_OFFLOAD_MARK_UPDATE_F)
ol_flags = nix_update_match_id(rx->match_id, ol_flags, mbuf);
/* Packet data length and ol flags is already updated for sec */
if (flag & NIX_RX_SEC_REASSEMBLY_F && w1 & BIT_ULL(11)) {
mbuf->ol_flags |= ol_flags;
} else {
mbuf->ol_flags = ol_flags;
mbuf->pkt_len = len;
mbuf->data_len = len;
*(uint64_t *)(&mbuf->rearm_data) = val;
}
if (flag & NIX_RX_MULTI_SEG_F)
/*
* For multi segment packets, mbuf length correction according
* to Rx timestamp length will be handled later during
* timestamp data process.
* Hence, timestamp flag argument is not required.
*/
nix_cqe_xtract_mseg(rx, mbuf, val, flag & ~NIX_RX_OFFLOAD_TSTAMP_F);
}
static inline uint16_t
nix_rx_nb_pkts(struct cn10k_eth_rxq *rxq, const uint64_t wdata,
const uint16_t pkts, const uint32_t qmask)
{
uint32_t available = rxq->available;
/* Update the available count if cached value is not enough */
if (unlikely(available < pkts)) {
uint64_t reg, head, tail;
/* Use LDADDA version to avoid reorder */
reg = roc_atomic64_add_sync(wdata, rxq->cq_status);
/* CQ_OP_STATUS operation error */
if (reg & BIT_ULL(NIX_CQ_OP_STAT_OP_ERR) ||
reg & BIT_ULL(NIX_CQ_OP_STAT_CQ_ERR))
return 0;
tail = reg & 0xFFFFF;
head = (reg >> 20) & 0xFFFFF;
if (tail < head)
available = tail - head + qmask + 1;
else
available = tail - head;
rxq->available = available;
}
return RTE_MIN(pkts, available);
}
static __rte_always_inline void
cn10k_nix_mbuf_to_tstamp(struct rte_mbuf *mbuf,
struct cnxk_timesync_info *tstamp,
const uint8_t ts_enable, uint64_t *tstamp_ptr)
{
if (ts_enable) {
mbuf->pkt_len -= CNXK_NIX_TIMESYNC_RX_OFFSET;
mbuf->data_len -= CNXK_NIX_TIMESYNC_RX_OFFSET;
/* Reading the rx timestamp inserted by CGX, viz at
* starting of the packet data.
*/
*tstamp_ptr = ((*tstamp_ptr >> 32) * NSEC_PER_SEC) +
(*tstamp_ptr & 0xFFFFFFFFUL);
*cnxk_nix_timestamp_dynfield(mbuf, tstamp) =
rte_be_to_cpu_64(*tstamp_ptr);
/* RTE_MBUF_F_RX_IEEE1588_TMST flag needs to be set only in case
* PTP packets are received.
*/
if (mbuf->packet_type == RTE_PTYPE_L2_ETHER_TIMESYNC) {
tstamp->rx_tstamp =
*cnxk_nix_timestamp_dynfield(mbuf, tstamp);
tstamp->rx_ready = 1;
mbuf->ol_flags |= RTE_MBUF_F_RX_IEEE1588_PTP |
RTE_MBUF_F_RX_IEEE1588_TMST |
tstamp->rx_tstamp_dynflag;
}
}
}
static __rte_always_inline uint16_t
cn10k_nix_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts,
const uint16_t flags)
{
struct cn10k_eth_rxq *rxq = rx_queue;
const uint64_t mbuf_init = rxq->mbuf_initializer;
const void *lookup_mem = rxq->lookup_mem;
const uint64_t data_off = rxq->data_off;
const uintptr_t desc = rxq->desc;
const uint64_t wdata = rxq->wdata;
const uint32_t qmask = rxq->qmask;
uint64_t lbase = rxq->lmt_base;
uint16_t packets = 0, nb_pkts;
uint8_t loff = 0, lnum = 0;
uint32_t head = rxq->head;
struct nix_cqe_hdr_s *cq;
struct rte_mbuf *mbuf;
uint64_t aura_handle;
uint64_t sa_base;
uint16_t lmt_id;
uint64_t laddr;
nb_pkts = nix_rx_nb_pkts(rxq, wdata, pkts, qmask);
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
aura_handle = rxq->meta_aura;
sa_base = rxq->sa_base;
sa_base &= ~(ROC_NIX_INL_SA_BASE_ALIGN - 1);
ROC_LMT_BASE_ID_GET(lbase, lmt_id);
laddr = lbase;
laddr += 8;
}
while (packets < nb_pkts) {
/* Prefetch N desc ahead */
rte_prefetch_non_temporal(
(void *)(desc + (CQE_SZ((head + 2) & qmask))));
cq = (struct nix_cqe_hdr_s *)(desc + CQE_SZ(head));
mbuf = nix_get_mbuf_from_cqe(cq, data_off);
/* Mark mempool obj as "get" as it is alloc'ed by NIX */
RTE_MEMPOOL_CHECK_COOKIES(mbuf->pool, (void **)&mbuf, 1, 1);
/* Translate meta to mbuf */
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
const uint64_t cq_w1 = *((const uint64_t *)cq + 1);
const uint64_t cq_w5 = *((const uint64_t *)cq + 5);
mbuf = nix_sec_meta_to_mbuf_sc(cq_w1, cq_w5, sa_base, laddr,
&loff, mbuf, data_off,
flags, mbuf_init);
}
cn10k_nix_cqe_to_mbuf(cq, cq->tag, mbuf, lookup_mem, mbuf_init,
flags);
cn10k_nix_mbuf_to_tstamp(mbuf, rxq->tstamp,
(flags & NIX_RX_OFFLOAD_TSTAMP_F),
(uint64_t *)((uint8_t *)mbuf
+ data_off));
rx_pkts[packets++] = mbuf;
roc_prefetch_store_keep(mbuf);
head++;
head &= qmask;
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
/* Flush when we don't have space for 4 meta */
if ((15 - loff) < 1) {
nix_sec_flush_meta(laddr, lmt_id + lnum, loff,
aura_handle);
lnum++;
lnum &= BIT_ULL(ROC_LMT_LINES_PER_CORE_LOG2) -
1;
/* First pointer starts at 8B offset */
laddr = (uintptr_t)LMT_OFF(lbase, lnum, 8);
loff = 0;
}
}
}
rxq->head = head;
rxq->available -= nb_pkts;
/* Free all the CQs that we've processed */
plt_write64((wdata | nb_pkts), rxq->cq_door);
/* Free remaining meta buffers if any */
if (flags & NIX_RX_OFFLOAD_SECURITY_F && loff)
nix_sec_flush_meta(laddr, lmt_id + lnum, loff, aura_handle);
if (flags & NIX_RX_OFFLOAD_SECURITY_F)
rte_io_wmb();
return nb_pkts;
}
#if defined(RTE_ARCH_ARM64)
static __rte_always_inline uint64_t
nix_vlan_update(const uint64_t w2, uint64_t ol_flags, uint8x16_t *f)
{
if (w2 & BIT_ULL(21) /* vtag0_gone */) {
ol_flags |= RTE_MBUF_F_RX_VLAN | RTE_MBUF_F_RX_VLAN_STRIPPED;
*f = vsetq_lane_u16((uint16_t)(w2 >> 32), *f, 5);
}
return ol_flags;
}
static __rte_always_inline uint64_t
nix_qinq_update(const uint64_t w2, uint64_t ol_flags, struct rte_mbuf *mbuf)
{
if (w2 & BIT_ULL(23) /* vtag1_gone */) {
ol_flags |= RTE_MBUF_F_RX_QINQ | RTE_MBUF_F_RX_QINQ_STRIPPED;
mbuf->vlan_tci_outer = (uint16_t)(w2 >> 48);
}
return ol_flags;
}
#define NIX_PUSH_META_TO_FREE(_mbuf, _laddr, _loff_p) \
do { \
*(uint64_t *)((_laddr) + (*(_loff_p) << 3)) = (uint64_t)_mbuf; \
*(_loff_p) = *(_loff_p) + 1; \
/* Mark meta mbuf as put */ \
RTE_MEMPOOL_CHECK_COOKIES(_mbuf->pool, (void **)&_mbuf, 1, 0); \
} while (0)
static __rte_always_inline uint16_t
cn10k_nix_recv_pkts_vector(void *args, struct rte_mbuf **mbufs, uint16_t pkts,
const uint16_t flags, void *lookup_mem,
struct cnxk_timesync_info *tstamp,
uintptr_t lmt_base, uint64_t meta_aura)
{
struct cn10k_eth_rxq *rxq = args;
const uint64_t mbuf_initializer = (flags & NIX_RX_VWQE_F) ?
*(uint64_t *)args :
rxq->mbuf_initializer;
const uint64x2_t data_off = flags & NIX_RX_VWQE_F ?
vdupq_n_u64(RTE_PKTMBUF_HEADROOM) :
vdupq_n_u64(rxq->data_off);
const uint32_t qmask = flags & NIX_RX_VWQE_F ? 0 : rxq->qmask;
const uint64_t wdata = flags & NIX_RX_VWQE_F ? 0 : rxq->wdata;
const uintptr_t desc = flags & NIX_RX_VWQE_F ? 0 : rxq->desc;
uint64x2_t cq0_w8, cq1_w8, cq2_w8, cq3_w8, mbuf01, mbuf23;
uint64_t ol_flags0, ol_flags1, ol_flags2, ol_flags3;
uint64x2_t rearm0 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm1 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm2 = vdupq_n_u64(mbuf_initializer);
uint64x2_t rearm3 = vdupq_n_u64(mbuf_initializer);
struct rte_mbuf *mbuf0, *mbuf1, *mbuf2, *mbuf3;
uint8_t loff = 0, lnum = 0, shft = 0;
uint8x16_t f0, f1, f2, f3;
uint16_t lmt_id, d_off;
uint64_t lbase, laddr;
uint16_t packets = 0;
uint16_t pkts_left;
uintptr_t sa_base;
uint32_t head;
uintptr_t cq0;
if (!(flags & NIX_RX_VWQE_F)) {
lookup_mem = rxq->lookup_mem;
head = rxq->head;
pkts = nix_rx_nb_pkts(rxq, wdata, pkts, qmask);
pkts_left = pkts & (NIX_DESCS_PER_LOOP - 1);
/* Packets has to be floor-aligned to NIX_DESCS_PER_LOOP */
pkts = RTE_ALIGN_FLOOR(pkts, NIX_DESCS_PER_LOOP);
if (flags & NIX_RX_OFFLOAD_TSTAMP_F)
tstamp = rxq->tstamp;
cq0 = desc + CQE_SZ(head);
rte_prefetch0(CQE_PTR_OFF(cq0, 0, 64, flags));
rte_prefetch0(CQE_PTR_OFF(cq0, 1, 64, flags));
rte_prefetch0(CQE_PTR_OFF(cq0, 2, 64, flags));
rte_prefetch0(CQE_PTR_OFF(cq0, 3, 64, flags));
} else {
RTE_SET_USED(head);
}
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
if (flags & NIX_RX_VWQE_F) {
uint64_t sg_w1;
uint16_t port;
mbuf0 = (struct rte_mbuf *)((uintptr_t)mbufs[0] -
sizeof(struct rte_mbuf));
/* Pick first mbuf's aura handle assuming all
* mbufs are from a vec and are from same RQ.
*/
if (!meta_aura)
meta_aura = mbuf0->pool->pool_id;
/* Calculate offset from mbuf to actual data area */
/* Zero aura's first skip i.e mbuf setup might not match the actual
* offset as first skip is taken from second pass RQ. So compute
* using diff b/w first SG pointer and mbuf addr.
*/
sg_w1 = *(uint64_t *)((uintptr_t)mbufs[0] + 72);
d_off = (sg_w1 - (uint64_t)mbuf0);
/* Get SA Base from lookup tbl using port_id */
port = mbuf_initializer >> 48;
sa_base = cnxk_nix_sa_base_get(port, lookup_mem);
lbase = lmt_base;
} else {
meta_aura = rxq->meta_aura;
d_off = rxq->data_off;
sa_base = rxq->sa_base;
lbase = rxq->lmt_base;
}
sa_base &= ~(ROC_NIX_INL_SA_BASE_ALIGN - 1);
ROC_LMT_BASE_ID_GET(lbase, lmt_id);
lnum = 0;
laddr = lbase;
laddr += 8;
}
while (packets < pkts) {
if (!(flags & NIX_RX_VWQE_F)) {
/* Exit loop if head is about to wrap and become
* unaligned.
*/
if (((head + NIX_DESCS_PER_LOOP - 1) & qmask) <
NIX_DESCS_PER_LOOP) {
pkts_left += (pkts - packets);
break;
}
cq0 = desc + CQE_SZ(head);
} else {
cq0 = (uintptr_t)&mbufs[packets];
}
if (flags & NIX_RX_VWQE_F) {
if (pkts - packets > 4) {
rte_prefetch_non_temporal(CQE_PTR_OFF(cq0,
4, 0, flags));
rte_prefetch_non_temporal(CQE_PTR_OFF(cq0,
5, 0, flags));
rte_prefetch_non_temporal(CQE_PTR_OFF(cq0,
6, 0, flags));
rte_prefetch_non_temporal(CQE_PTR_OFF(cq0,
7, 0, flags));
if (likely(pkts - packets > 8)) {
rte_prefetch1(CQE_PTR_OFF(cq0,
8, 0, flags));
rte_prefetch1(CQE_PTR_OFF(cq0,
9, 0, flags));
rte_prefetch1(CQE_PTR_OFF(cq0,
10, 0, flags));
rte_prefetch1(CQE_PTR_OFF(cq0,
11, 0, flags));
if (pkts - packets > 12) {
rte_prefetch1(CQE_PTR_OFF(cq0,
12, 0, flags));
rte_prefetch1(CQE_PTR_OFF(cq0,
13, 0, flags));
rte_prefetch1(CQE_PTR_OFF(cq0,
14, 0, flags));
rte_prefetch1(CQE_PTR_OFF(cq0,
15, 0, flags));
}
}
rte_prefetch0(CQE_PTR_DIFF(cq0,
4, RTE_PKTMBUF_HEADROOM, flags));
rte_prefetch0(CQE_PTR_DIFF(cq0,
5, RTE_PKTMBUF_HEADROOM, flags));
rte_prefetch0(CQE_PTR_DIFF(cq0,
6, RTE_PKTMBUF_HEADROOM, flags));
rte_prefetch0(CQE_PTR_DIFF(cq0,
7, RTE_PKTMBUF_HEADROOM, flags));
if (likely(pkts - packets > 8)) {
rte_prefetch0(CQE_PTR_DIFF(cq0,
8, RTE_PKTMBUF_HEADROOM, flags));
rte_prefetch0(CQE_PTR_DIFF(cq0,
9, RTE_PKTMBUF_HEADROOM, flags));
rte_prefetch0(CQE_PTR_DIFF(cq0,
10, RTE_PKTMBUF_HEADROOM, flags));
rte_prefetch0(CQE_PTR_DIFF(cq0,
11, RTE_PKTMBUF_HEADROOM, flags));
}
}
} else {
if (flags & NIX_RX_OFFLOAD_SECURITY_F &&
pkts - packets > 4) {
/* Fetch cpt parse header */
void *p0 =
(void *)*CQE_PTR_OFF(cq0, 4, 72, flags);
void *p1 =
(void *)*CQE_PTR_OFF(cq0, 5, 72, flags);
void *p2 =
(void *)*CQE_PTR_OFF(cq0, 6, 72, flags);
void *p3 =
(void *)*CQE_PTR_OFF(cq0, 7, 72, flags);
rte_prefetch0(p0);
rte_prefetch0(p1);
rte_prefetch0(p2);
rte_prefetch0(p3);
}
if (pkts - packets > 8) {
if (flags) {
rte_prefetch0(CQE_PTR_OFF(cq0, 8, 0, flags));
rte_prefetch0(CQE_PTR_OFF(cq0, 9, 0, flags));
rte_prefetch0(CQE_PTR_OFF(cq0, 10, 0, flags));
rte_prefetch0(CQE_PTR_OFF(cq0, 11, 0, flags));
}
rte_prefetch0(CQE_PTR_OFF(cq0, 8, 64, flags));
rte_prefetch0(CQE_PTR_OFF(cq0, 9, 64, flags));
rte_prefetch0(CQE_PTR_OFF(cq0, 10, 64, flags));
rte_prefetch0(CQE_PTR_OFF(cq0, 11, 64, flags));
}
}
if (!(flags & NIX_RX_VWQE_F)) {
/* Get NIX_RX_SG_S for size and buffer pointer */
cq0_w8 = vld1q_u64(CQE_PTR_OFF(cq0, 0, 64, flags));
cq1_w8 = vld1q_u64(CQE_PTR_OFF(cq0, 1, 64, flags));
cq2_w8 = vld1q_u64(CQE_PTR_OFF(cq0, 2, 64, flags));
cq3_w8 = vld1q_u64(CQE_PTR_OFF(cq0, 3, 64, flags));
/* Extract mbuf from NIX_RX_SG_S */
mbuf01 = vzip2q_u64(cq0_w8, cq1_w8);
mbuf23 = vzip2q_u64(cq2_w8, cq3_w8);
mbuf01 = vqsubq_u64(mbuf01, data_off);
mbuf23 = vqsubq_u64(mbuf23, data_off);
} else {
mbuf01 =
vsubq_u64(vld1q_u64((uint64_t *)cq0), data_off);
mbuf23 = vsubq_u64(vld1q_u64((uint64_t *)(cq0 + 16)),
data_off);
}
/* Move mbufs to scalar registers for future use */
mbuf0 = (struct rte_mbuf *)vgetq_lane_u64(mbuf01, 0);
mbuf1 = (struct rte_mbuf *)vgetq_lane_u64(mbuf01, 1);
mbuf2 = (struct rte_mbuf *)vgetq_lane_u64(mbuf23, 0);
mbuf3 = (struct rte_mbuf *)vgetq_lane_u64(mbuf23, 1);
if (!(flags & NIX_RX_VWQE_F)) {
/* Mask to get packet len from NIX_RX_SG_S */
const uint8x16_t shuf_msk = {
0xFF, 0xFF, /* pkt_type set as unknown */
0xFF, 0xFF, /* pkt_type set as unknown */
0, 1, /* octet 1~0, low 16 bits pkt_len */
0xFF, 0xFF, /* skip high 16it pkt_len, zero out */
0, 1, /* octet 1~0, 16 bits data_len */
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
/* Form the rx_descriptor_fields1 with pkt_len and data_len */
f0 = vqtbl1q_u8(cq0_w8, shuf_msk);
f1 = vqtbl1q_u8(cq1_w8, shuf_msk);
f2 = vqtbl1q_u8(cq2_w8, shuf_msk);
f3 = vqtbl1q_u8(cq3_w8, shuf_msk);
}
/* Load CQE word0 and word 1 */
const uint64_t cq0_w0 = *CQE_PTR_OFF(cq0, 0, 0, flags);
const uint64_t cq0_w1 = *CQE_PTR_OFF(cq0, 0, 8, flags);
const uint64_t cq0_w2 = *CQE_PTR_OFF(cq0, 0, 16, flags);
const uint64_t cq1_w0 = *CQE_PTR_OFF(cq0, 1, 0, flags);
const uint64_t cq1_w1 = *CQE_PTR_OFF(cq0, 1, 8, flags);
const uint64_t cq1_w2 = *CQE_PTR_OFF(cq0, 1, 16, flags);
const uint64_t cq2_w0 = *CQE_PTR_OFF(cq0, 2, 0, flags);
const uint64_t cq2_w1 = *CQE_PTR_OFF(cq0, 2, 8, flags);
const uint64_t cq2_w2 = *CQE_PTR_OFF(cq0, 2, 16, flags);
const uint64_t cq3_w0 = *CQE_PTR_OFF(cq0, 3, 0, flags);
const uint64_t cq3_w1 = *CQE_PTR_OFF(cq0, 3, 8, flags);
const uint64_t cq3_w2 = *CQE_PTR_OFF(cq0, 3, 16, flags);
if (flags & NIX_RX_VWQE_F) {
uint16_t psize0, psize1, psize2, psize3;
psize0 = (cq0_w2 & 0xFFFF) + 1;
psize1 = (cq1_w2 & 0xFFFF) + 1;
psize2 = (cq2_w2 & 0xFFFF) + 1;
psize3 = (cq3_w2 & 0xFFFF) + 1;
f0 = vdupq_n_u64(0);
f1 = vdupq_n_u64(0);
f2 = vdupq_n_u64(0);
f3 = vdupq_n_u64(0);
f0 = vsetq_lane_u16(psize0, f0, 2);
f0 = vsetq_lane_u16(psize0, f0, 4);
f1 = vsetq_lane_u16(psize1, f1, 2);
f1 = vsetq_lane_u16(psize1, f1, 4);
f2 = vsetq_lane_u16(psize2, f2, 2);
f2 = vsetq_lane_u16(psize2, f2, 4);
f3 = vsetq_lane_u16(psize3, f3, 2);
f3 = vsetq_lane_u16(psize3, f3, 4);
}
if (flags & NIX_RX_OFFLOAD_RSS_F) {
/* Fill rss in the rx_descriptor_fields1 */
f0 = vsetq_lane_u32(cq0_w0, f0, 3);
f1 = vsetq_lane_u32(cq1_w0, f1, 3);
f2 = vsetq_lane_u32(cq2_w0, f2, 3);
f3 = vsetq_lane_u32(cq3_w0, f3, 3);
ol_flags0 = RTE_MBUF_F_RX_RSS_HASH;
ol_flags1 = RTE_MBUF_F_RX_RSS_HASH;
ol_flags2 = RTE_MBUF_F_RX_RSS_HASH;
ol_flags3 = RTE_MBUF_F_RX_RSS_HASH;
} else {
ol_flags0 = 0;
ol_flags1 = 0;
ol_flags2 = 0;
ol_flags3 = 0;
}
if (flags & NIX_RX_OFFLOAD_PTYPE_F) {
/* Fill packet_type in the rx_descriptor_fields1 */
f0 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq0_w1),
f0, 0);
f1 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq1_w1),
f1, 0);
f2 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq2_w1),
f2, 0);
f3 = vsetq_lane_u32(nix_ptype_get(lookup_mem, cq3_w1),
f3, 0);
}
if (flags & NIX_RX_OFFLOAD_CHECKSUM_F) {
ol_flags0 |= nix_rx_olflags_get(lookup_mem, cq0_w1);
ol_flags1 |= nix_rx_olflags_get(lookup_mem, cq1_w1);
ol_flags2 |= nix_rx_olflags_get(lookup_mem, cq2_w1);
ol_flags3 |= nix_rx_olflags_get(lookup_mem, cq3_w1);
}
/* Translate meta to mbuf */
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
uint64_t cq0_w5 = *CQE_PTR_OFF(cq0, 0, 40, flags);
uint64_t cq1_w5 = *CQE_PTR_OFF(cq0, 1, 40, flags);
uint64_t cq2_w5 = *CQE_PTR_OFF(cq0, 2, 40, flags);
uint64_t cq3_w5 = *CQE_PTR_OFF(cq0, 3, 40, flags);
uintptr_t cpth0 = (uintptr_t)mbuf0 + d_off;
uintptr_t cpth1 = (uintptr_t)mbuf1 + d_off;
uintptr_t cpth2 = (uintptr_t)mbuf2 + d_off;
uintptr_t cpth3 = (uintptr_t)mbuf3 + d_off;
uint64x2_t inner0, inner1, inner2, inner3;
uint64x2_t wqe01, wqe23, sa01, sa23;
uint16x4_t lens, l2lens, ltypes;
uint8x8_t ucc;
inner0 = vld1q_u64((const uint64_t *)cpth0);
inner1 = vld1q_u64((const uint64_t *)cpth1);
inner2 = vld1q_u64((const uint64_t *)cpth2);
inner3 = vld1q_u64((const uint64_t *)cpth3);
/* Extract and reverse wqe pointers */
wqe01 = vzip2q_u64(inner0, inner1);
wqe23 = vzip2q_u64(inner2, inner3);
wqe01 = vrev64q_u8(wqe01);
wqe23 = vrev64q_u8(wqe23);
/* Adjust wqe pointers to point to mbuf */
wqe01 = vsubq_u64(wqe01,
vdupq_n_u64(sizeof(struct rte_mbuf)));
wqe23 = vsubq_u64(wqe23,
vdupq_n_u64(sizeof(struct rte_mbuf)));
/* Extract sa idx from cookie area and add to sa_base */
sa01 = vzip1q_u64(inner0, inner1);
sa23 = vzip1q_u64(inner2, inner3);
sa01 = vshrq_n_u64(sa01, 32);
sa23 = vshrq_n_u64(sa23, 32);
sa01 = vshlq_n_u64(sa01,
ROC_NIX_INL_OT_IPSEC_INB_SA_SZ_LOG2);
sa23 = vshlq_n_u64(sa23,
ROC_NIX_INL_OT_IPSEC_INB_SA_SZ_LOG2);
sa01 = vaddq_u64(sa01, vdupq_n_u64(sa_base));
sa23 = vaddq_u64(sa23, vdupq_n_u64(sa_base));
const uint8x16_t tbl = {
/* ROC_IE_OT_UCC_SUCCESS_SA_SOFTEXP_FIRST */
0,
/* ROC_IE_OT_UCC_SUCCESS_PKT_IP_BADCSUM */
RTE_MBUF_F_RX_IP_CKSUM_BAD >> 1,
/* ROC_IE_OT_UCC_SUCCESS_SA_SOFTEXP_AGAIN */
0,
/* ROC_IE_OT_UCC_SUCCESS_PKT_L4_GOODCSUM */
(RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
/* ROC_IE_OT_UCC_SUCCESS_PKT_L4_BADCSUM */
(RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_BAD) >> 1,
/* ROC_IE_OT_UCC_SUCCESS_PKT_UDPESP_NZCSUM */
(RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
/* ROC_IE_OT_UCC_SUCCESS_PKT_UDP_ZEROCSUM */
(RTE_MBUF_F_RX_IP_CKSUM_GOOD |
RTE_MBUF_F_RX_L4_CKSUM_GOOD) >> 1,
/* ROC_IE_OT_UCC_SUCCESS_PKT_IP_GOODCSUM */
RTE_MBUF_F_RX_IP_CKSUM_GOOD >> 1,
/* HW_CCODE -> RTE_MBUF_F_RX_SEC_OFFLOAD_FAILED */
1, 0, 1, 1, 1, 1, 0, 1,
};
const int8x8_t err_off = {
/* UCC of significance starts from 0xF0 */
0xF0,
/* Move HW_CCODE from 0:6 -> 8:14 */
-8,
0xF0,
-8,
0xF0,
-8,
0xF0,
-8,
};
ucc = vdup_n_u8(0);
ucc = vset_lane_u16(*(uint16_t *)(cpth0 + 30), ucc, 0);
ucc = vset_lane_u16(*(uint16_t *)(cpth1 + 30), ucc, 1);
ucc = vset_lane_u16(*(uint16_t *)(cpth2 + 30), ucc, 2);
ucc = vset_lane_u16(*(uint16_t *)(cpth3 + 30), ucc, 3);
ucc = vsub_s8(ucc, err_off);
ucc = vqtbl1_u8(tbl, ucc);
RTE_BUILD_BUG_ON(NPC_LT_LC_IP != 2);
RTE_BUILD_BUG_ON(NPC_LT_LC_IP_OPT != 3);
RTE_BUILD_BUG_ON(NPC_LT_LC_IP6 != 4);
RTE_BUILD_BUG_ON(NPC_LT_LC_IP6_EXT != 5);
ltypes = vdup_n_u16(0);
ltypes = vset_lane_u16((cq0_w1 >> 40) & 0x6, ltypes, 0);
ltypes = vset_lane_u16((cq1_w1 >> 40) & 0x6, ltypes, 1);
ltypes = vset_lane_u16((cq2_w1 >> 40) & 0x6, ltypes, 2);
ltypes = vset_lane_u16((cq3_w1 >> 40) & 0x6, ltypes, 3);
/* Extract and reverse l3 length from IPv4/IPv6 hdr
* that is in same cacheline most probably as cpth.
*/
cpth0 += ((cq0_w5 >> 16) & 0xFF) +
vget_lane_u16(ltypes, 0);
cpth1 += ((cq1_w5 >> 16) & 0xFF) +
vget_lane_u16(ltypes, 1);
cpth2 += ((cq2_w5 >> 16) & 0xFF) +
vget_lane_u16(ltypes, 2);
cpth3 += ((cq3_w5 >> 16) & 0xFF) +
vget_lane_u16(ltypes, 3);
lens = vdup_n_u16(0);
lens = vset_lane_u16(*(uint16_t *)cpth0, lens, 0);
lens = vset_lane_u16(*(uint16_t *)cpth1, lens, 1);
lens = vset_lane_u16(*(uint16_t *)cpth2, lens, 2);
lens = vset_lane_u16(*(uint16_t *)cpth3, lens, 3);
lens = vrev16_u8(lens);
/* Add l2 length to l3 lengths */
l2lens = vdup_n_u16(0);
l2lens = vset_lane_u16(((cq0_w5 >> 16) & 0xFF) -
(cq0_w5 & 0xFF),
l2lens, 0);
l2lens = vset_lane_u16(((cq1_w5 >> 16) & 0xFF) -
(cq1_w5 & 0xFF),
l2lens, 1);
l2lens = vset_lane_u16(((cq2_w5 >> 16) & 0xFF) -
(cq2_w5 & 0xFF),
l2lens, 2);
l2lens = vset_lane_u16(((cq3_w5 >> 16) & 0xFF) -
(cq3_w5 & 0xFF),
l2lens, 3);
lens = vadd_u16(lens, l2lens);
/* L3 header adjust */
const int8x8_t l3adj = {
0, 0, 0, 0, 40, 0, 0, 0,
};
lens = vadd_u16(lens, vtbl1_u8(l3adj, ltypes));
/* Initialize rearm data when reassembly is enabled as
* data offset might change.
*/
if (flags & NIX_RX_REAS_F) {
rearm0 = vdupq_n_u64(mbuf_initializer);
rearm1 = vdupq_n_u64(mbuf_initializer);
rearm2 = vdupq_n_u64(mbuf_initializer);
rearm3 = vdupq_n_u64(mbuf_initializer);
}
/* Checksum ol_flags will be cleared if mbuf is meta */
if (cq0_w1 & BIT(11)) {
uintptr_t wqe = vgetq_lane_u64(wqe01, 0);
uintptr_t sa = vgetq_lane_u64(sa01, 0);
uint16_t len = vget_lane_u16(lens, 0);
cpth0 = (uintptr_t)mbuf0 + d_off;
/* Free meta to aura */
NIX_PUSH_META_TO_FREE(mbuf0, laddr, &loff);
mbuf01 = vsetq_lane_u64(wqe, mbuf01, 0);
mbuf0 = (struct rte_mbuf *)wqe;
/* Update pkt_len and data_len */
f0 = vsetq_lane_u16(len, f0, 2);
f0 = vsetq_lane_u16(len, f0, 4);
nix_sec_meta_to_mbuf(cq0_w1, cq0_w5, sa, cpth0,
mbuf0, &f0, &ol_flags0,
flags, &rearm0);
ol_flags0 |= ((uint64_t)vget_lane_u8(ucc, 0))
<< 1;
ol_flags0 |= (RTE_MBUF_F_RX_SEC_OFFLOAD |
(uint64_t)vget_lane_u8(ucc, 1) << 19);
}
if (cq1_w1 & BIT(11)) {
uintptr_t wqe = vgetq_lane_u64(wqe01, 1);
uintptr_t sa = vgetq_lane_u64(sa01, 1);
uint16_t len = vget_lane_u16(lens, 1);
cpth1 = (uintptr_t)mbuf1 + d_off;
/* Free meta to aura */
NIX_PUSH_META_TO_FREE(mbuf1, laddr, &loff);
mbuf01 = vsetq_lane_u64(wqe, mbuf01, 1);
mbuf1 = (struct rte_mbuf *)wqe;
/* Update pkt_len and data_len */
f1 = vsetq_lane_u16(len, f1, 2);
f1 = vsetq_lane_u16(len, f1, 4);
nix_sec_meta_to_mbuf(cq1_w1, cq1_w5, sa, cpth1,
mbuf1, &f1, &ol_flags1,
flags, &rearm1);
ol_flags1 |= ((uint64_t)vget_lane_u8(ucc, 2))
<< 1;
ol_flags1 |= (RTE_MBUF_F_RX_SEC_OFFLOAD |
(uint64_t)vget_lane_u8(ucc, 3) << 19);
}
if (cq2_w1 & BIT(11)) {
uintptr_t wqe = vgetq_lane_u64(wqe23, 0);
uintptr_t sa = vgetq_lane_u64(sa23, 0);
uint16_t len = vget_lane_u16(lens, 2);
cpth2 = (uintptr_t)mbuf2 + d_off;
/* Free meta to aura */
NIX_PUSH_META_TO_FREE(mbuf2, laddr, &loff);
mbuf23 = vsetq_lane_u64(wqe, mbuf23, 0);
mbuf2 = (struct rte_mbuf *)wqe;
/* Update pkt_len and data_len */
f2 = vsetq_lane_u16(len, f2, 2);
f2 = vsetq_lane_u16(len, f2, 4);
nix_sec_meta_to_mbuf(cq2_w1, cq2_w5, sa, cpth2,
mbuf2, &f2, &ol_flags2,
flags, &rearm2);
ol_flags2 |= ((uint64_t)vget_lane_u8(ucc, 4))
<< 1;
ol_flags2 |= (RTE_MBUF_F_RX_SEC_OFFLOAD |
(uint64_t)vget_lane_u8(ucc, 5) << 19);
}
if (cq3_w1 & BIT(11)) {
uintptr_t wqe = vgetq_lane_u64(wqe23, 1);
uintptr_t sa = vgetq_lane_u64(sa23, 1);
uint16_t len = vget_lane_u16(lens, 3);
cpth3 = (uintptr_t)mbuf3 + d_off;
/* Free meta to aura */
NIX_PUSH_META_TO_FREE(mbuf3, laddr, &loff);
mbuf23 = vsetq_lane_u64(wqe, mbuf23, 1);
mbuf3 = (struct rte_mbuf *)wqe;
/* Update pkt_len and data_len */
f3 = vsetq_lane_u16(len, f3, 2);
f3 = vsetq_lane_u16(len, f3, 4);
nix_sec_meta_to_mbuf(cq3_w1, cq3_w5, sa, cpth3,
mbuf3, &f3, &ol_flags3,
flags, &rearm3);
ol_flags3 |= ((uint64_t)vget_lane_u8(ucc, 6))
<< 1;
ol_flags3 |= (RTE_MBUF_F_RX_SEC_OFFLOAD |
(uint64_t)vget_lane_u8(ucc, 7) << 19);
}
}
if (flags & NIX_RX_OFFLOAD_VLAN_STRIP_F) {
ol_flags0 = nix_vlan_update(cq0_w2, ol_flags0, &f0);
ol_flags1 = nix_vlan_update(cq1_w2, ol_flags1, &f1);
ol_flags2 = nix_vlan_update(cq2_w2, ol_flags2, &f2);
ol_flags3 = nix_vlan_update(cq3_w2, ol_flags3, &f3);
ol_flags0 = nix_qinq_update(cq0_w2, ol_flags0, mbuf0);
ol_flags1 = nix_qinq_update(cq1_w2, ol_flags1, mbuf1);
ol_flags2 = nix_qinq_update(cq2_w2, ol_flags2, mbuf2);
ol_flags3 = nix_qinq_update(cq3_w2, ol_flags3, mbuf3);
}
if (flags & NIX_RX_OFFLOAD_MARK_UPDATE_F) {
ol_flags0 = nix_update_match_id(
*(uint16_t *)CQE_PTR_OFF(cq0, 0, 38, flags),
ol_flags0, mbuf0);
ol_flags1 = nix_update_match_id(
*(uint16_t *)CQE_PTR_OFF(cq0, 1, 38, flags),
ol_flags1, mbuf1);
ol_flags2 = nix_update_match_id(
*(uint16_t *)CQE_PTR_OFF(cq0, 2, 38, flags),
ol_flags2, mbuf2);
ol_flags3 = nix_update_match_id(
*(uint16_t *)CQE_PTR_OFF(cq0, 3, 38, flags),
ol_flags3, mbuf3);
}
if ((flags & NIX_RX_OFFLOAD_TSTAMP_F) &&
((flags & NIX_RX_VWQE_F) && tstamp)) {
const uint16x8_t len_off = {
0, /* ptype 0:15 */
0, /* ptype 16:32 */
CNXK_NIX_TIMESYNC_RX_OFFSET, /* pktlen 0:15*/
0, /* pktlen 16:32 */
CNXK_NIX_TIMESYNC_RX_OFFSET, /* datalen 0:15 */
0,
0,
0};
const uint32x4_t ptype = {RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC,
RTE_PTYPE_L2_ETHER_TIMESYNC};
const uint64_t ts_olf = RTE_MBUF_F_RX_IEEE1588_PTP |
RTE_MBUF_F_RX_IEEE1588_TMST |
tstamp->rx_tstamp_dynflag;
const uint32x4_t and_mask = {0x1, 0x2, 0x4, 0x8};
uint64x2_t ts01, ts23, mask;
uint64_t ts[4];
uint8_t res;
/* Subtract timesync length from total pkt length. */
f0 = vsubq_u16(f0, len_off);
f1 = vsubq_u16(f1, len_off);
f2 = vsubq_u16(f2, len_off);
f3 = vsubq_u16(f3, len_off);
/* Get the address of actual timestamp. */
ts01 = vaddq_u64(mbuf01, data_off);
ts23 = vaddq_u64(mbuf23, data_off);
/* Load timestamp from address. */
ts01 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts01,
0),
ts01, 0);
ts01 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts01,
1),
ts01, 1);
ts23 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts23,
0),
ts23, 0);
ts23 = vsetq_lane_u64(*(uint64_t *)vgetq_lane_u64(ts23,
1),
ts23, 1);
/* Convert from be to cpu byteorder. */
ts01 = vrev64q_u8(ts01);
ts23 = vrev64q_u8(ts23);
/* Store timestamp into scalar for later use. */
ts[0] = vgetq_lane_u64(ts01, 0);
ts[1] = vgetq_lane_u64(ts01, 1);
ts[2] = vgetq_lane_u64(ts23, 0);
ts[3] = vgetq_lane_u64(ts23, 1);
/* Store timestamp into dynfield. */
*cnxk_nix_timestamp_dynfield(mbuf0, tstamp) = ts[0];
*cnxk_nix_timestamp_dynfield(mbuf1, tstamp) = ts[1];
*cnxk_nix_timestamp_dynfield(mbuf2, tstamp) = ts[2];
*cnxk_nix_timestamp_dynfield(mbuf3, tstamp) = ts[3];
/* Generate ptype mask to filter L2 ether timesync */
mask = vdupq_n_u32(vgetq_lane_u32(f0, 0));
mask = vsetq_lane_u32(vgetq_lane_u32(f1, 0), mask, 1);
mask = vsetq_lane_u32(vgetq_lane_u32(f2, 0), mask, 2);
mask = vsetq_lane_u32(vgetq_lane_u32(f3, 0), mask, 3);
/* Match against L2 ether timesync. */
mask = vceqq_u32(mask, ptype);
/* Convert from vector from scalar mask */
res = vaddvq_u32(vandq_u32(mask, and_mask));
res &= 0xF;
if (res) {
/* Fill in the ol_flags for any packets that
* matched.
*/
ol_flags0 |= ((res & 0x1) ? ts_olf : 0);
ol_flags1 |= ((res & 0x2) ? ts_olf : 0);
ol_flags2 |= ((res & 0x4) ? ts_olf : 0);
ol_flags3 |= ((res & 0x8) ? ts_olf : 0);
/* Update Rxq timestamp with the latest
* timestamp.
*/
tstamp->rx_ready = 1;
tstamp->rx_tstamp = ts[31 - __builtin_clz(res)];
}
}
/* Form rearm_data with ol_flags */
rearm0 = vsetq_lane_u64(ol_flags0, rearm0, 1);
rearm1 = vsetq_lane_u64(ol_flags1, rearm1, 1);
rearm2 = vsetq_lane_u64(ol_flags2, rearm2, 1);
rearm3 = vsetq_lane_u64(ol_flags3, rearm3, 1);
/* Update rx_descriptor_fields1 */
vst1q_u64((uint64_t *)mbuf0->rx_descriptor_fields1, f0);
vst1q_u64((uint64_t *)mbuf1->rx_descriptor_fields1, f1);
vst1q_u64((uint64_t *)mbuf2->rx_descriptor_fields1, f2);
vst1q_u64((uint64_t *)mbuf3->rx_descriptor_fields1, f3);
/* Update rearm_data */
vst1q_u64((uint64_t *)mbuf0->rearm_data, rearm0);
vst1q_u64((uint64_t *)mbuf1->rearm_data, rearm1);
vst1q_u64((uint64_t *)mbuf2->rearm_data, rearm2);
vst1q_u64((uint64_t *)mbuf3->rearm_data, rearm3);
if (flags & NIX_RX_MULTI_SEG_F) {
/* Multi segment is enable build mseg list for
* individual mbufs in scalar mode.
*/
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(CQE_PTR_OFF(cq0, 0, 8, flags)),
mbuf0, mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(CQE_PTR_OFF(cq0, 1, 8, flags)),
mbuf1, mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(CQE_PTR_OFF(cq0, 2, 8, flags)),
mbuf2, mbuf_initializer, flags);
nix_cqe_xtract_mseg((union nix_rx_parse_u *)
(CQE_PTR_OFF(cq0, 3, 8, flags)),
mbuf3, mbuf_initializer, flags);
}
/* Store the mbufs to rx_pkts */
vst1q_u64((uint64_t *)&mbufs[packets], mbuf01);
vst1q_u64((uint64_t *)&mbufs[packets + 2], mbuf23);
/* Mark mempool obj as "get" as it is alloc'ed by NIX */
RTE_MEMPOOL_CHECK_COOKIES(mbuf0->pool, (void **)&mbuf0, 1, 1);
RTE_MEMPOOL_CHECK_COOKIES(mbuf1->pool, (void **)&mbuf1, 1, 1);
RTE_MEMPOOL_CHECK_COOKIES(mbuf2->pool, (void **)&mbuf2, 1, 1);
RTE_MEMPOOL_CHECK_COOKIES(mbuf3->pool, (void **)&mbuf3, 1, 1);
nix_mbuf_validate_next(mbuf0);
nix_mbuf_validate_next(mbuf1);
nix_mbuf_validate_next(mbuf2);
nix_mbuf_validate_next(mbuf3);
packets += NIX_DESCS_PER_LOOP;
if (!(flags & NIX_RX_VWQE_F)) {
/* Advance head pointer and packets */
head += NIX_DESCS_PER_LOOP;
head &= qmask;
}
if (flags & NIX_RX_OFFLOAD_SECURITY_F) {
/* Check if lmtline border is crossed and adjust lnum */
if (loff > 15) {
/* Update aura handle */
*(uint64_t *)(laddr - 8) =
(((uint64_t)(15 & 0x1) << 32) |
roc_npa_aura_handle_to_aura(meta_aura));
loff = loff - 15;
shft += 3;
lnum++;
laddr = (uintptr_t)LMT_OFF(lbase, lnum, 8);
/* Pick the pointer from 16th index and put it
* at end of this new line.
*/
*(uint64_t *)(laddr + (loff << 3) - 8) =
*(uint64_t *)(laddr - 8);
}
/* Flush it when we are in 16th line and might
* overflow it
*/
if (lnum >= 15 && loff >= 12) {
/* 16 LMT Line size m1 */
uint64_t data = BIT_ULL(48) - 1;
/* Update aura handle */
*(uint64_t *)(laddr - 8) =
(((uint64_t)(loff & 0x1) << 32) |
roc_npa_aura_handle_to_aura(meta_aura));
data = (data & ~(0x7UL << shft)) |
(((uint64_t)loff >> 1) << shft);
/* Send up to 16 lmt lines of pointers */
nix_sec_flush_meta_burst(lmt_id, data, lnum + 1,
meta_aura);
rte_io_wmb();
lnum = 0;
loff = 0;
shft = 0;
/* First pointer starts at 8B offset */
laddr = (uintptr_t)LMT_OFF(lbase, lnum, 8);
}
}
}
if (flags & NIX_RX_OFFLOAD_SECURITY_F && loff) {
/* 16 LMT Line size m1 */
uint64_t data = BIT_ULL(48) - 1;
/* Update aura handle */
*(uint64_t *)(laddr - 8) =
(((uint64_t)(loff & 0x1) << 32) |
roc_npa_aura_handle_to_aura(meta_aura));
data = (data & ~(0x7UL << shft)) |
(((uint64_t)loff >> 1) << shft);
/* Send up to 16 lmt lines of pointers */
nix_sec_flush_meta_burst(lmt_id, data, lnum + 1, meta_aura);
if (flags & NIX_RX_VWQE_F)
plt_io_wmb();
}
if (flags & NIX_RX_VWQE_F)
return packets;
rxq->head = head;
rxq->available -= packets;
rte_io_wmb();
/* Free all the CQs that we've processed */
plt_write64((rxq->wdata | packets), rxq->cq_door);
if (unlikely(pkts_left))
packets += cn10k_nix_recv_pkts(args, &mbufs[packets], pkts_left,
flags);
return packets;
}
#else
static inline uint16_t
cn10k_nix_recv_pkts_vector(void *args, struct rte_mbuf **mbufs, uint16_t pkts,
const uint16_t flags, void *lookup_mem,
struct cnxk_timesync_info *tstamp,
uintptr_t lmt_base, uint64_t meta_aura)
{
RTE_SET_USED(args);
RTE_SET_USED(mbufs);
RTE_SET_USED(pkts);
RTE_SET_USED(flags);
RTE_SET_USED(lookup_mem);
RTE_SET_USED(tstamp);
RTE_SET_USED(lmt_base);
RTE_SET_USED(meta_aura);
return 0;
}
#endif
#define RSS_F NIX_RX_OFFLOAD_RSS_F
#define PTYPE_F NIX_RX_OFFLOAD_PTYPE_F
#define CKSUM_F NIX_RX_OFFLOAD_CHECKSUM_F
#define MARK_F NIX_RX_OFFLOAD_MARK_UPDATE_F
#define TS_F NIX_RX_OFFLOAD_TSTAMP_F
#define RX_VLAN_F NIX_RX_OFFLOAD_VLAN_STRIP_F
#define R_SEC_F NIX_RX_OFFLOAD_SECURITY_F
/* [R_SEC_F] [RX_VLAN_F] [TS] [MARK] [CKSUM] [PTYPE] [RSS] */
#define NIX_RX_FASTPATH_MODES_0_15 \
R(no_offload, NIX_RX_OFFLOAD_NONE) \
R(rss, RSS_F) \
R(ptype, PTYPE_F) \
R(ptype_rss, PTYPE_F | RSS_F) \
R(cksum, CKSUM_F) \
R(cksum_rss, CKSUM_F | RSS_F) \
R(cksum_ptype, CKSUM_F | PTYPE_F) \
R(cksum_ptype_rss, CKSUM_F | PTYPE_F | RSS_F) \
R(mark, MARK_F) \
R(mark_rss, MARK_F | RSS_F) \
R(mark_ptype, MARK_F | PTYPE_F) \
R(mark_ptype_rss, MARK_F | PTYPE_F | RSS_F) \
R(mark_cksum, MARK_F | CKSUM_F) \
R(mark_cksum_rss, MARK_F | CKSUM_F | RSS_F) \
R(mark_cksum_ptype, MARK_F | CKSUM_F | PTYPE_F) \
R(mark_cksum_ptype_rss, MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_16_31 \
R(ts, TS_F) \
R(ts_rss, TS_F | RSS_F) \
R(ts_ptype, TS_F | PTYPE_F) \
R(ts_ptype_rss, TS_F | PTYPE_F | RSS_F) \
R(ts_cksum, TS_F | CKSUM_F) \
R(ts_cksum_rss, TS_F | CKSUM_F | RSS_F) \
R(ts_cksum_ptype, TS_F | CKSUM_F | PTYPE_F) \
R(ts_cksum_ptype_rss, TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(ts_mark, TS_F | MARK_F) \
R(ts_mark_rss, TS_F | MARK_F | RSS_F) \
R(ts_mark_ptype, TS_F | MARK_F | PTYPE_F) \
R(ts_mark_ptype_rss, TS_F | MARK_F | PTYPE_F | RSS_F) \
R(ts_mark_cksum, TS_F | MARK_F | CKSUM_F) \
R(ts_mark_cksum_rss, TS_F | MARK_F | CKSUM_F | RSS_F) \
R(ts_mark_cksum_ptype, TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(ts_mark_cksum_ptype_rss, TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_32_47 \
R(vlan, RX_VLAN_F) \
R(vlan_rss, RX_VLAN_F | RSS_F) \
R(vlan_ptype, RX_VLAN_F | PTYPE_F) \
R(vlan_ptype_rss, RX_VLAN_F | PTYPE_F | RSS_F) \
R(vlan_cksum, RX_VLAN_F | CKSUM_F) \
R(vlan_cksum_rss, RX_VLAN_F | CKSUM_F | RSS_F) \
R(vlan_cksum_ptype, RX_VLAN_F | CKSUM_F | PTYPE_F) \
R(vlan_cksum_ptype_rss, RX_VLAN_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan_mark, RX_VLAN_F | MARK_F) \
R(vlan_mark_rss, RX_VLAN_F | MARK_F | RSS_F) \
R(vlan_mark_ptype, RX_VLAN_F | MARK_F | PTYPE_F) \
R(vlan_mark_ptype_rss, RX_VLAN_F | MARK_F | PTYPE_F | RSS_F) \
R(vlan_mark_cksum, RX_VLAN_F | MARK_F | CKSUM_F) \
R(vlan_mark_cksum_rss, RX_VLAN_F | MARK_F | CKSUM_F | RSS_F) \
R(vlan_mark_cksum_ptype, RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F) \
R(vlan_mark_cksum_ptype_rss, \
RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_48_63 \
R(vlan_ts, RX_VLAN_F | TS_F) \
R(vlan_ts_rss, RX_VLAN_F | TS_F | RSS_F) \
R(vlan_ts_ptype, RX_VLAN_F | TS_F | PTYPE_F) \
R(vlan_ts_ptype_rss, RX_VLAN_F | TS_F | PTYPE_F | RSS_F) \
R(vlan_ts_cksum, RX_VLAN_F | TS_F | CKSUM_F) \
R(vlan_ts_cksum_rss, RX_VLAN_F | TS_F | CKSUM_F | RSS_F) \
R(vlan_ts_cksum_ptype, RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F) \
R(vlan_ts_cksum_ptype_rss, \
RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(vlan_ts_mark, RX_VLAN_F | TS_F | MARK_F) \
R(vlan_ts_mark_rss, RX_VLAN_F | TS_F | MARK_F | RSS_F) \
R(vlan_ts_mark_ptype, RX_VLAN_F | TS_F | MARK_F | PTYPE_F) \
R(vlan_ts_mark_ptype_rss, RX_VLAN_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(vlan_ts_mark_cksum, RX_VLAN_F | TS_F | MARK_F | CKSUM_F) \
R(vlan_ts_mark_cksum_rss, RX_VLAN_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(vlan_ts_mark_cksum_ptype, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(vlan_ts_mark_cksum_ptype_rss, \
RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_64_79 \
R(sec, R_SEC_F) \
R(sec_rss, R_SEC_F | RSS_F) \
R(sec_ptype, R_SEC_F | PTYPE_F) \
R(sec_ptype_rss, R_SEC_F | PTYPE_F | RSS_F) \
R(sec_cksum, R_SEC_F | CKSUM_F) \
R(sec_cksum_rss, R_SEC_F | CKSUM_F | RSS_F) \
R(sec_cksum_ptype, R_SEC_F | CKSUM_F | PTYPE_F) \
R(sec_cksum_ptype_rss, R_SEC_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_mark, R_SEC_F | MARK_F) \
R(sec_mark_rss, R_SEC_F | MARK_F | RSS_F) \
R(sec_mark_ptype, R_SEC_F | MARK_F | PTYPE_F) \
R(sec_mark_ptype_rss, R_SEC_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_mark_cksum, R_SEC_F | MARK_F | CKSUM_F) \
R(sec_mark_cksum_rss, R_SEC_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_mark_cksum_ptype, R_SEC_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_mark_cksum_ptype_rss, \
R_SEC_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_80_95 \
R(sec_ts, R_SEC_F | TS_F) \
R(sec_ts_rss, R_SEC_F | TS_F | RSS_F) \
R(sec_ts_ptype, R_SEC_F | TS_F | PTYPE_F) \
R(sec_ts_ptype_rss, R_SEC_F | TS_F | PTYPE_F | RSS_F) \
R(sec_ts_cksum, R_SEC_F | TS_F | CKSUM_F) \
R(sec_ts_cksum_rss, R_SEC_F | TS_F | CKSUM_F | RSS_F) \
R(sec_ts_cksum_ptype, R_SEC_F | TS_F | CKSUM_F | PTYPE_F) \
R(sec_ts_cksum_ptype_rss, R_SEC_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_ts_mark, R_SEC_F | TS_F | MARK_F) \
R(sec_ts_mark_rss, R_SEC_F | TS_F | MARK_F | RSS_F) \
R(sec_ts_mark_ptype, R_SEC_F | TS_F | MARK_F | PTYPE_F) \
R(sec_ts_mark_ptype_rss, R_SEC_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_ts_mark_cksum, R_SEC_F | TS_F | MARK_F | CKSUM_F) \
R(sec_ts_mark_cksum_rss, R_SEC_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_ts_mark_cksum_ptype, \
R_SEC_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_ts_mark_cksum_ptype_rss, \
R_SEC_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_96_111 \
R(sec_vlan, R_SEC_F | RX_VLAN_F) \
R(sec_vlan_rss, R_SEC_F | RX_VLAN_F | RSS_F) \
R(sec_vlan_ptype, R_SEC_F | RX_VLAN_F | PTYPE_F) \
R(sec_vlan_ptype_rss, R_SEC_F | RX_VLAN_F | PTYPE_F | RSS_F) \
R(sec_vlan_cksum, R_SEC_F | RX_VLAN_F | CKSUM_F) \
R(sec_vlan_cksum_rss, R_SEC_F | RX_VLAN_F | CKSUM_F | RSS_F) \
R(sec_vlan_cksum_ptype, R_SEC_F | RX_VLAN_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan_mark, R_SEC_F | RX_VLAN_F | MARK_F) \
R(sec_vlan_mark_rss, R_SEC_F | RX_VLAN_F | MARK_F | RSS_F) \
R(sec_vlan_mark_ptype, R_SEC_F | RX_VLAN_F | MARK_F | PTYPE_F) \
R(sec_vlan_mark_ptype_rss, \
R_SEC_F | RX_VLAN_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_vlan_mark_cksum, R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F) \
R(sec_vlan_mark_cksum_rss, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_vlan_mark_cksum_ptype, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_mark_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES_112_127 \
R(sec_vlan_ts, R_SEC_F | RX_VLAN_F | TS_F) \
R(sec_vlan_ts_rss, R_SEC_F | RX_VLAN_F | TS_F | RSS_F) \
R(sec_vlan_ts_ptype, R_SEC_F | RX_VLAN_F | TS_F | PTYPE_F) \
R(sec_vlan_ts_ptype_rss, R_SEC_F | RX_VLAN_F | TS_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_cksum, R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F) \
R(sec_vlan_ts_cksum_rss, R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | RSS_F) \
R(sec_vlan_ts_cksum_ptype, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_ts_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | TS_F | CKSUM_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_mark, R_SEC_F | RX_VLAN_F | TS_F | MARK_F) \
R(sec_vlan_ts_mark_rss, R_SEC_F | RX_VLAN_F | TS_F | MARK_F | RSS_F) \
R(sec_vlan_ts_mark_ptype, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | PTYPE_F) \
R(sec_vlan_ts_mark_ptype_rss, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | PTYPE_F | RSS_F) \
R(sec_vlan_ts_mark_cksum, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F) \
R(sec_vlan_ts_mark_cksum_rss, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | RSS_F) \
R(sec_vlan_ts_mark_cksum_ptype, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F) \
R(sec_vlan_ts_mark_cksum_ptype_rss, \
R_SEC_F | RX_VLAN_F | TS_F | MARK_F | CKSUM_F | PTYPE_F | RSS_F)
#define NIX_RX_FASTPATH_MODES \
NIX_RX_FASTPATH_MODES_0_15 \
NIX_RX_FASTPATH_MODES_16_31 \
NIX_RX_FASTPATH_MODES_32_47 \
NIX_RX_FASTPATH_MODES_48_63 \
NIX_RX_FASTPATH_MODES_64_79 \
NIX_RX_FASTPATH_MODES_80_95 \
NIX_RX_FASTPATH_MODES_96_111 \
NIX_RX_FASTPATH_MODES_112_127 \
#define R(name, flags) \
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_mseg_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_vec_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_vec_mseg_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_reas_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_reas_mseg_##name(\
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_reas_vec_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts); \
uint16_t __rte_noinline __rte_hot cn10k_nix_recv_pkts_reas_vec_mseg_##name( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts);
NIX_RX_FASTPATH_MODES
#undef R
#define NIX_RX_RECV(fn, flags) \
uint16_t __rte_noinline __rte_hot fn( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts) \
{ \
return cn10k_nix_recv_pkts(rx_queue, rx_pkts, pkts, (flags)); \
}
#define NIX_RX_RECV_MSEG(fn, flags) NIX_RX_RECV(fn, flags | NIX_RX_MULTI_SEG_F)
#define NIX_RX_RECV_VEC(fn, flags) \
uint16_t __rte_noinline __rte_hot fn( \
void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t pkts) \
{ \
return cn10k_nix_recv_pkts_vector(rx_queue, rx_pkts, pkts, \
(flags), NULL, NULL, 0, 0); \
}
#define NIX_RX_RECV_VEC_MSEG(fn, flags) \
NIX_RX_RECV_VEC(fn, flags | NIX_RX_MULTI_SEG_F)
#endif /* __CN10K_RX_H__ */